Studies on the influences of design parameters on the control characteristics of robot arm

K. Varadaiah
PG Student, Department of Mechanical Engineering, JNT University, Hyderabad

Under the Guidance of Dr. A. Chennakesava Reddy, Associate Professor, JNTUH College of Engineering, JNT University, Hyderabad.

ABSTRACT
Robot manipulators have the inherent characteristics of being highly non-linear and strongly coupled. Due to this complexity, the design of a general robot arm is an expensive and time-consuming task. Two-link manipulators are two-degree-of-freedom robots. Proportional-Integral-Derivative (PID) control is the most common control algorithm used in industrial control systems.

In the present work, a feed-forward controller structure consisting of feedback and feed-forward controller was employed in order to eliminate positional inaccuracy due to reproducible disturbances and model uncertainty.

According to Lagrange’s equation, the arm dynamics are given by the two-coupled non-linear differential equations:

\[
\tau_1 = [(m_1 + m_2)l_1^2 + m_2l_2^2 + 2m_2l_1l_2\cos \theta_2] \ddot{\theta}_1 + [m_2l_2^2 + m_2l_1l_2\cos \theta_2] \ddot{\theta}_2
\]
\[
-2m_2l_1l_2\dot{\theta}_1\dot{\theta}_2\sin \theta_1 - m_2l_1l_2\dot{\theta}_2^2\sin \theta_2 + (m_1 + m_2)gl_1\cos \theta_1 + m_2gl_2\cos(\theta_1 + \theta_2)
\]
\[\tau_2 = [m_2l_2^2 + m_2l_1l_2\cos\theta_2]\ddot{\theta}_1 + m_2l_2^2\ddot{\theta}_2 + m_2l_1l_2\dot{\theta}_1^2\sin\theta_2 + m_2gl_2\cos(\theta_1 + \theta_2) \]

where \(\theta_1, \theta_2 \) are the angles of link 1, 2; \(m_1, m_2 \) are the masses of link 1, 2; \(a_1, a_2 \) are the lengths of link 1, 2.

The arm dynamics in vector form yields:

\[
\begin{bmatrix}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{bmatrix}
\begin{bmatrix}
\dot{\theta}_1 \\
\dot{\theta}_2
\end{bmatrix} +
\begin{bmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{bmatrix}
\begin{bmatrix}
\theta_1 \\
\theta_2
\end{bmatrix} +
\begin{bmatrix}
G_1 \\
G_2
\end{bmatrix} = \begin{bmatrix}
\tau_1 \\
\tau_2
\end{bmatrix}
\]

\[M_{11} = (m_1 + m_2)l_1^2 + m_2l_2^2 + 2m_2l_1l_2\cos\theta_2 \]

\[M_{12} = m_2l_2^2 + m_2l_1l_2\cos\theta_2 \]

\[M_{21} = m_2l_2^2 + m_2l_1l_2\cos\theta_2 \]

\[M_{22} = m_2l_2^2 \]

\[C_{11} = -2m_2l_1l_2\dot{\theta}_2\sin\theta_2 \]

\[C_{12} = -m_2l_1l_2\dot{\theta}_2\sin\theta_2 \]

\[C_{21} = m_2l_1l_2\dot{\theta}_1\sin\theta_2 \]

\[C_{22} = 0 \]

\[G_1 = (m_1 + m_2)gl_1\cos\theta_1 + m_2gl_2\cos(\theta_1 + \theta_2) \]

\[G_2 = m_2gl_2\cos(\theta_1 + \theta_2) \]

The feed-forward controller compensates the reproducible disturbances that depend on the state of the process.

References

