ACADEMIC REGULATIONS
COURSE STRUCTURE
AND
DETAILED SYLLABUS

ELECTRICAL & ELECTRONICS
ENGINEERING

For

B.TECH. FOUR YEAR DEGREE COURSE
(Applicable for the batches admitted from 2017-2018)

JNTUH COLLEGE OF ENGINEERING HYDERABAD
(Autonomous)
Kukatpally, Hyderabad - 500085
TELANGANA, INDIA
1.0 Under-Graduate Degree Programme in Engineering & Technology (UGP in E&T)

JNTUH offers 4 Year (8 Semesters) Bachelor of Technology (B.Tech.) Degree Programme, under Choice Based Credit System (CBCS) at its Constituent Autonomous College - JNTUH College of Engineering, Hyderabad, with effect from the Academic Year 2017 - 18 onwards, in the following Branches of Engineering ...

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Branch</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>II.</td>
<td>Computer Science and Engineering</td>
</tr>
<tr>
<td>III.</td>
<td>Electrical and Electronics Engineering</td>
</tr>
<tr>
<td>IV.</td>
<td>Electronics and Communication Engineering</td>
</tr>
<tr>
<td>V.</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>VI.</td>
<td>Metallurgical Engineering</td>
</tr>
<tr>
<td>VII.</td>
<td>Chemical Engineering</td>
</tr>
</tbody>
</table>

2.0 Eligibility for Admission

2.1 Admission to the UGP shall be made either on the basis of the merit rank obtained by the qualifying candidate at an Entrance Test conducted by the Telangana State Government (EAMCET), OR the University, OR on the basis of any other order of merit approved by the University, subject to reservations as prescribed by the Government from time to time.

2.2 The medium of instructions for the entire UGP in E&T will be ENGLISH only.

3.0 B.Tech. Programme (UGP) Structure

3.1 The B.Tech. Programmes of JNTUH-CEH are of Semester Pattern, with 8 Semesters constituting 4 Academic Years, each Academic Year having TWO Semesters (First/Odd and Second/Even Semesters). Each Semester shall be of 22 Weeks duration (inclusive of Examinations), with a minimum of 90 Instructional Days per Semester.

3.2 UGC/ AICTE specified Definitions/ Descriptions are adopted appropriately for various terms and abbreviations used in these Academic Regulations/ Norms, which are as listed below.

3.2.1 Semester Scheme:
Each UGP is of 4 Academic Years (8 Semesters), with the year being divided into two Semesters of 22 weeks (≥ 90 working days) each, each Semester having - ‘Continuous Internal Evaluation (CIE)’ and ‘Semester End Examination (SEE)’. Choice Based Credit System (CBCS) and Credit Based Semester System (CBSS) as denoted by UGC, and Curriculum/ Course Structure as suggested by AICTE are followed.

3.2.2 Credit Courses:
All Subjects/ Courses are to be registered by a student in a Semester to earn Credits. Credits shall be assigned to each Subject/ Course in a L: T: P: C (Lecture Periods: Tutorial Periods: Practicals Periods : Credits) Structure, based on the following general pattern ..

- One Credit - for One hour/ Week/ Semester for Theory/ Lecture (L) Courses; and,
- One Credit - for Two hours/ Week/ Semester for Laboratory/ Practical (P) Courses or Tutorials (T).
Other student activities like NCC, NSS, NSO, Study Tour, Guest Lecture etc., and identified Mandatory Courses will not carry Credits.
3.2.3 Subject/Course Classification:

All Subjects/Courses offered for the UGP are broadly classified as: (a) Foundation Courses (FnC), (b) Core Courses (CoC), and (c) Elective Courses (EℓC).

- Foundation Courses (FnC) are further categorized as: (i) HS (Humanities and Social Sciences), (ii) BS (Basic Sciences), and (iii) ES (Engineering Sciences);
- Core Courses (CoC) and Elective Courses (EℓC) are categorized as PS (Professional Subjects), which are further subdivided as – (i) PC (Professional/Departmental Core) Subjects, (ii) PE (Professional/Departmental Electives), (iii) OE (Open Electives); and (iv) Project Works (PW);
- Minor Courses (1 or 2 Credit Courses, belonging to HS/BS/ES/PC as per relevance); and
- Mandatory Courses (MC - non-credit oriented).

3.2.4 Course Nomenclature:

The Curriculum Nomenclature or Course-Structure Grouping for each of the UGP E&T (B.Tech. Degree Programmes), is as listed below (along with AICTE specified % Range of Total Credits):…

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Broad Course Classification</th>
<th>Course Group/ Category</th>
<th>Course Description</th>
<th>Range of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>Foundation Courses (FnC)</td>
<td>BS – Basic Sciences</td>
<td>Includes - Mathematics, Physics and Chemistry Subjects</td>
<td>15% - 20%</td>
</tr>
<tr>
<td>2)</td>
<td></td>
<td>ES - Engineering Sciences</td>
<td>Includes fundamental engineering subjects</td>
<td>15% - 20%</td>
</tr>
<tr>
<td>3)</td>
<td></td>
<td>HS – Humanities and Social Sciences</td>
<td>Includes subjects related to Humanities, Social Sciences and Management</td>
<td>5% - 10%</td>
</tr>
<tr>
<td>4)</td>
<td>Core Courses (CoC)</td>
<td>PC – Professional Core</td>
<td>Includes core subjects related to the Parent Discipline/ Department/ Branch of Engg.</td>
<td>30% - 40%</td>
</tr>
<tr>
<td>5)</td>
<td>Elective Courses (EℓC)</td>
<td>PE – Professional Electives</td>
<td>Includes Elective subjects related to the Parent Discipline/ Department/ Branch of Engg.</td>
<td>10% - 15%</td>
</tr>
<tr>
<td>6)</td>
<td></td>
<td>OE – Open Electives</td>
<td>Elective subjects which include inter-disciplinary subjects or subjects in an area outside the Parent Discipline/ Department/ Branch of Engg.</td>
<td>5% - 10%</td>
</tr>
<tr>
<td>7)</td>
<td>Core Courses</td>
<td>Project Work</td>
<td>B.Tech. Project or UG Project or UG Major Project</td>
<td></td>
</tr>
<tr>
<td>8)</td>
<td></td>
<td>Industrial Training/ Mini-Project</td>
<td>Industrial Training/ Internship/ UG Mini-Project/ Mini-Project</td>
<td>10% - 15%</td>
</tr>
<tr>
<td>9)</td>
<td></td>
<td>Seminar</td>
<td>Seminar/ Colloquium based on core contents related to the Parent Discipline/ Department/ Branch of Engg.</td>
<td></td>
</tr>
<tr>
<td>10)</td>
<td>Minor Courses</td>
<td>1 or 2 Credit Courses</td>
<td>1 or 2 Credit Courses (subset of HS)</td>
<td>included</td>
</tr>
<tr>
<td>11)</td>
<td>Mandatory Courses (MC)</td>
<td>Mandatory Courses (non-credit)</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

Total Credits for UGP (B. Tech.) Programme | 192 (100%) |

4.0 Course Work

4.1
A student, after securing admission, shall pursue the B.Tech. UGP in a minimum period of 4 Academic Years, and a maximum period of 8 Academic Years (starting from the Date of Commencement of I Year).

4.2
Each student shall Register for and Secure the specified number of Credits required for the completion of the UGP and Award of the B.Tech. Degree in respective Branch of Engineering.

4.3
Each Semester is structured to provide typically 24 Credits (24 C), totaling to 192 Credits (192 C) for the entire B.Tech. Programme.
5.0 Course Registration

5.1 A ‘Faculty Advisor or Counselor’ shall be assigned to each student, who will advise him about the UGP, its Course Structure and Curriculum, Choice/Option for Subjects/Courses, based on his competence, progress, pre-requisites and interest.

5.2 Academic Section of the College invites ‘Registration Forms’ from students apriori (before the beginning of the Semester), through ‘ON-LINE SUBMISSIONS’, ensuring ‘DATE and TIME Stamping’. The ON-LINE Registration Requests for any ‘CURRENT SEMESTER’ shall be completed BEFORE the commencement of SEEs (Semester End Examination) of the ‘PRECEDING SEMESTER’.

5.3 A Student can apply for ON-LINE Registration, ONLY AFTER obtaining the ‘WRITTEN APPROVAL’ from his Faculty Advisor, which should be submitted to the College Academic Section through the Head of Department (a copy of the same being retained with Head of Department, Faculty Advisor and the Student).

5.4 A Student may be permitted to Register for his Subjects/Course of CHOICE with a typical total of 24 Credits per Semester (Minimum being 20 C and Maximum being 28 C, permitted deviation being ± 17%), based on his PROGRESS and SGPA/ CGPA, and completion of the ‘PRE-REQUISITES’ as indicated for various Subjects/Courses, in the Department Course Structure and Syllabus contents. However, a MINIMUM of 20 Credits per Semester must be registered to ensure the ‘STUDENTSHIP’ in any Semester.

5.5 Choice for ‘additional Subjects/Courses’ to reach the Maximum Permissible Limit of 28 Credits (above the typical 24 Credit norm) must be clearly indicated, which needs the specific approval and signature of the Faculty Advisor/ Counselor.

5.6 If the Student submits ambiguous choices or multiple options or erroneous entries - during ON-LINE Registration for the Subject(s) / Course(s) under a given/specified Course Group/Category as listed in the Course Structure, only the first mentioned Subject/Course in that Category will be taken into consideration.

5.7 Subject/ Course Options exercised through ON-LINE Registration are final and CAN NOT be changed, and CAN NOT be inter-changed; further, alternate choices will also not be considered. However, if the Subject/ Course that has already been listed for Registration (by the Head of Department) in a Semester could not be offered due to any unforeseen or unexpected reasons, then the Student shall be allowed to have alternate choice - either for a new Subject (subject to offering of such a Subject), or for another existing Subject (subject to availability of seats), which may be considered. Such alternate arrangements will be made by the Head of Department, with due notification and time-framed schedule, within the FIRST WEEK from the commencement of Class-work for that Semester.

5.8 Dropping of Subjects/ Courses may be permitted, ONLY AFTER obtaining prior approval from the Faculty Advisor (subject to retaining a minimum of 20 C), ‘within 15 Days of Time’ from the beginning of the current Semester.

5.9 For Mandatory Courses like NCC/ NSS/ NSO etc., a ‘Satisfactory Participation Certificate’ from the concerned authorities for the relevant Semester is essential. No Marks or Grades or Credits shall be awarded for these activities.

6.0 Subjects/ Courses to be offered

6.1 A typical Section (or Class) Strength for each Semester shall be 60.

6.2 A Subject/ Course may be offered to the Students, ONLY IF a Minimum of 20 Students (1/3 of the Section Strength) opt for the same. The Maximum Strength of a Section is limited to 80 (60 + 1/3 of the Section Strength).

6.3 More than ONE TEACHER may offer the SAME SUBJECT (Lab./ Practicals may be included with the corresponding Theory Subject in the same Semester) in any Semester. However, selection choice for students will be based on - ‘FIRST COME FIRST SERVE Basis and CGPA Criterion’ (ie., the first focus shall be on early ON-LINE ENTRY from the student for Registration in that Semester, and the second focus, if needed, will be on CGPA of the student).
6.4 If more entries for Registration of a Subject come into picture, then the concerned Head of Department shall take necessary action, whether to offer such a Subject/ Course for TWO (or multiple) SECTIONS or NOT.

6.5 In case of options coming from Students of other Departments/ Branches/ Disciplines (not considering OPEN ELECTIVES), PRIORITY shall be given to the student of the 'Parent Department' first.

7.0 Attendance Requirements

7.1 A student shall be eligible to appear for the End Semester Examinations, if he acquires a minimum of 75% of attendance in aggregate of all the Subjects/ Courses (excluding Mandatory or Non-Credit Courses) for that Semester.

7.2 Condoning of shortage of attendance in aggregate up to 10% (65% and above, and below 75%) in each Semester may be granted by the College Academic Committee on genuine and valid grounds, based on the student's representation with supporting evidence.

7.3 A stipulated fee shall be payable towards condoning of shortage of attendance.

7.4 Shortage of Attendance below 65% in aggregate shall in NO case be condoned.

7.5 Students, whose shortage of attendance is not condoned in any Semester, are not eligible to take their End Examinations of that Semester, they get detained and their registration for that Semester shall stand cancelled. They will not be promoted to the next Semester. They may seek re-registration for all those Subjects registered in that Semester in which he got detained, by seeking re-admission for that Semester as and when offered; in case if there are any Professional Electives and/ or Open Electives, the same may also be re-registered if offered, however, if those Electives are not offered in later Semesters, then alternate Electives may be chosen from the SAME set of Elective Subjects offered under that category.

8.0 Academic Requirements

8.1 A student shall be deemed to have satisfied the Academic Requirements and earned the Credits allotted to each Subject/ Course, if he secures not less than 35% marks (25 out of 70 marks) in the End Semester Examination, and a minimum of 40% of marks in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together; in terms of Letter Grades, this implies securing P Grade or above in that Subject/ Course.

8.2 A student shall be deemed to have satisfied the Academic Requirements and earned the Credits allotted to - Industry oriented Mini-Project/ Seminar, if he secures not less than 40% of the total marks (40 marks) to be awarded for each. The student would be treated as failed, if he - (i) does not submit a report on his Industry oriented Mini-Project, or does not make a presentation of the same before the Evaluation Committee as per schedule, or (ii) does not present the Seminar as required in the IV year II Semester, or (iii) secures less than 40% of marks (40 marks) in Industry oriented Mini-Project/ Seminar evaluations. He may reappear once for each of the above evaluations, when they are scheduled again; if he fails in such ‘one reappearance’ evaluation also, he has to reappear for the same in the next subsequent Semester, as and when it is scheduled.

8.3 A Student will not be promoted from I Year to II Year, unless he fulfils the Attendance and Academic Requirements and secures a total of minimum 24 Credits up to first year second semester from all the relevant regular and supplementary examinations, whether the student takes those examinations or not.

8.4 A Student will not be promoted from II Year to III Year, unless he fulfils the Attendance and Academic Requirements and secures a total of minimum 58 Credits up to second year second semester from all the relevant regular and supplementary examinations, whether the student takes those examinations or not.
8.5 A Student will not be promoted from III Year to IV Year, unless he fulfils the Attendance and Academic Requirements and secures a total of minimum 86 Credits up to third year second semester from all the relevant regular and supplementary examinations, whether the student takes those examinations or not.

8.6 A Student shall - register for all Subjects covering 192 Credits as specified and listed (with the relevant Course/ Subject Classifications as mentioned) in the Course Structure, put up all the Attendance and Academic requirements for 192 Credits securing a minimum of P Grade (Pass Grade) or above in each Subject, and ‘earn ALL 192 Credits securing SGPA ≥ 5.0 (in each Semester), and CGPA (at the end of each successive Semester) ≥ 5.0’, to successfully complete the UGP.

8.7 After securing the necessary 192 Credits as specified for the successful completion of the entire UGP, an exemption of maximum 8 secured Credits (in terms of two of their corresponding Subjects/Courses) may be permitted for optional drop out from these 192 Credits earned; i.e., the performance of the Student after the deduction of maximum 8 credits shall alone be taken into account for the calculation of ‘the final CGPA however, the Student’s Performances in the earlier individual Semesters, with the corresponding SGPA and CGPA for which already Grade Cards are given, will not be altered. Further, optional drop out for such 8 secured Credits shall not be allowed for Subjects/ Courses listed as … i) Laboratories/ Practicals, Industrial Training/ Mini-Project, iii) Seminar, iv) Major Project.

8.8 If a Student registers for some more ‘extra Subjects’ (in the parent Department or other Departments/Branches of Engg.) other than those listed Subjects totaling to 192 Credits as specified in the Course Structure of his Department, the performances in those ‘extra Subjects’ (although evaluated and graded using the same procedure as that of the required 192 Credits) will not be taken into account while calculating the SGPA and CGPA. For such ‘extra Subjects’ registered, % marks and Letter Grade alone will be indicated in the Grade Card, as a performance measure, subject to completion of the Attendance and Academic Requirements as stated in Items 7 and 8.1 – 8.7 above.

8.9 Students who fail to earn 192 Credits as per the Course Structure, and as indicated above, within 8 Academic Years from the Date of Commencement of their I Year shall forfeit their seats in B.Tech. Programme and their admissions shall stand cancelled.

8.10 When a Student is detained due to shortage of attendance in any Semester, he may be re-admitted into that Semester, as and when offered, with the Academic Regulations of the Batch into which he gets readmitted. However, no Grade Allotments or SGPA/ CGPA calculations will be done for that entire Semester in which he got detained.

8.11 When a Student is detained due to lack of Credits in any year, he may be readmitted in the next year, after fulfilment of the Academic Requirements, with the Academic Regulations of the Batch into which he gets readmitted.

8.12 A student eligible to appear in the End Semester Examination in any Subject/ Course, but absent at it or failed (thereby failing to secure P Grade or above), may reappear for that Subject/ Course at the supplementary examination (SEE) as and when conducted. In such cases, his Internal Marks (CIE) assessed earlier for that Subject/ Course will be carried over, and added to the Marks to be obtained in the SEE supplementary examination, for evaluating his performance in that Subject.

9.0 Evaluation - Distribution and Weightage of Marks

9.1 The performance of a student in each Semester shall be evaluated Subject-wise (irrespective of Credits assigned) with a maximum of 100 marks for Theory or Practicals or Seminar or Drawing/Design or Industry oriented Mini-Project or Minor Course, etc; however, the B.Tech. Project Work (Major Project) will be evaluated for 200 Marks. These evaluations shall be based on 30% CIE (Continuous Internal Evaluation) and 70% SEE (Semester End Examination), and a Letter Grade corresponding to the % marks obtained shall be given.
9.2 For all Subjects/ Courses as mentioned above, the distribution shall be 30 marks for CIE, and 70 marks for the SEE. The semester end examinations will be conducted for 70 marks consisting of two parts viz. i) Part-A for 20 marks (10 x 2 marks), ii) Part-B for 50 marks. Part-B consists of five questions carrying 10 marks each. Each of these questions is from one unit and may contain sub-questions. For each question there will be an “either” “or” choice, which means that there will be two questions from each unit and the student should answer either of the two questions.

9.3 a) For Theory Subjects (inclusive of Minor Courses), during the Semester, there shall be 2 mid-term examinations for 25 marks each. Each mid-term examination consists of one objective paper for 10 marks, plus one subjective paper for 15 marks, with a duration of 120 minutes (20 minutes for objective and 100 minutes for subjective papers). Further, there will be an allocation of 5 marks for Assignment. Objective paper may be set with multiple choice questions, True/False, fill-in the blanks, matching type questions, etc. Subjective paper shall contain 5 questions, out of which the Student has to answer 3 questions, each for 5 marks.

b) The first mid-term examination shall be conducted for the first 50% of the syllabus, and the second mid-term examination shall be conducted for the remaining 50% of the syllabus.

c) First Assignment should be submitted before the conduct of the first mid-term examinations, and the Second Assignment should be submitted before the conduct of the second mid-term examinations. The Assignments shall be as specified by the concerned subject teacher.

d) The first mid-term examination Marks and first Assignment Marks shall make one set of CIE Marks, and the second mid-term examination Marks and second Assignment Marks shall make second set of CIE Marks; and the better of these two sets of marks shall be taken as the final marks secured by the Student towards Continuous Internal Evaluation in that Theory Subject.

9.4 For Practical Subjects, there shall be a Continuous Internal Evaluation (CIE) during the Semester for 30 internal marks, and 70 marks are assigned for Lab./Practical End Semester Examination (SEE). Out of the 30 marks for internals, day-to-day work in the laboratory shall be evaluated for 20 marks; and for the remaining 10 marks - two internal practical tests (each of 10 marks) shall be conducted by the concerned laboratory teacher and the better of these two tests is taken into account. The SEE for Practicals shall be conducted at the end of the Semester by Two Examiners appointed by Head of the Department.

9.5 For the Subjects having Design and/or Drawing, (such as Engineering Graphics, Engineering Drawing, Machine Drawing, Production Drawing Practice, and Estimation), the distribution shall be 30 marks for CIE (20 marks for day-to-day work, and 10 marks for internal tests) and 70 marks for SEE. There shall be two internal tests in a Semester and the better of the two shall be considered for the award of marks for internal tests.

9.6 Open Electives: Students are to choose One Open Elective (OE-I) during III Year I Semester, one (OE-II) during III Year II Semester, and one (OE-III) in IV Year II Semester, from the list of Open Electives given. However, Students can not opt for an Open Elective Subject offered by their own (parent) Department, if it is already listed under any category of the Subjects offered by parent Department in any Semester.

9.7 a) There shall be an Industry oriented Mini-Project, in collaboration with an Industry of the relevant specialization, to be registered immediately after III Year II Semester examinations, and taken up during the summer vacation for about eight weeks duration.

b) The Industry oriented Mini-Project shall be submitted in a Report form, and a presentation of the same shall be made before a Committee, which evaluates it for 100 marks. The Committee shall consist of Head of the Department, the supervisor of Mini-Project, and a Senior Faculty Member of the Department. There shall be no internal marks for Industry oriented Mini-Project. The Mini-Project shall be evaluated in the IV Year I Semester.
There shall be a Seminar Presentation in IV Year II Semester. For the Seminar, the student shall collect the information on a specialized topic, prepare a Technical Report and submit to the Department at the time of Seminar Presentation. The Seminar Presentation (along with the Technical Report) shall be evaluated by Two Faculty Members assigned by Head of the Department, for 100 marks. There shall be no SEE or external examination for Seminar.

Each Student shall start the Project Work during the IV Year I Semester, as per the instructions of the Project Guide/Project Supervisor assigned by the Head of Department. Out of a total 200 marks allotted for the Project Work, 60 marks shall be for CIE (Continuous Internal Evaluation and 140 marks for the SEE (End Semester Viva-voce Examination). The Project Viva-voce shall be conducted by a Committee comprising of an External Examiner, Head of the Department and Project Supervisor. Out of 60 marks allocated for CIE, 30 marks shall be awarded by the Project Supervisor (based on the continuous evaluation of student’s performance throughout the Project Work period), and the other 30 marks shall be awarded by a Departmental Committee consisting of Head of the Department and Project Supervisor, based on the work carried out and the presentation made by the Student at the time of Viva-voce Examination.

For NCC/ NSS/ NSO types of Courses, and/or any other Mandatory Non-Credit Course offered in a Semester, a ‘Satisfactory Participation Certificate’ shall be issued to the Student from the concerned authorities, only after securing ≥ 65% attendance in such a Course. No marks or Letter Grade shall be allotted for these activities.

Grading Procedure

Marks will be awarded to indicate the performance of each student in each Theory Subject, or Lab/Practicals, or Seminar, or Project, or Mini-Project, Minor Course etc., based on the % marks obtained in CIE + SEE (Continuous Internal Evaluation + Semester End Examination, both taken together) as specified in Item 9 above, and a corresponding Letter Grade shall be given.

As a measure of the student’s performance, a 10-point Absolute Grading System using the following Letter Grades (UGC Guidelines) and corresponding percentage of marks shall be followed …

<table>
<thead>
<tr>
<th>% of Marks Secured in a Subject / Course</th>
<th>Letter Grade As per UGC Guidelines</th>
<th>Grade Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>More than or equal to 90%</td>
<td>O (Outstanding)</td>
<td>10</td>
</tr>
<tr>
<td>80 and less than 90%</td>
<td>A+ (Excellent)</td>
<td>9</td>
</tr>
<tr>
<td>70 and less than 80%</td>
<td>A (Very Good)</td>
<td>8</td>
</tr>
<tr>
<td>60 and less than 70%</td>
<td>B+ (Good)</td>
<td>7</td>
</tr>
<tr>
<td>50 less than 60%</td>
<td>B (Average)</td>
<td>6</td>
</tr>
<tr>
<td>40 less than 50%</td>
<td>C (Pass)</td>
<td>5</td>
</tr>
<tr>
<td>Below 40%</td>
<td>F (Fail)</td>
<td>0</td>
</tr>
<tr>
<td>Absent</td>
<td>Ab</td>
<td>0</td>
</tr>
</tbody>
</table>

A student obtaining F Grade in any Subject shall be considered ‘failed’ and will be required to reappear as ‘Supplementary Candidate’ in the End Semester Examination (SEE), as and when offered. In such cases, his Internal Marks (CIE Marks) in those Subject(s) will remain same as those he obtained earlier.

A Letter Grade does not imply any specific % of Marks.

In general, a student shall not be permitted to repeat any Subject/ Course (s) only for the sake of ‘Grade Improvement’ or ‘SGPA/ CGPA Improvement’. However, he has to repeat all the Subjects/ Courses pertaining to that Semester, when he is detained (as listed in Items 8.10-8.11).
10.6 A student earns Grade Point (GP) in each Subject/ Course, on the basis of the Letter Grade obtained by him in that Subject/ Course (excluding Mandatory non-credit Courses). Then the corresponding 'Credit Points' (CP) are computed by multiplying the Grade Point with Credits for that particular Subject/ Course.

\[
\text{Credit Points (CP)} = \text{Grade Point (GP)} \times \text{Credits}
\]

10.7 The Student passes the Subject/ Course only when he gets GP \(\geq 5 \) (P Grade or above).

10.8 The Semester Grade Point Average (SGPA) is calculated by dividing the Sum of Credit Points (\(\sum CP \)) secured from ALL Subjects/ Courses registered in a Semester, by the Total Number of Credits registered during that Semester. SGPA is thus computed as

\[
\text{SGPA} = \frac{\sum_{i=1}^{N} C_i G_i}{\sum_{i=1}^{N} C_i} \quad \text{... For each Semester,}
\]

where 'i' is the Subject indicator index (takes into account all Subjects in a Semester), 'N' is the no. of Subjects 'REGISTERED' for the Semester (as specifically required and listed under the Course Structure of the parent Department), is the no. of Credits allotted to the ith Subject, and represents the Grade Points (GP) corresponding to the Letter Grade awarded for that ith Subject.

Illustration of calculation of SGPA

<table>
<thead>
<tr>
<th>Course / Subject</th>
<th>Credits</th>
<th>Letter Grade</th>
<th>Grade Points</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course 1</td>
<td>4</td>
<td>A</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>Course 2</td>
<td>3</td>
<td>O</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>Course 3</td>
<td>4</td>
<td>C</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Course 4</td>
<td>4</td>
<td>B</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>Course 5</td>
<td>3</td>
<td>A+</td>
<td>9</td>
<td>27</td>
</tr>
<tr>
<td>Course 6</td>
<td>2</td>
<td>C</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Course 7</td>
<td>2</td>
<td>B</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Course 8</td>
<td>2</td>
<td>C</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td></td>
<td></td>
<td>165</td>
</tr>
</tbody>
</table>

\[
\text{SGPA} = \frac{165}{24} = 6.87
\]

10.9 The Cumulative Grade Point Average (CGPA) is a measure of the overall cumulative performance of a student over all Semesters considered for registration. The CGPA is the ratio of the Total Credit Points secured by a student in ALL registered Courses in ALL Semesters, and the Total Number of Credits registered in ALL the Semesters. CGPA is rounded off to TWO Decimal Places. CGPA is thus computed from the I Year Second Semester onwards, at the end of each Semester, as per the formula

\[
\text{CGPA} = \frac{\sum_{i=1}^{M} \sum_{j=1}^{N} C_{ij} G_{ij}}{\sum_{i=1}^{M} \sum_{j=1}^{N} C_{ij}} \quad \text{... for all S Semesters registered (ie. upto and inclusive of S Semesters, S \geq 2),}
\]

where 'M' is the TOTAL no. of Subjects (as specifically required and listed under the Course Structure of the parent Department) the Student has 'REGISTERED' from the 1st Semester onwards up to and inclusive of the Semester S (obviously \(M > N \)), 'j' is the Subject indicator index (takes into account all Subjects from 1 to S Semesters), is the no. of Credits allotted to the jth Subject, and represents the Grade Points (GP) corresponding to the Letter Grade awarded for that jth Subject. After registration and completion of I Year I Semester however, the SGPA of that Semester itself may be taken as the CGPA, as there are no cumulative effects.

10.10 For Merit Ranking or Comparison Purposes or any other listing, ONLY the 'ROUNDED OFF' values of the CGPAs will be used.

10.11 For Calculations listed in Item 10.6 – 10.10, performance in failed Subjects/ Courses (securing F Grade) will also be taken into account, and the Credits of such Subjects/ Courses will also be included in the multiplications and summations. However, Mandatory Courses will not be taken into consideration.

10.12 Passing Standards:

10.12.1 A student shall be declared successful or 'passed' in a Semester, only when he gets a SGPA \(\geq 5.00 \) (at the end of that particular Semester); and a student shall be declared successful or 'passed' in the entire UGP, only when gets a CGPA \(\geq 5.00 \); subject to the condition that he secures a GP \(\geq 5 \) (P Grade or above) in every registered
Subject/ Course in each Semester (during the entire UGP) for the Degree Award, as required.

10.12.2 In spite of securing P Grade or above in some (or all) Subjects/ Courses in any Semester, if a Student receives a SGPA < 5.00 and/or CGPA < 5.00 at the end of such a Semester, then he ‘may be allowed’ (on the ‘specific recommendations’ of the Head of the Department and subsequent approval - by the College Academic Committee.

(i) to go into the next subsequent Semester (subject to fulfilling all other attendance and academic requirements as listed under Items 7-8);

(ii) to ‘improve his SGPA of such a Semester (and hence CGPA) to 5.00 or above’, by reappearing for ONE or MORE (as per Student’s choice) of the same Subject(s) / Course(s) in which he has secured P Grade(s) in that Semester, at the Supplementary Examinations to be held in the next subsequent Semester(s). In such cases, his Internal Marks (CIE Marks) in those Subject(s) will remain same as those he obtained earlier.

In these considerations, the newly secured Letter Grades will be recorded and taken into account for calculation of SGPA and CGPA, only if there is an improvement.

10.12.3 A Student shall be declared successful or ‘passed’ in any Non-Credit Subject/ Course, if he secures a ‘Satisfactory Participation Certificate’ for that Mandatory Course.

10.13 After the completion of each Semester, a Grade Card or Grade Sheet (or Transcript) shall be issued to all the Registered Students of that Semester, indicating the Letter Grades and Credits earned. It will show the details of the Courses Registered (Course Code, Title, No. of Credits, Grade Earned etc.), Credits earned, SGPA, and CGPA.

11.0 Declaration of Results

11.1 Computation of SGPA and CGPA are done using the procedure listed in 10.6 – 10.10.

11.2 For Final % of Marks equivalent to the computed final CGPA, the following formula may be used ...

\[\% \text{ of Marks} = (\text{final CGPA} - 0.5) \times 10 \]

12.0 Award of Degree

12.1 A Student who registers for all the specified Subjects/ Courses as listed in the Course Structure, satisfies all the Course Requirements, and passes all the examinations prescribed in the entire UG E&T Programme (UGP), and secures the required number of 192 Credits (with CGPA ≥ 5.0), within 8 Academic Years from the Date of Commencement of the First Academic Year, shall be declared to have ‘QUALIFIED’ for the Award of the B.Tech. Degree in the chosen Branch of Engineering as selected at the time of Admission.

12.2 A Student who qualifies for the Award of the Degree as listed in Item 12.1, shall be placed in the following Classes ...

12.3 Students with final CGPA (at the end of the UGP) ≥ 8.00:

(i) Shall be placed in ‘First Class with distinction’ if fulfilling the following conditions.

(a) should not fail in any Subjects/Courses and should complete the required credits for the Award of Degree within the first 4 Academic Years (or 8 Sequential Semesters) from the Date of Commencement of his First Academic Year,
(b) should not have been detained or prevented from writing the End Semester Examinations in any Semester due to shortage of attendance or any other reason.

(ii) Shall be placed in ‘First Class’ if not fulfilling the above a & b conditions.

12.4 Students with final CGPA (at the end of the UGP) ≥ 6.50 but < 8.00, shall be placed in ‘FIRST CLASS’.

12.5 Students with final CGPA (at the end of the UGP) ≥ 5.50 but < 6.50, shall be placed in ‘SECOND CLASS’.

12.6 All other Students who qualify for the Award of the Degree (as per Item 12.1), with final CGPA (at the end of the UGP) ≥ 5.00 but < 5.50, shall be placed in ‘PASS CLASS’.
12.7 A student with final CGPA (at the end of the UGP) < 5.00 will not be eligible for the Award of the Degree.

12.8 Students fulfilling the conditions listed under Item 12.3 alone will be eligible candidates for - ‘University Rank’ and ‘Gold Medal’ considerations.

13.0 Withholding of Results

13.1 If the student has not paid fees to University/College at any stage, or has pending dues against his name due to any reason whatsoever, or if any case of indiscipline is pending against him, the result of the student may be withheld, and he will not be allowed to go into the next higher Semester. The Award or issue of the Degree may also be withheld in such cases.

14.0 Transitory Regulations

14.1 Student who has discontinued for any reason, or has been detained for want of attendance or lack of required credits as specified, or who has failed after having undergone the Degree Programme, may be considered eligible for readmission to the same Subjects/Courses (or equivalent Subjects/Courses, as the case may be), and same Professional Electives/Open Electives (or from set/category of Electives or equivalents suggested, as the case may be) as and when they are offered (within the time-frame of 8 years from the Date of Commencement of his I Year I Semester).

15.0 Student Transfers

15.1 There shall be no Branch transfers after the completion of Admission Process.

15.2 There shall be no transfer among the Constituent Colleges and Units of Jawaharlal Nehru Technological University Hyderabad.

16.0 Scope

i) Where the words “he”, “him”, “his”, occur in the write-up of regulations, they include “she”, “her”, “hers”.

ii) Where the words “Subject” or “Subjects”, occur in these regulations, they also imply “Course” or “Courses”.

iii) The Academic Regulations should be read as a whole, for the purpose of any interpretation.

iv) In case of any doubt or ambiguity in the interpretation of the above rules, the decision of the Vice-Chancellor/Principal is final.

v) The College may change or amend the Academic Regulations, Course Structure or Syllabi at any time, and the changes or amendments made shall be applicable to all Students with effect from the dates notified by the College Authorities.

* * * * *
MALPRACTICES RULES

<table>
<thead>
<tr>
<th>Nature of Malpractices</th>
<th>Punishment</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the candidate:</td>
<td></td>
</tr>
</tbody>
</table>

1 (a) Possesses or keeps accessible in examination hall, any paper, note book, programmable calculators, Cell phones, pager, palm computers or any other form of material concerned with or related to the subject of the examination (theory or practical) in which he is appearing but has not made use of (material shall include any marks on the body of the candidate which can be used as an aid in the subject of the examination)

Expulsion from the examination hall and cancellation of the performance in that subject only.

1 (b) Gives assistance or guidance or receives it from any other candidate orally or by any other body language methods or communicates through cell phones with any candidate or persons in or outside the exam hall in respect of any matter.

Expulsion from the examination hall and cancellation of the performance in that subject only of all the candidates involved. In case of an outsider, he will be handed over to the police and a case is registered against him.

2 Has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the subject of the examination (theory or practical) in which the candidate is appearing.

Expulsion from the examination hall and cancellation of the performance in that subject only of all the candidates involved including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.

3 Impersonates any other candidate in connection with the examination.

The candidate who has impersonated shall be expelled from examination hall. The candidate is also debarred and forfeits the seat. The performance of the original candidate who has been impersonated, shall be cancelled in all the subjects of the examination (including practicals and project work) already appeared and shall not be allowed to appear for examinations of the remaining subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.

4 Smuggles in the Answer book or additional sheet or takes out or arranges to send out the question paper during the examination or answer book or additional sheet, during or after the examination.

Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.

5 Uses objectionable, abusive or offensive language in the answer paper or in letters to the examiners or writes to the examiner requesting him to award pass marks.

Cancellation of the performance in that subject.

6 Refuses to obey the orders of the Chief Superintendent / Assistant --Superintendent / any officer on duty or misbehaves or creates disturbance of any kind in and around the examination hall or organizes a walk out or instigates others to walk out, or threatens the officer-in-charge or any person on duty in or outside the examination hall, or creates disturbance of any kind in and around the examination hall or organizes a walk out or instigates others to walk out, or threatens the officer-in-charge or any person on duty in or outside the examination hall.

In case of students of the college, they shall be expelled from examination halls and cancellation of their performance in that subject and all other subjects the candidate(s) has (have) already appeared and shall not be permitted to appear for the remaining examinations of the subjects of that semester/year. The candidates also are debarred and forfeit their seats. In case of outsiders, they will be handed over to the police and a case is registered against him.
<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
<th>Punishment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Examination hall of any injury to his person or to any of his relations whether by words, either spoken or written or by signs or by visible representation, assaults the officer-in-charge, or any person on duty in or outside the examination hall or any of his relations, or indulges in any other act of misconduct or mischief which result in damage to or destruction of property in the examination hall or any part of the College campus or engages in any other act which in the opinion of the officer on duty amounts to use of unfair means or misconduct or has the tendency to disrupt the orderly conduct of the examination.</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat.</td>
</tr>
<tr>
<td>2</td>
<td>Leaves the exam hall taking away answer script or intentionally tears of the script or any part thereof inside or outside the examination hall.</td>
<td>Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat.</td>
</tr>
<tr>
<td>3</td>
<td>Possess any lethal weapon or firearm in the examination hall.</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat.</td>
</tr>
<tr>
<td>4</td>
<td>If student of the college, who is not a candidate for the particular examination or any person not connected with the college indulges in any malpractice or improper conduct mentioned in clause 6 to 8.</td>
<td>Student of the college's expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat.</td>
</tr>
<tr>
<td>5</td>
<td>Person(s) who do not belong to the College will be handed over to police and, a police case will be registered against them.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Comes in a drunken condition to the examination hall.</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat.</td>
</tr>
<tr>
<td>7</td>
<td>Copying detected on the basis of internal evidence, such as, during valuation or during special scrutiny.</td>
<td>Cancellation of the performance in that subject and all other subjects the candidate has appeared including practical examinations and project work of that semester / year examinations.</td>
</tr>
<tr>
<td>8</td>
<td>If any malpractice is detected which is not covered in the above clauses 1 to 11 shall be reported to the College / University for further action to award suitable punishment.</td>
<td></td>
</tr>
</tbody>
</table>
JNTUH COLLEGE OF ENGINEERING HYDERABAD
(AUTONOMOUS)
ELECTRICAL & ELECTRONICS ENGINEERING
COURSE STRUCTURE
(Applicable from the batch admitted during 2017-18 and onwards)

I YEAR I SEMESTER

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Group</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BS</td>
<td>Mathematics-I</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>ES</td>
<td>Computer Programming & Data Structures</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>HS</td>
<td>English</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>ES</td>
<td>Engineering Graphics</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>ES</td>
<td>Environmental Science</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>ES</td>
<td>Computer Programming & Data Structures Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>HS</td>
<td>English Language Communication Skills Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>ES</td>
<td>Engineering Workshop</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>NSS/NCC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>24</td>
</tr>
</tbody>
</table>

II YEAR II SEMESTER

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Group</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BS</td>
<td>Mathematics- III</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>PC</td>
<td>Electromagnetic Fields</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>PC</td>
<td>Electrical Circuits</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>PC</td>
<td>Electrical machines-I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>ES</td>
<td>Electronic Devices and Circuits</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>HS</td>
<td>Gender Sensitization Lab</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>ES</td>
<td>Electronic Circuits Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>PC</td>
<td>Electrical Machines Lab-I</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>PC</td>
<td>Basics Simulation Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I YEAR II SEMESTER

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Group</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BS</td>
<td>Mathematics – II</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>ES</td>
<td>Basic Electrical & Electronics Engineering</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>BS</td>
<td>Applied Physics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>BS</td>
<td>Engineering Chemistry</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>ES</td>
<td>Engineering Mechanics</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>BS</td>
<td>Computational Mathematics</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>ES</td>
<td>Basic Electrical & Electronics Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>BS</td>
<td>Applied Physics Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>BS</td>
<td>Computational Mathematics Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>NSS/NCC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>24</td>
</tr>
</tbody>
</table>

II YEAR II SEMESTER

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Group</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PC</td>
<td>Switching Theory & Logic Design</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>PC</td>
<td>Control Systems</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>PC</td>
<td>Power Systems-I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>PC</td>
<td>Electrical Machines –II</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>PC</td>
<td>Electrical and Electronic Measurements</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>PC</td>
<td>Electrical Circuits Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>PC</td>
<td>Electrical Machines Lab-II</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>PC</td>
<td>Simulation of Electrical Circuits Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>HS</td>
<td>Human Values and Professional Ethics</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
III YEAR I SEMESTER

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Group</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PC</td>
<td>Linear and Digital IC Applications</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>PC</td>
<td>Microprocessors & Micro Controllers</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Open Elective – I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>HS</td>
<td>MEFA</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>PC</td>
<td>Power systems—I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>PC</td>
<td>Control Systems Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>PC</td>
<td>Electrical and Electronic Measurements lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>PC</td>
<td>Microprocessors Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td></td>
<td></td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

III YEAR II SEMESTER

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Group</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Open Elective – II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Professional Elective – I</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Professional Elective – II</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PC</td>
<td>Power Electronics</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>PC</td>
<td>Switch Gear and Protection</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>PC</td>
<td>Advanced English Language Communications Skills Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Power Electronics Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Micro Controllers Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td></td>
<td></td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

Summer between III & IV Year: Industry Oriented Mini Project

IV YEAR I SEMESTER

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Group</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PC</td>
<td>Digital Signal Processing</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>PC</td>
<td>Professional Elective – III</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>PC</td>
<td>Professional Elective – IV</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>PC</td>
<td>Professional Elective – V</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>PC</td>
<td>Power System Operation and Control</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>PC</td>
<td>Digital Signal Processing Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Mini Project</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td></td>
<td></td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

IV YEAR II SEMESTER

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Group</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Open Elective – III</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Management Science</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Seminar</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Power systems lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Major Project</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td></td>
<td></td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>
Professional Elective - I (PE-I):
1. Computer Methods in Power Systems
2. Computer Organization
3. Special Machines

Professional Elective - II (PE-II):
1. Digital Control Systems
2. Optimization Techniques
3. VLSI Design

Professional Elective - III (PE-III):
1. HVDC Transmission and FACTS
2. Reliability Engineering
3. High Voltage Engineering

Professional Elective - IV (PE-IV):
1. Switch Mode Power Supplies
2. Artificial Neural Networks and Fuzzy Systems
3. Electrical Distribution Systems

Professional Elective - V (PE-V):
1. Static Electric Drives
2. Solar Photovoltaic Systems
3. Utilization of Electric Power

OPEN ELECTIVE - I

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Subject</th>
<th>Offering Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Disaster Management</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>2</td>
<td>Non– Conventional Power Generation</td>
<td>Electrical & Electronics Engineering</td>
</tr>
<tr>
<td>3</td>
<td>Electrical Engineering Materials</td>
<td>Electrical & Electronics Engineering</td>
</tr>
<tr>
<td>4</td>
<td>Nano-Technology</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>5</td>
<td>Operations Research</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Basics of Thermodynamics</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Fabrication Processes</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Electronic Measuring Instruments</td>
<td>Electronics & Communication Engineering</td>
</tr>
<tr>
<td>9</td>
<td>OOPS through JAVA</td>
<td>Computer Science & Engineering</td>
</tr>
<tr>
<td>10</td>
<td>Computer Graphics</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Engineering Materials</td>
<td>Metallurgical Engineering</td>
</tr>
<tr>
<td>12</td>
<td>Metallurgy for Non Metallurgists</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Industrial Pollution Control Engineering</td>
<td>Chemical Engineering</td>
</tr>
</tbody>
</table>

OPEN ELECTIVE - II

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Subject</th>
<th>Offering Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Estimation, Quantity Survey & Valuation</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>2</td>
<td>Design Estimation and Costing of Electrical Systems</td>
<td>Electrical & Electronics Engineering</td>
</tr>
<tr>
<td>3</td>
<td>Energy Storage Systems</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Mechatronics</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Jet propulsion and Rocket Engineering</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>6</td>
<td>Ergonomics</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Mechatronics</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Principles of Electronic Communications</td>
<td>Electronics & Communication Engineering</td>
</tr>
<tr>
<td>9</td>
<td>Cyber Security</td>
<td>Computer Science & Engineering</td>
</tr>
<tr>
<td>10</td>
<td>Database Management Systems</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Corrosion Engineering</td>
<td>Metallurgical Engineering</td>
</tr>
<tr>
<td>12</td>
<td>Testing of Materials</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Solid Waste Management</td>
<td>Chemical Engineering</td>
</tr>
</tbody>
</table>

OPEN ELECTIVE - III

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Subject</th>
<th>Offering Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Environmental Impact Assessment</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>2</td>
<td>Entrepreneur Resource Planning</td>
<td>Electrical & Electronics Engineering</td>
</tr>
<tr>
<td>3</td>
<td>Management Information Systems</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Organizational Behavior</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>5</td>
<td>Fundamentals of Robotics</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Non-Conventional Energy Sources</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Aspects of Heat Transfer in</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Principles of Computer Communications and</td>
<td>Electronics & Communication Engineering</td>
</tr>
<tr>
<td>9</td>
<td>Web technologies</td>
<td>Computer Science & Engineering</td>
</tr>
<tr>
<td>10</td>
<td>Simulation & Modeling</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Surface Engineering</td>
<td>Metallurgical Engineering</td>
</tr>
<tr>
<td>12</td>
<td>Nano Materials</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Industrial Safety & Hazard Management</td>
<td>Chemical Engineering</td>
</tr>
</tbody>
</table>
JNTUH COLLEGE OF ENGINEERING HYDERABAD

I Year B.Tech. EEE I-Sem

MATHEMATICS – I
(Common to all Branches)

Pre Requisites: NIL

Objectives:
• To train the students thoroughly in mathematical concepts of ordinary differential equations and their applications.
• To prepare students for lifelong learning and successful careers using mathematical Concepts of differential and integral calculus, ordinary differential equations and vector calculus.
• To develop the skill pertinent to the practice of the mathematical concepts including the students abilities to formulate and modeling the problems, to think creatively and to synthesize information.

Outcomes:
At the end of the course, the student will be able to:
• become familiar with the application of differential and integral calculus, ordinary differential equations and vector calculus to engineering problems.
• attain the abilities to use mathematical knowledge to analyze, formulate and solve problems in engineering applications.

UNIT–I: Differential calculus
(12 lectures)
Rolle’s Mean value Theorem – Lagrange’s Mean Value Theorem – Cauchy’s mean value Theorem – (all theorems without proof but with geometrical interpretations), verification of the Theorems and testing the applicability of these theorem to the given function.
Curve tracing – Equations given in Cartesian, polar and parametric forms.
Functions of several variables – Functional dependence- Jacobian-Maxima and Minima of functions of two variables with constraints and without constraints-METHOD of Lagrange multipliers.

UNIT–II: Improper Integrals, Multiple Integration
(12 lectures)
Gamma and Beta Functions –Relation between them, their properties – evaluation of improper integrals using Gamma / Beta functions.
Multiple integrals – double and triple integrals – change of order of integration- change of variables (polar, cylindrical and spherical).

Finding the area of a region using Double integration and volume of a region in space using triple integration.

UNIT–III: Vector Calculus
(12 lectures)

UNIT–IV: First Order Ordinary Differential Equations
(10 lectures)
Linear and exact differential equations
Applications of first order differential equations – Newton’s Law of cooling, Law of natural growth and decay, orthogonal trajectories and electrical circuits

UNIT–V: Higher Order Ordinary Differential Equations
(10 lectures)
Linear, homogeneous and non- homogeneous differential equations of second and higher order with constant coefficients. Non-homogeneous term of the type e^{-ax}, Sin ax, Cos ax, and x^n, e^{-ax}V(x), x^nV(x). Method of variation of parameters. Applications: Bending of beams, Electrical circuits and simple harmonic motion.

Text books:
1) HIGHER ENGINEERING MATHEMATICS BY B S GREWAL, KHANNA PUBLICATION.
2) ENGINEERING MATHEMATICS BY ERWIN KREYSZIG, WIELY PUBLICATION.
3) VECTER ANALYSIS BY GHOSG & MAITY, NEW CENTRAL BOOK AGENCY.

References:
1) ENGINEERING MATHEMATICS BY Srimantapal & Subodh C. Bhunia, OXFORD UNIVERSITY PRESS.
2) ADVANCED ENGINEERING MATHEMATICS BY Peter V O’Neil, CENGAGE LEARNING.
COMPUTER PROGRAMMING & DATA STRUCTURES

Prerequisites:
There are no prerequisites for this course, except that anyone who wants to learn C should have analytical skills and logical reasoning.

Objectives:
1. This course starts from the basics of computers and program development.
2. It covers various concepts of C programming language.
3. It introduces searching and sorting algorithms.
4. It provides an understanding of data structures such as stacks and queues.

Outcomes:
At the end of the course, the student will be able to:
1. Develop C programs for computing and real life applications using basic elements like control statements, arrays, functions, pointers and strings; and data structures like stacks, queues and linked lists.
2. Implement searching and sorting algorithms.

UNIT - I

Introduction to C Language – Background, Simple C programs, Identifiers, Basic data types, Variables, Constants, Input / Output, Operators. Expressions, Precedence and Associatively, Expression Evaluation, Type conversions, Bit wise operators, Statements, Simple C Programming examples.

UNIT – II
Statements – if and switch statements, Repetition statements – while, for, do-while statements, Loop examples, other statements related to looping – break, continue, go to, Simple C Programming examples.

Designing Structured Programs– Functions, basics, user defined functions, inter function communication, Scope, Storage classes-auto, register, static, extern, scope rules, type qualifiers, recursion- recursive functions, Preprocessor commands, example C programs.

UNIT – III
Arrays and Strings – Concepts, using arrays in C, inter function communication, array applications, two – dimensional arrays, multidimensional arrays, C program examples. Concepts, C Strings, String Input / Output functions, arrays of strings, string manipulation functions, string / data conversion, C program examples.

Pointers – Introduction (Basic Concepts), Pointers for inter function communication, pointers to pointers, compatibility, memory allocation functions, array of pointers, programming applications, pointers to void, pointers to functions, command –line arguments.

UNIT - IV
Derived types – Structures – Declaration, definition and initialization of structures, accessing structures, nested structures, arrays of structures, structures and functions, pointers to structures, self referential structures, unions, typedef, bit fields, enumerated types, C programming examples.

Input and Output – Concept of a file, streams, standard input / output functions, formatted input / output functions, text files and binary files, file input / output operations, file status functions (error handling), C program examples.

UNIT – V
Sorting and Searching selection sort, bubble sort, insertion sort, linear and binary search methods.

Data Structures – Introduction to Data Structures, abstract data types, Linear list – singly linked list implementation, insertion, deletion and searching operations on linear list, Stacks-Operations, array and linked representations of stacks, stack applications, Queues-operations, array and linked representations.

TEXT BOOKS:
3. The C Programming Language, B.W. Kernighan and Dennis M. Ritchie, PHI/Pearson Education.
REFERENCES:
6. C Programming & Data Structures,E.Balagurusamy,TMH.
7. C Programming & Data Structures, P. Dey, M Ghosh R Thereja, Oxford University Press

JNTUH COLLEGE OF ENGINEERING HYDERABAD

I Year B.Tech. EEE I-Sem

<table>
<thead>
<tr>
<th>ENGLISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

1. INTRODUCTION:

In view of the growing importance of English as a tool for global communication and the consequent emphasis on training students to acquire communicative competence, the syllabus has been designed to develop linguistic and communicative competencies of Engineering students. The prescribed books and the exercises are meant to serve broadly as students' handbooks.

In the English classes, the focus should be on the skills of reading, writing, listening and speaking and for this the teachers should use the text prescribed for detailed study. For example, the students should be encouraged to read the texts/selected paragraphs silently. The teachers can ask comprehension questions to stimulate discussion and based on the discussions students can be made to write short paragraphs/essays etc.

The text for non-detailed study is for extensive reading/reading for pleasure. Hence, it is suggested that they read the topics selected for discussion on their own in the class. The time should be utilized for working out the exercises given after each section, as also for supplementing the exercises with authentic materials of a similar kind for example, from newspaper articles, advertisements, promotional material, etc. However, the stress in this syllabus is on skill development, fostering ideas and practice of language skills.

2. OBJECTIVES:

a. To improve the language proficiency of the students in English with emphasis on LSRW skills.
b. To equip the students to study academic subjects more effectively using the theoretical and practical components of the English syllabus.
c. To develop the study skills and communication skills in formal and informal situations.
LEARNING OUTCOMES:

1. Use of English Language - written and spoken.
2. Enrichment of comprehension and fluency

SYLLABUS:

Listening Skills:

Objectives
1. To enable students develop their listening skills so that they may appreciate the role in the LSRW skills approach to language and improve their pronunciation
2. To equip students with necessary training in listening, so that they can comprehend the speech of people of different backgrounds and regions

Students should be given practice in listening to the sounds of the language, to be able to recognize them, to distinguish between them, to mark stress and recognize and use the right intonation in sentences.

- Listening for general content
- Listening to fill up information
- Intensive listening
- Listening for specific information

Speaking Skills:

Objectives
1. To make students aware of the role of speaking in English and its contribution to their success.
2. To enable students express themselves fluently and appropriately in social and professional contexts.

- Oral practice
- Describing objects/situations/people
- Role play – Individual/Group activities (Using exercises from the five units of the prescribed text: Skills Annexe–Functional English for Success)
- Just A Minute (JAM) Sessions

Reading Skills:

Objectives
1. To develop an awareness in the students about the significance of silent reading and comprehension.
2. To develop the ability of students to guess the meanings of words from context and grasp the overall message of the text, draw inferences, etc.
 - Skimming the text
 - Understanding the gist of an argument
 - Identifying the topic sentence
 - Scanning
 - Inferring lexical and contextual meaning
 - Understanding discourse features
 - Recognizing coherence/sequencing of sentences

NOTE: The students will be trained in reading skills using the prescribed text for detailed study. They will be examined in reading and answering questions using ‘unseen’ passages which may be taken from authentic texts, such as magazines/newspaper articles.

Writing Skills:

Objectives
1. To develop an awareness in the students about writing as an exact and formal skill
2. To equip them with the components of different forms of writing, beginning with the lower order ones.

- Writing sentences
- Use of appropriate vocabulary
- Paragraph writing
- Coherence and cohesiveness
- Narration / description
- Note Making
- Formal and informal letter writing
- Describing graphs using expressions of comparison
TEXTBOOKS PRESCRIBED:
In order to improve the proficiency of the student in the acquisition of the four skills mentioned above, the following texts and course content, divided into Five Units, are prescribed:

For Detailed study: First Textbook: “Skills Annexe - Functional English for Success”, Published by Orient Black Swan, Hyderabad

For Non-detailed study
Second Textbook “Epitome of Wisdom”, Published by Maruthi Publications, Hyderabad.
- The course content and study material is divided into Five Units.

Unit –I
1. Chapter entitled ‘Wit and Humour’ from ‘Skills Annexe’ - Functional English for Success, Published by Orient Black Swan, Hyderabad
2. Chapter entitled ‘Mokshagundam Visvesvaraya’ from “Epitome of Wisdom”, Published by Maruthi Publications, Hyderabad.
 L - Listening for Sounds, Stress and Intonation
 S - Greeting and Taking Leave, Introducing Oneself and Others (Formal and Informal Situations)
 R - Reading for Subject/ Theme- The Palm Islands from Epitome of Wisdom is for Reading Comprehension
 W - Writing Paragraphs
 G - Types of Nouns and Pronouns
 V - Homonyms, Homophones & Homographs

Unit –II
1. Chapter entitled “Cyber Age” from “Skills Annexe - Functional English for Success” Published by Orient Black Swan, Hyderabad.
2. Report Writing (First & Second Textbooks)
 L - Listening for themes and facts
 S - Apologizing, interrupting, requesting and making polite conversation
 R - Reading for theme and gist- The 1 Thing Every Business Executive Must Understand about Social Media by Dave Kerpen from Skills Annexe is for Reading Comprehension
 W - Describing people, places, objects, events
 G - Verb forms
 V - Noun, Verb, Adjective and Adverb

Unit –III
1. Chapter entitled ‘Risk Management’ from “Skills Annexe - Functional English for Success” Published by Orient Black Swan, Hyderabad
2. Chapter entitled ‘Leela’s Friend’ by R.K. Narayan from “Epitome of Wisdom”, Published by Maruthi Publications, Hyderabad
 L - Listening for main points and sub-points for note taking
 S - Giving instructions and directions; Speaking of hypothetical situations
 R - Reading for details- Sivakasi: Who to Blame for the Frequent Fire Accidents in India’s Largest Fireworks Industry Hub? by Amrutha Gayathri from Skills Annexe & Forensic Science from Epitome of Wisdom are for Reading Comprehension
 W - Note-making, Information transfer, Punctuation
 G - Present tense
 V - Synonyms and Antonyms

Unit –IV
1. Letter Writing – Writing formal letters, letter of application along with curriculum vitae (First & Second Textbooks)
2. Chapter entitled ‘The Last Leaf’ from “Epitome of Wisdom”, Published by Maruthi Publications, Hyderabad
 L - Listening for specific details and information
 S - Narrating, expressing opinions and telephone interactions
 R - Reading for specific details and information- What I Cherish Most by V. S. Srinivasa Sastri from Skills Annexe & Choose How to Start Your Day from Epitome of Wisdom are for Reading Comprehension
 W - Writing e-mails
 G - Past and Future tenses
 V - Vocabulary - Idioms and Phrasal verbs

Unit –V
1. Chapter entitled ‘Sports and Health’ from “Skills Annexe - Functional English for Success” Published by Orient Black Swan, Hyderabad
2. Chapter entitled ‘The Convocation Speech’ by N.R. Narayanmurthy’ from “Epitome of Wisdom”, Published by Maruthi Publications, Hyderabad
 L - Critical Listening and Listening for speaker’s tone/ attitude
 S - Group discussion and Making presentations
 R - Critical reading, reading for reference - Benefits of Physical Activity from Skills Annexe & What is meant by
Entrepreneurship? from Epitome of Wisdom are for Reading
Comprehension
W - Project proposals; Project Reports and Research Papers
G - Adjectives, Prepositions and Concord
V - Collocations and Technical vocabulary, Using words appropriately

Exercises from the texts not prescribed shall be used for classroom tasks.

REFERENCES:
2. Murphy’s English Grammar with CD, Murphy, Cambridge University Press.
4. Technical Communication, Meenakshi Raman, Oxford University Press
5. Practical English Usage, Michael Swan, Oxford University Press
12. Everyday Dialogues in English, Robert J. Dixson, Prentice Hall India Pvt Ltd.,
15. An Interactive Grammar of Modern English, Shivendra K. Verma and Hemlatha Nagarajan, Frank Bros & CO

UNIT – V
ISOMETRIC PROJECTIONS:
Principles of Isometric Projection – Isometric Scale – Isometric Views –
Conventions – Isometric Views of Lines, Plane Figures, Simple and
Compound Solids – Isometric Projection of objects having non- isometric
lines. Isometric Projection of Spherical Parts.
Conversion of Isometric Views to Orthographic Views and Vice-versa –
Conventions
Auto CAD: Basic principles only

TEXT BOOKS:
1. Engineering Drawing N.D. Bhatt / Charotar

REFERENCE BOOKS:
1. A Text Book of Engineering Drawing / Dhawan R K / S. Chand

JNTUH COLLEGE OF ENGINEERING HYDERABAD
I Year B.Tech. EEE I-Sem

ENVIRONMENTAL SCIENCE

L T P C
3 0 0 3

Prerequisites : NIL

Objectives:
- Creating the awareness about environmental problems among
 students.
- Imparting basic knowledge about the environment and its allied
 problems.
- Developing an attitude of concern for the environment.
- Motivating students to participate in environment protection and
 environment improvement.

Outcomes:
At the end of the course, it is expected that students will be able to:
- Identify and analyze environmental problems as well as the risks
 associated with these problems
- Understand what it is to be a steward in the environment
- Studying how to live their lives in a more sustainable manner

UNIT - I
MULTIDISCIPLINARY NATURE OF ENVIRONMENTAL STUDIES:
Definition, Scope and Importance – Need for Public Awareness.

NATURAL RESOURCES: Renewable and non-renewable resources –
Natural resources and associated problems – Forest resources – Use
and over – exploitation, deforestation, case studies – Timber extraction –
Mining, dams and other effects on forest and tribal people – Water
resources – Use and over utilization of surface and ground water –
Floods, drought, conflicts over water, dams – benefits and problems -
Mineral resources: Use and exploitation, environmental effects of
extracting and using mineral resources, case studies. - Food resources:
World food problems, changes caused by agriculture and overgrazing,
effects of modern agriculture, fertilizer-pesticide problems, water logging,
salinity, case studies. - Energy resources: Growing energy needs,
renewable and non-renewable energy sources use of alternate energy
sources. Case studies. Land resources: Land as a resource, land
degradation, man induced landslides, soil erosion and desertification.
Role of an individual in conservation of natural resources. Equitable use
of resources for sustainable lifestyles.
UNIT - II
ECOSYSTEMS: Concept of an ecosystem. - Structure and function of an ecosystem. - Producers, consumers and decomposers. - Energy flow in the ecosystem - Ecological succession. - Food chains, food webs and ecological pyramids. - Introduction, types, characteristic features, structure and function of the following ecosystem:
 a. Forest ecosystem
 b. Grassland ecosystem
 c. Desert ecosystem
 d. Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

UNIT - III

UNIT - IV
Environmental pollution: Definition, cause, effects and control measures of:
 a. Air pollution
 b. Water pollution
 c. Soil pollution
 d. Marine pollution
 e. Noise pollution
 f. Thermal pollution
 g. Nuclear hazards

SOLID WASTE MANAGEMENT: Causes, effects and control measures of urban and industrial wastes. - Role of an individual in prevention of pollution. - Pollution case studies. - Disaster management: floods, earthquake, cyclone and landslides.

UNIT - V

FIELD WORK: Visit to a local area to document environmental assets River / forest / grassland / hill / mountain - Visit to a local polluted site - Urban / Rural / industrial / Agricultural study of common plants, insects, birds. - Study of simple ecosystems pond, river, hill slopes, etc.

TEXT BOOK:
1. Textbook of Environmental Studies for Undergraduate Courses by Erach Bharucha for University Grants Commission, Universities Press
2. Environmental Studies by R. Rajagopalan, Oxford University Press

REFERENCE:
1. Textbook of Environmental Sciences and Technology by M. Anji Reddy, BS Publication.
Week 1:
1. Write a C program to find the sum of individual digits of a positive integer.
2. Fibonacci sequence is defined as follows: the first and second terms in the sequence are 0 and 1. Subsequent terms are found by adding the preceding two terms in the sequence. Write a C program to generate the first n terms of the sequence.
3. Write a C program to generate all the prime numbers between 1 and n, where n is a value supplied by the user.
4. Write a C program to find the roots of a quadratic equation.

Week 2:
5. Write a C program to find the factorial of a given integer.
6. Write a C program to find the GCD (greatest common divisor) of two given integers.
7. Write a C program to solve Towers of Hanoi problem.
8. Write a C program, which takes two integer operands and one operator from the user, performs the operation and then prints the result. (Consider the operators +,-,*, /, % and use Switch Statement)

Week 3:
9. Write a C program to find both the largest and smallest number in a list of integers.
10. Write a C program that uses functions to perform the following:
 i) Addition of Two Matrices
 ii) Multiplication of Two Matrices

Week 4:
11. Write a C program that uses functions to perform the following operations:
 i) To insert a sub-string in to a given main string from a given position.
 ii) To delete n Characters from a given position in a given string.
12. Write a C program to determine if the given string is a palindrome or not
13. Write a C program that displays the position or index in the string S where the string T begins, or –1 if S doesn’t contain T.
14. Write a C program to count the lines, words and characters in a given text.

Week 5:
15. Write a C program to generate Pascal’s triangle.
16. Write a C program to construct a pyramid of numbers.
17. Write a C program to read in two numbers, x and n, and then compute the sum of this geometric progression:
\[1 + x + x^2 + x^3 + \ldots + x^n \]
For example: if n is 3 and x is 5, then the program computes
\[1 + 5 + 25 + 125. \]
Print x, n, the sum
Perform error checking. For example, the formula does not make sense for negative exponents – if n is less than 0. Have your program print an error message if n<0, then go back and read in the next pair of numbers of without computing the sum. Are any values of x also illegal ? If so, test for them too.

Week 6:
18. 2’s complement of a number is obtained by scanning it from right to left and complementing all the bits after the first appearance of a 1. Thus 2’s complement of 11100 is 00100. Write a C program to find the 2’s complement of a binary number.
19. Write a C program to convert a Roman numeral to its decimal equivalent.

Week 7:
20. Write a C program that uses functions to perform the following operations:
 i) Reading a complex number
 ii) Writing a complex number
 iii) Addition of two complex numbers
 iv) Multiplication of two complex numbers
(Note: represent complex number using a structure.)

Week 8:
21. i) Write a C program which copies one file to another.
 ii) Write a C program to reverse the first n characters in a file.
 (Note: The file name and n are specified on the command line.)
22. i) Write a C program to display the contents of a file.
 ii) Write a C program to merge two files into a third file (i.e., the contents of the first file followed by those of the second are put in the third file)
Week 9:
23. Write a C program that uses functions to perform the following operations on singly linked list:
 i) Creation
 ii) Insertion
 iii) Deletion
 iv) Traversal

Week 10:
24. Write C programs that implement stack (its operations) using
 i) Arrays
 ii) Pointers
25. Write C programs that implement Queue (its operations) using
 i) Arrays
 ii) Pointers

Week 11:
26. Write a C program that implements the following sorting methods to sort a given list of integers in ascending order
 i) Bubble sort
 ii) Selection sort

Week 12:
27. Write C programs that use both recursive and non recursive functions to perform the following searching operations for a Key value in a given list of integers:
 i) Linear search
 ii) Binary search

The Language Lab focuses on the production and practice of sounds of language and familiarises the students with the use of English in everyday situations and contexts.

Objectives
- To facilitate computer-aided multi-media instruction enabling individualized and independent language learning
- To sensitize the students to the nuances of English speech sounds, word accent, intonation and rhythm
- To bring about a consistent accent and intelligibility in their pronunciation of English by providing an opportunity for practice in speaking
- To improve the fluency in spoken English and neutralize mother tongue influence
- To train students to use language appropriately for interviews, group discussion and public speaking

Learning Outcomes
- Better Understanding of nuances of language through audio-visual experience and group activities
- Neutralization of accent for intelligibility
- Speaking with clarity and confidence thereby enhancing employability skills of the students

SYLLABUS

English Language Communication Skills Lab shall have two parts:
- a. Computer Assisted Language Learning (CALL) Lab
- b. Interactive Communication Skills (ICS) Lab

The following course content is prescribed for the English Language Communication Skills Lab

Exercise – I
CALL Lab: Introduction to Phonetics – Speech Sounds – Vowels and Consonants
ICS Lab: Ice-Breaking activity and JAM session
Articles, Prepositions, Word formation- Prefixes & Suffixes, Synonyms & Antonyms

Exercise – II

CALL Lab: Structure of Syllables - Past Tense Marker and Plural Marker – Weak Forms and Strong Forms - Consonant Clusters.

Concord (Subject in agreement with verb) and Words often misspelt- confused/misused

Exercise - III

CALL Lab: Minimal Pairs- Word accent and Stress Shifts- Listening Comprehension.

ICS Lab: Descriptions- Narrations- Giving Directions and guidelines.

Sequence of Tenses, Question Tags and One word substitutes.

Exercise – IV

CALL Lab: Intonation and Common errors in Pronunciation.

ICS Lab: Extempore- Public Speaking

Active and Passive Voice, –Common Errors in English, Idioms and Phrases

Exercise – V

CALL Lab: Neutralization of Mother Tongue Influence and Conversation Practice

ICS Lab: Information Transfer- Oral Presentation Skills

Reading Comprehension and Job Application with Resume preparation.

Minimum Requirement of infrastructural facilities for ELCS Lab:

1. **Computer Assisted Language Learning (CALL) Lab:**

 The Computer aided Language Lab for 40 students with 40 systems, one master console, LAN facility and English language software for self-study by learners.

 System Requirement (Hardware component):

 Computer network with Lan with minimum 60 multimedia systems with the following specifications:

 i) P – IV Processor
 a) Speed – 2.8 GHZ
 b) RAM – 512 MB Minimum
 c) Hard Disk – 80 GB
 ii) Headphones of High quality

2. **Interactive Communication Skills (ICS) Lab :**

 The Interactive Communication Skills Lab: A Spacious room with movable chairs and audio-visual aids with a Public Address System, a T. V., a digital stereo –audio & video system and camcorder etc.

 Suggested Software:

 - Cambridge Advanced Learners’ English Dictionary with CD.
 - Grammar Made Easy by Darling Kindersley
 - Punctuation Made Easy by Darling Kindersley
 - Clarity Pronunciation Power – Part I
 - Clarity Pronunciation Power – part II
 - Oxford Advanced Learner’s Compass, 8th Edition
 - *DELTA’s key to the Next Generation TOEFL Test: Advanced Skill Practice.*
 - Lingua TOEFL CBT Insider, by Dreamtech
 - TOEFL & GRE (KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS)
 - English in Mind (Series 1-4), Herbert Puchta and Jeff Stranks with Meredith Levy, Cambridge
 - Raman, M & Sharma, S. 2011. Technical Communication, OUP

 SUGGESTED READING:

 4. Sasi Kumar, V & Dhamija, P.V. *How to Prepare for Group Discussion and Interviews.* Tata McGraw Hill
 7. Chris Redston, Gillie Cunningham, Jan Bell. *Face to Face (2nd Edition).* Cambridge University Press
10. A textbook of English Phonetics for Indian Students by T. Balasubramanian (Macmillan)

DISTRIBUTION AND WEIGHTAGE OF MARKS

English Language Laboratory Practical Examination:
1. The practical examinations for the English Language Laboratory shall be conducted as per the University norms prescribed for the core engineering practical sessions.
2. For the Language lab sessions, there shall be a continuous evaluation during the year for 30 sessional marks and 70 semester-end Examination marks. Of the 30 marks, 20 marks shall be awarded for day-to-day work and 10 marks to be awarded by conducting Internal Lab Test(s). The year-end Examination shall be conducted by the teacher concerned with the help of another member of the staff of the same department of the same institution.

JNTUH COLLEGE OF ENGINEERING HYDERABAD

I Year B.Tech. EEE I-Sem

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

ENGINEERING WORKSHOP

Pre-requisites: Practical skill

Objectives:
- To Study of different hand operated power tools, uses and their demonstration.
- To gain a good basic working knowledge required for the production of various engineering products.
- To provide hands on experience about use of different engineering materials, tools, equipments and processes those are common in the engineering field.
- To develop a right attitude, team working, precision and safety at work place.
- It explains the construction, function, use and application of different working tools, equipment and machines.
- To study commonly used carpentry joints.
- To have practical exposure to various welding and joining processes.
- Identify and use marking out tools, hand tools, measuring equipment and to work to prescribed tolerances.
- To understanding the computer hardware and practice the Assembly of computer parts.
- To practice the process of Installation of operating system windows.

Outcomes:

At the end of the course, the student will be able to:
- Better understanding the process of assembly of computer parts and installation of different software's.
- Study and practice on machine tools and their operations
- Practice on manufacturing of components using workshop trades including plumbing, fitting, carpentry, foundry, house wiring and welding.
- Identify and apply suitable tools for different trades of Engineering processes including drilling, material removing, measuring, chiseling.
- Apply basic electrical engineering knowledge for house wiring practice.

I. **TRADES FOR EXERCISES**:
(Any six trades from the following with minimum of two exercises in each trade)
1. Carpentry
2. Fitting
3. Tin-Smithy
4. Black Smithy
5. House-wiring
6. Foundry
7. Plumbing

II. Trades for Demonstration & Exposure
1. Demonstration of power tools & wiring
2. Welding
3. Machine Shop

III. IT Workshop I: Computer hardware, identification of parts, disassembly, Assembly of computer to working condition, simple diagnostic exercises.

IT Workshop II: Installation of operating system windows and linux simple diagnostic exercises.

JNTUH COLLEGE OF ENGINEERING HYDERABAD

I Year B.Tech. EEE II-Sem L T P C
3 1 0 3

MATHEMATICS – II
(Common to all Branches)

Pre Requisites: NIL

Objectives:
- Our emphasis will be more on conceptual understanding and application of Fourier series, Fourier, Z and Laplace transforms and solution of partial differential equations.

Outcomes:
At the end of the course, the student will be able to:
- gains the knowledge to tackle the engineering problems using the concepts of Fourier series, various transforms and partial differential equations.

UNIT–I: Linear ODE with variable coefficients and series solutions
(8 lectures)
Equations reducible to constant coefficients-Cauchy's and Legendre's differential equations. Motivation for series solutions, Ordinary point and Regular singular point of a differential equation, Transformation of non-zero singular point to zero singular point. Series solutions to differential equations around zero, Frobenius Method about zero.

Unit-II: Special Functions
(8 lectures)
Bessel's Differential equation, Bessel functions properties: – Recurrence relations, Orthogonality, Generating function, Trigonometric expansions involving Bessel functions.

UNIT–III: Laplace Transform
(8 lectures)
Definition of Integral transform. Domain of the function and Kernel for the Laplace transforms, Laplace transform of standard functions, first shifting Theorem, Laplace transform of functions when they are multiplied or divided by “t”. Laplace transforms of derivatives and integrals of functions. – Unit step function – second shifting theorem – Dirac’s delta function, Periodic function – Inverse Laplace transform by Partial fractions(Heaviside method) Inverse Laplace transforms of functions when they are multiplied or divided by “s”, Inverse Laplace Transforms of
derivatives and integrals of functions, Convolution theorem-solving differential equations by Laplace transforms

UNIT – IV: Fourier series and Fourier Transforms (8 lectures)

UNIT-V: Partial Differential Equations (10 lectures)
Introduction and Formation of partial differential equation by elimination of arbitrary constants and arbitrary functions, solutions of first order linear (Lagrange) equation and non-linear equations (Charpit’s method).

Method of separation of variables for second order equations. Applications of Partial differential equations - one dimensional wave equation, Heat equation.

Text books:
1) HIGHER ENGINEERING MATHEMATICS BY B S GREWAL, KHANNA PUBLICATIONS.
2) ENGINEERING MATHEMATICS BY ERWIN KREYSZIG, WIELY PUBLICATIONS

References:
1) ENGINEERING MATHEMATICS BY SRIMANTAPAL & SUBODH C. BHUNIA, OXFORD UNIVERSITY PRESS.
2) ADVANCED ENGINEERING MATHEMATICS BY PETER V O’NEIL, CENGAGE LEARNING

JNTUH COLLEGE OF ENGINEERING HYDERABAD

I Year B.Tech. EEE II-Sem

L T P C

4 0 0 4

BASIC ELECTRICAL AND ELECTRONICS ENGINEERING

Pre-requisite: Nil

Objectives:
- To introduce the concept of electrical circuits and its components.
- To introduce the characteristics of various electronic devices.
- To impart the knowledge of various configurations, characteristics and applications of electrical & electronic components.

Outcomes:
At the end of the course, the student will be able to:
- To analyze and solve electrical circuits using network laws and theorems.
- To design & analyse various circuits using electronic components viz. diodes, transistors & other special purpose devices.

UNIT-I ELECTRICAL and SINGLE PHASE AC CIRCUITS

Electrical Circuits: R-L-C Parameters, Voltage and Current, Independent and Dependent Sources, Source Transformation – V-I relationship for passive elements, Kirchhoff’s Laws, Network reduction techniques – series, parallel, series-parallel, star-to-delta, delta-to-star transformation, Nodal Analysis,

Single Phase AC Circuits: R.M.S. and Average values, Form Factor, steady state analysis of series, parallel and series-parallel combinations of R, L and C with sinusoidal excitation, concept of reactance, impedance, susceptance and admittance – phase and phase difference, Concept of power factor, j-notation, complex and polar forms of representation.

UNIT-II RESONANCE and NETWORK THEOREMS

Resonance: Series resonance and Parallel resonance circuits, concept of bandwidth and Q factor, Locus Diagrams for RL, RC and RLC Combinations for Various Parameters.

Network Theorems: Thévenin’s, Norton’s, Maximum Power Transfer, Superposition, Reciprocity, Tellegen’s, Millman’s and Compensation theorems for DC and AC excitations.
UNIT- III P-N JUNCTION DIODE & DIODE CIRCUITS

P-N Junction Diode: Diode equation, Energy Band diagram, Volt-Ampere characteristics, Temperature dependence, Ideal versus practical, Static and dynamic resistances, Equivalent circuit, Load line analysis, Diffusion and Transition Capacitances.

Rectifiers and Filters: P-N junction as a rectifier - Half Wave Rectifier, Ripple Factor - Full Wave Rectifier, Bridge Rectifier, Harmonic components in Rectifier Circuits, Filters – Inductor Filters, Capacitor Filters, L-section Filters, π-section Filters.

UNIT- IV BIPOLAR JUNCTION TRANSISTOR

Transistor Biasing And Stabilization - Operating point, DC & AC load lines, Biasing - Fixed Bias, Emitter Feedback Bias, Collector to Emitter feedback bias, Voltage divider bias, Bias stability, Stabilization against variations in V_{BE} and β, Bias Compensation using Diodes and Transistors.

Transistor Configurations: BJT modeling, Hybrid model, Determination of h-parameters from transistor characteristics, Analysis of CE, CB and CC configurations using h-parameters, Comparison of CE, CB and CC configurations.

UNIT- V JUNCTION FIELD EFFECT TRANSISTOR & SPECIAL PURPOSE DEVICES

Special Purpose Devices: Breakdown Mechanisms in Semi-Conductor Diodes, Zener diode characteristics, Use of Zener diode as simple regulator, Principle of operation and Characteristics of Tunnel Diode (With help of Energy band diagram) and Varactor Diode, Principle of Operation of SCR.

TEXT BOOKS:

REFERENCES:
1. Introduction to Electronic Devices and Circuits-Rober T. Paynter, Pearson Education.
6. Network Theory by Sudhakar, Shyam Mohan Palli, TMH.
JNTUH COLLEGE OF ENGINEERING HYDERABAD

I Year B.Tech. EEE II-Sem

APPLIED PHYSICS

Prerequisites: Nil

Course Objectives:
The course primarily aims at understanding the behavior of matter in the condensed state and tries to explore the causes with reference to micro level mechanism of the solid matter. The objective of the first chapter is to study the micro level behavior of the quantum particles of the matter and their nature as wave and particle and hence to estimate the statistics of the phenomenon arising out of their nature of existence. The second chapter aims at to assess the draw backs of the free electron theory leading to the introduction of the Band Theory of Solids. In the third, fourth, fifth, sixth, seventh and tenth chapters the different natures of the solid matter are taken as the main task discuss. In the eighth chapter, it is expected to understand the basic principles behind the coherent artificial light source (LASER) with reference to their construction, mechanism, operation and classification etc. The ninth chapter is explicitly aimed at to study an advanced communication system presently ruling the world throughout i.e. Fiber Optic communication system.

Outcomes:
The understanding of properties of matter is an essential part to utilize them in various applications in different walks of life. In most of the cases, the behavior of matter as solid material body purely depends upon the internal micro level nature, structure and characters. By studying first few chapters the students as graduates can acquire the knowledge of the connection between the micro level behavior of the matter as fundamental particles and the macro level real time characters of the material bodies. The quantum mechanism in phenomena can best be understood and analyzed by estimating the statistics of the phenomena. The study of chapters on Laser and fiber optics forms basis for understanding an advanced communication system. Other chapters establish a strong foundation on the different kinds of characters of several materials and pave a way for them to use in at various technical and engineering applications.

UNIT-I

Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics (Qualitative).

UNIT-II

UNIT-III

5. Dielectric Properties: Basic definitions, Electronic, Ionic (Quantitative) and Orientation Polarizations(Qualitative) and Calculation of Polarizabilities - Internal Fields in Solids, Clausius - Mossozit Equation, Piezo-electricity, Pyro- electricity and Ferro -electricity.

7. Superconductivity: Introduction to Superconductivity, Properties of Superconductors, Meissner Effect, BCS theory, Type-I and Type –II Superconductors, Magnetic Levitation and Applications of Superconductors.
UNIT-IV

UNIT-V
10. Nanotechnology: Origin of Nanotechnology, Nano Scale, Surface to Volume Ratio, Quantum Confinement, Bottom-up Fabrication: Sol-Gel, Precipitation, Combustion Methods; Top-Down Fabrication: Chemical Vapor Deposition, Physical Vapor Deposition, Characterization Techniques(XRD, SEM &TEM) and Applications of Nanotechnology.

Text books:
2. Introduction to Solid State Physics by Charles Kittel, Wiley India Pvt Ltd, 7th Edition
4. Solid State Physics by A J Dekker, MACMILLAN INDIA LTD.

References:
1. Modern Engineering Physics by Dr.K.Vijaya Kumar, Dr. S. Chandralingam, S.CHAND & COMPANY LTD
4. Introduction to Nanotechnology by Charles P.Poole, Jr.Frank J ownes, John Wiley & sons

JNTUH COLLEGE OF ENGINEERING HYDERABAD

I Year B.Tech. EEE II-Sem

ENGINEERING CHEMISTRY

L T P C

Prerequisites: Nil

Course objectives:
To inculcate the basic concepts of Chemistry required to make the student to develop the innovative materials for the development of technological arena. The latest techniques and skills for the treatment of raw water, facing the endanger of corrosion of structures and producing the polymers in varied applications.

Outcomes:
At the end of the course, the student will be able to:
• gain knowledge of various skills to control the corrosion of huge structures. The analysis of raw water and its treatment to provide soft water. The technologies to result polymers with multiple applications are understood. The principles of electrochemistry and batteries are clearly understood by the students.

Unit-I: Water and its treatment

Unit-II: Electrochemistry and corrosion

Unit-III: High Polymers
Definition – Classification of polymers with examples – Types of polymerisation – Chain growth (free radical addition mechanism), step growth polymerization, Plastics, fibres and elastomers - definition and characteristics. Plastics – thermoplastic and thermosetting plastics, compounding of plastics. Fibre reinforced plastics. Preparation, properties and Engineering applications of PVC, Teflon, Bakelite, Nylon 6:6 and terylene (Dacron); Rubber – Natural rubber , its processing and vulcanization. Elastomers: Preparation, properties and applications of Styrene butadiene, butyl and thiokol rubbers. Conducting polymers – Classification with examples; mechanism of conduction in trans-polyacetylene and applications of conducting polymers. Biodegradable polymers – concept and advantages - Polylactic acid and its applications.

Unit-IV: Chemistry of Energy sources

Unit-V : Batteries and Materials
Batteries: Cell and battery - Primary battery (dry cell, alkaline cell and Lithium cell). Secondary battery (lead acid, Ni-Cd and lithium ion cell)
Liquid crystal polymers : classification, characteristics and applications.
Insulators- Characteristics and applications of thermal and electrical insulators.

Nanomaterials: Introduction. Preparation of nanomaterials by top down and bottom up approaches. Carbon nano fibres, and fullerenes - Applications of nanomaterials.

Text Books:

Reference Books:
JNTUH COLLEGE OF ENGINEERING HYDERABAD

I Year B.Tech. EEE II-Sem L T P C
3 1 0 3

ENGINEERING MECHANICS

Prerequisites: Nil

Objectives:
During this course, students should develop the ability to:
- Work comfortably with basic engineering mechanics concepts required for analyzing static structures
- Identify an appropriate structural system to studying a given problem and isolate it from its environment.
- Model the problem using good free-body diagrams and accurate equilibrium equations.
- Identify and model various types of loading and support conditions that act on structural systems.
- Apply pertinent mathematical, physical and engineering mechanical principles to the system to solve and analyze the problem.
- Understand the meaning of centers of gravity (mass)/centroids and moments of Inertia using integration methods.
- Communicate the solution to all problems in an organized and coherent manner and elucidate the meaning of the solution in the context of the problem.

Outcomes:
At the end of the course, the student will be able to:
- solve problems dealing with forces in a plane or in space and equivalent force Systems.
- solve beam and cable problems and understand distributed force systems.
- solve friction problems and determine moments of Inertia and centroid using integration methods.
- understand and know how to solve three-dimension force and moment problems.
- understand and know how to use vector terminology.

UNIT – I

UNIT – II

UNIT – III

MOMENT OF INERTIA: Moment of Inertia of Areas and Masses - Transfer Formula for Moments of Inertia - Moment of inertia of composite areas and masses.

UNIT – IV

UNIT – V

TEXT BOOKS:

REFERENCES:
1. Engineering Mechanics (Statics and Dynamics) by Hibbler; Pearson Education.
JNTUH COLLEGE OF ENGINEERING HYDERABAD

I Year B.Tech. EEE II-Sem

COMPUTATIONAL MATHEMATICS
(Common to all Branches)

Pre Requisites: NIL

Objectives:
- This course aims at providing the student with the concepts of matrices, numerical techniques and curve fitting.

Outcomes:
At the end of the course, the student will be able to:
- analyze engineering problems using the concepts of Matrices and Numerical Methods.

UNIT-I: Matrices and Linear Transformations (8 lectures)

UNIT–II: Interpolation and Curve fitting (5 lectures)

UNIT–III: Numerical techniques (5 lectures)
Solution of Algebraic and Transcendental Equations and Linear system of equations.
Solving system of non-homogeneous equations by L-U Decomposition method(Crout’s Method)Jacobian’s and Gauss-Seidel Iteration method

UNIT- IV: Numerical Differentiation, Integration: (5 lectures)

UNIT – V: Numerical solutions of First order differential equations (5 lectures)

Text Books:
1) INTRODUCTORY METHODS OF NUMERICAL ANALYSIS BY SS SASTRY
2) NUMERICAL AND STATISTICAL METHODS WITH PROGRAMMING IN C BY SUJATHA SINHA AND SUBHABRADA DINDA, SCITEC PUBLISHERS.
3) NUMERICAL METHODS, PRINCIPLES, ANALYSIS AND ALGORITHMS BY SRIMANTAPAL & SUBODH C. BHUNIA, OXFORD UNIVERSITY PRESS.

References:
1) ADVANCED ENGINEERING MATHEMATICS BY ALAN JEFFERY
2) APPLIED NUMERICAL METHODS USING MATLAB BY RAO.V.DUKKIPATI, NEW AGE PUBLISHERS
3) NUMERICAL METHODS IN SCIENCE AND ENGINEERING –APRACTICAL APPROACH BY S.RAJASEKHARAN, S.CHAND PUBLICATIONS
PART A: ELECTRONIC WORKSHOP PRACTICE (in 3 lab sessions):

1. Identification, Specifications, Testing of R, L, C Components (Color Codes), Potentiometers, Switches (SPDT, DPDT, and DIP), Coils, Gang Condensers, Relays, Bread Boards, PCB’s
2. Identification, Specifications and Testing of Active Devices, Diodes, BJT’s, Low power JFET’s, MOSFET’s, Power Transistors, LED’s, LCD’s, SCR, UJT.
3. Study and operation of
 - Multimeters (Analog and Digital)
 - Function Generator
 - Regulated Power Supplies
 - CRO.

PART B: (For Laboratory examination – Minimum of 09 experiments to be conducted)

1. PN Junction diode characteristics A) Forward bias B) Reverse bias.
2. Zener diode characteristics and Zener as voltage Regulator
3. Input & Output characteristics of Transistor in CB / CE configuration
4. Full Wave Rectifier with & without filters
5. Input and Output characteristics of FET in CS configuration
6. Measurement of h-parameters of transistor in CB, CE, CC configurations
7. SCR Characteristics.
8. Verification of KVL and KCL.
10. Verification of Superposition and Reciprocity theorems.
11. Verification of maximum power transfer theorem. Verification on DC, verification on AC with Resistive and Reactive loads.
12. Experimental determination of Thevenin’s and Norton’s equivalent circuits and verification by direct test.

APPLIED PHYSICS LAB

LIST OF EXPERIMENTS:

1. Study of characteristics of LED and LASER sources.
2. Magnetic field along the axis of current carrying coil-Stewart and Gee’s method.
3. Study of characteristics of p-i-n diode detectors.
4. Determination of frequency of A.C Mains-Sonometer.
5. Torsional pendulum.
8. L-C-R circuit.
9. Time constant of an R-C Circuit.
JNTUH COLLEGE OF ENGINEERING HYDERABAD

I Year B.Tech. EEE II-Sem L T P C
0 0 3 2

COMPUTATIONAL MATHEMATICS LAB
(Common to all Branches)

UNIT - I: Interpolation
Programming Tasks:
A) Write a program to determine y for a given x, if two arrays of x and y
of same size are given (using Newton’s interpolation both forward
and backward)
B) Write a program to determine y for a given x, if two arrays of x and y
of same size are given (using Lagrange’s interpolation)
C) Write a program to determine y for a given x, if two arrays of x and y
of same size are given (using Gauss interpolation)
(Selection criteria of the interpolation formula are important.)

UNIT - II: Curve fitting
Programming Tasks:
A) Write a program to find a line of best fit from the given two arrays of
x and y of same size.
B) Write a program to find a curve of the form \(y = Ae^{Bx} \) from the given
two arrays of x and y of same size.
C) Write a program to find a curve of the form \(y = Ax^B \) from the given
two arrays of x and y of same size.
D) Write a program to find a curve of the form \(y = Ax^2 + Bx + C \) from
the given two arrays of x and y of same size.

UNIT - III: Solution of Algebraic and Transcendental Equations
Programming Tasks:
A) Write a program to find the root of a given equation using bissection
method.
(Write this program such that the initial values given to the system
are not usable, then the system should ask us to give new set of
initial values).
B) Write a program to find the root of a given equation using method of
false position (regula falsi position).
C) Write a program to find the root of a given equation using iteration
method.
D) Write a program to find the root of a given equation using Newton
Raphson method.

UNIT - IV: Linear system of equations
Programming Tasks:
A) Write a program to find the solution of given system of linear
equations using L-U decomposition method.
B) Write a program to find the solution of given system of linear
equations using Jacobi’s method.
C) Write a program to find the solution of given system of equations
using Gauss sidle iteration method.
D) Write a program to find the solution of given system of equations
using Gauss Jordan elimination method.

UNIT - V: Numerical Differentiation, Integration and Numerical
solutions of First order differential equations
Programming Tasks:
A) Write a program to evaluate definite integral using trapezoidal rule,
Simpson’s 1/3rd rule and 3/8th rule.
B) Write a program to solve a given differential equation using Taylor’s
series.
C) Write a program to solve a given differential equation Euler’s and
modified Euler’s method.
D) Write a program to solve a given differential equation using Ruge-Kutta method.
Pre Requisites: Nil

Course Objectives:
- To enable the students to understand the concepts of probability distributions, statistical Inferences, and testing of hypothesis.
- To enable the students to understand the key concepts of Complex functions and the calculus of complex functions.

Outcomes:
- The student achieves the knowledge to testing the hypothesis and form the probability distributions to make inferences.
- The students can study some problems of engineering using the concepts of residue theorem, Laurent series of functions of complex variables.

UNIT-I: Single Random variables and probability distributions.

UNIT-II: Multiple Random variables, Correlation & Regression
Joint probability distributions- Joint probability mass / density function, Marginal probability mass / density functions, Covariance of two random variables, Correlation -Coefficient of correlation, The rank correlation. Regression- Regression Coefficient, The lines of regression and multiple correlation & regression.

UNIT-III: Sampling Distributions and Testing of Hypothesis
Sampling: Definitions of population, sampling, statistic, parameter. Types of sampling, Expected values of Sample mean and variance, sampling distribution, Standard error, Sampling distribution of means and sampling distribution of variance. Parameter estimations – likelihood estimate, interval estimations.

UNIT-IV: Functions of Complex Variables

UNIT-V: Contour Integration
Residue – Evaluation of residue by formula and by Laurent series – Residue theorem. Evaluation of integrals of the type
(a) Improper real integrals \(\int_{-\infty}^{\infty} f(x) \, dx \) (b) \(\int_{0}^{2\pi} f(\cos \theta, \sin \theta) \, d\theta \)

Conformal mapping.
Transformation of z-plane to w-plane by a function, Conformal transformation. Standard transformations- Translation; Magnification and rotation; inversion and reflection, Transformations like \(e^z \), log z.
Text Books:
1) Fundamentals of mathematical statistics by s c gupta and v.k.kapoor
2) Probability and statistics for engineers and scientists by sheldon m.ross.academic press
3) Probability and statistics for engineering and the science by jay l.devore.
4) Higher engineering mathematics by b s grewal.
5) Advanced engineering mathematics by peter v o'neil, cengage learning
6) Engineering mathematics by erwin kreyszig,10th edition wiely publications

References:
1) Mathematics for engineers series –probability statistics and stochastic process by k.b.datta and m.a s.srinivas,cengage publications
2) Probability, statistics and stochastic process by prof.a r k prasad., wiely india
3) Advanced engineering mathematics by sahanaz bathul, phi publication
4) Probability and statistics by t.k.v.iyengar &b.krishna gandhi etel
5) Mathematics for engineers series- advanced mathematics for engineers by k.b.datta and m.a s.srinivas, cengage publications
6) Advanced engineering mathematics for engineers by prof.a r k prasad., wiely india

JNTUH COLLEGE OF ENGINEERING HYDERABAD

II Year B.Tech. EEE I-Sem

PC - ELECTROMAGNETIC FIELDS

Pre-requisite: Mathematics and physics
Objectives: Objectives of this course are
- To introduce the concepts of electric field, magnetic field.
- Applications of electric and magnetic fields in the development of the theory for power transmission lines and electrical machines.

UNIT – I Electrostatics

Electrostatic Fields – Coulomb’s Law – Electric Field Intensity (EFI) – EFI due to a line and a surface charge – Work done in moving a point charge in an electrostatic field – Electric Potential – Properties of potential function – Potential gradient – Guass’s law – Application of Guass’s Law – Maxwell’s first law, div (D)=  v – Laplace’s and Poison’s equations – Solution of Laplace’s equation in one variable. Electric dipole – Dipole moment – potential and EFI due to an electric dipole – Torque on an Electric dipole in an electric field – Behavior of conductors in an electric field – Conductors and Insulators

UNIT – II Dielectrics & Capacitance

UNIT – III Magneto Statics

Static magnetic fields – Biot-Savart’s law – Magnetic field intensity (MFI) – MFI due to a straight current carrying filament – MFI due to circular, square and solenoid current – Carrying wire – Relation between magnetic flux, magnetic flux density and MFI – Maxwell’s second Equation, div(B)=0,
Ampere's Law & Applications
Ampere's circuital law and its applications viz. MFI due to an infinite sheet of current and a long current carrying filament – Point form of Ampere’s circuital law – Maxwell’s third equation, Curl (H)=Jc

UNIT – IV Force in Magnetic fields and Magnetic Potential
Self and Mutual inductance – Neumann’s formulae – determination of self-inductance of a solenoid and toroid and mutual inductance between a straight long wire and a square loop wire in the same plane – energy stored and density in a magnetic field. Introduction to permanent magnets, their characteristics and applications.

UNIT – V Time Varying Fields
Time varying fields – Faraday’s laws of electromagnetic induction – Its integral and point forms – Maxwell’s fourth equation, Curl (E)=-\partial B/\partial t – Statically and Dynamically induced EMFs – Simple problems -Modification of Maxwell’s equations for time varying fields – Displacement current

OUTCOMES: After this course, the student gets a thorough knowledge of
• Electrostatics and magneto statics.
• Behavior of conductors, insulators, semiconductors, dielectrics and capacitors.
• Time-varying fields, interaction between electricity and magnetism, different laws, Maxwell’s equations.
• Analysis and applications of the concepts to electrical and electronics problems.
• Analyzes and applies the concepts to real-world electrical and electronics problems and applications.

TEXT BOOKS

REFERENCE BOOKS:
4. “Electromagnetics” by Plonsy and Collin
5. “Static and Dynamic Electricity” Smyth.
PC - ELECTRICAL CIRCUITS

Pre-requisite: None

Objectives: Objectives of this course are

- to introduce the basic concepts of circuit analysis, which is the foundation for all subjects of the Electrical Engineering.
- to introduce basic analysis of circuits which includes Single phase circuits, magnetic circuits, theorems, transient analysis and network topology.

UNIT – I

Network topology: Definitions – Graph – Tree, Basic cutset and Basic Tieset matrices for planar networks – Loop and Nodal methods of analysis of Networks with dependent & independent voltage and current sources - Duality & Dual networks.

UNIT – II
Three phase circuits: Phase sequence – Star and delta connection – Relation between line and phase voltages and currents in balanced systems – Analysis of balanced and Unbalanced 3 phase circuits – Measurement of active and reactive power.

UNIT – III

Transient response of the above circuits for different inputs such as step, ramp, pulse and impulse by using Laplace transforms method.

UNIT – IV
Network Parameters: Network functions driving point and transfer impedance function networks- poles and zeros –necessary conditions for driving point function and for transfer function Two port network parameters – Z, Y, ABCD and hybrid parameters and their relations – 2-port network parameters using transformed variables.

UNIT – V
Filters: Introduction to filters – low pass – high pass and band pass – RC, RL, filters- constant K and m derived filters and composite filter design

OUTCOMES: After this course, the student

- gets a thorough knowledge on basics of circuit concepts, electrical parameters, single phase and three phase circuits, magnetic circuits, resonance, locus diagrams, network topology and network theorems
- analyzes and applies the above concepts to real-world problems and applications.

TEXT BOOKS:
2. Electric Circuits by A. Chakrabarthy, Dhanipat Rai & Sons.
3. Networks and systems by D.Roy Chowdary, New age international publishers

REFERENCE BOOKS
1. Network Analysis by Van Valkenburg, PHI.
Pre-requisite: Electrical Circuits
Objectives: Objectives of this course are,
- To study and understand different types of DC generators, Motors and Transformers, their construction, operation and applications.
- To analyze performance aspects of various testing methods.

UNIT – I

UNIT – II

UNIT-III
Methods of Testing – direct, indirect and regenerative testing – Brake test – Swinburne’s test – Hopkinson’s test – Field’s test - separation of stray losses in a d.c. motor test.

UNIT-IV
Single phase transformers: Types - constructional details - minimization of hysteresis and eddy current losses - EMF equation - operation on no load and on load - phasor diagrams

OUTCOMES:
After this course, the student
- gets a thorough knowledge on electromechanical energy conversion
- understands construction, operation, characteristics, control techniques and testing of different types of machines
- applies the above concepts to real-world electrical and electronics problems and application.
- Know the difference of single phase and poly phase transformers.
- Know the application of various machines.

TEXT BOOKS

REFERENCE BOOKS
3. Electrical Machines – P.S. Bimbra, Khanna Publishers
6. Electrical Machines -S.K. Battacharya,
PC - ELECTRONIC DEVICES AND CIRCUITS

UNIT-I: SINGLE STAGE AMPLIFIERS:

UNIT-II: FEEDBACK AMPLIFIERS:
Concept of feedback Amplifiers, General characteristics of negative feedback amplifiers, Effect of Feedback on Amplifier characteristics, Voltage series, voltage shunt, Current series and current shunt Feedback configurations, Illustrative problems

OSCILLATORS

UNIT-III: LARGE SIGNAL AMPLIFIERS:

UNIT-IV: WAVE SHAPING:
High Pass, Low Pass RC Circuits, their response for Sinusoidal, Step, Pulse and Ramp Inputs.

CLIPPERS AND CLAMPERS
Diode Clippers, Transistor Clippers, Clipping at Two Independent Levels, Transfer Characteristics of Clippers, Comparators, Clamping Operation, Clamping Circuits using Diode with different inputs, Clamping Circuit Theorem, Practical Clamping Circuits.

UNIT V: SWITCHING CHARACTERISTICS OF DEVICES:
Diode as a Switch, Piecewise Linear Diode Characteristics, Transistor as a Switch, Breakdown Voltage Consideration of Transistor, Design of Transistor Switch, Transistor Switching Times.

MULTIVIBRATORS
Analysis and Design of Bistable, Monostable, Astable, Multivibrators and Schmitt Trigger using Transistors.

TEXT BOOKS:
2. Electronic Devices and circuits - S. Salivahanan, N. Suresh Kumar, A. Vallava Raj 2 ed., 2008, TMH
3. Solid state Pulse Circuits – David A. Bell 4 ed., PHI

REFERENCES:
1. Introductory Electronic Devices and Circuits - Robert T. Paynter, 7 ed., 2009, PEI.
Objectives of the Course:

- To develop students' sensibility with regard to issues of gender in contemporary India.
- To provide a critical perspective on the socialization of men and women.
- To introduce students to information about some key biological aspects of genders.
- To expose the students to debates on the politics and economics of work.
- To help students reflect critically on gender violence.
- To expose students to more egalitarian interactions between men and women.

Learning Outcomes:

- Students will have developed a better understanding of important issues related to gender in contemporary India.
- Students will be sensitized to basic dimensions of the biological, sociological, psychological and legal aspects of gender. This will be achieved through discussion of materials derived from research, facts, everyday life, literature and film.
- Students will attain a finer grasp of how gender discrimination works in our society and how to counter it.
- Students will acquire insight into the gendered division of labour and its relation to politics and economics.
- Men and women students and professionals will be better equipped to work and live together as equals.
- Students will develop a sense of appreciation of women in all walks of life.
- Through providing accounts of studies and movements as well as the new laws that provide protection and relief to women, the textbook will empower students to understand and respond to gender violence.

Unit-I: UNDERSTANDING GENDER

Gender: Why Should We Study It? (Towards a World of Equals: Unit -1)
Socialization: Making Women, Making Men (Towards a World of Equals: Unit -2)

Unit – II: GENDER AND BIOLOGY

Missing Women: Sex Selection and Its Consequences (Towards a World of Equals: Unit -4)
Declining Sex Ratio. Demographic Consequences.
Gender Spectrum: Beyond the Binary (Towards a World of Equals: Unit -10)
Two or Many? Struggles with Discrimination.

Unit – III: GENDER AND LABOUR

Housework: the Invisible Labour (Towards a World of Equals: Unit -3)
“My Mother doesn’t Work.” “Share the Load.”
Women’s Work: Its Politics and Economics (Towards a World of Equals: Unit -7)

Unit – IV: ISSUES OF VIOLENCE

Sexual Harassment: Say No! (Towards a World of Equals: Unit -6)
Sexual Harassment, not Eve-teasing-Cop ing with Everyday Harassment-Further Reading: “Chupulu”.
Domestic Violence: Speaking Out (Towards a World of Equals: Unit -8)
Thinking about Sexual Violence (Towards a World of Equals: Unit -11)
Blaming the Victim-“I Fought for my Life….” - Additional Reading: The Caste Face of Violence.

Unit – V: GENDER: CO-EXISTENCE

Just Relationships: Being Together as Equals (Towards a World of Equals: Unit -12)
Essential Reading: All the Units in the Textbook, “Towards a World of Equals: A Bilingual Textbook on Gender” written by A. Suneetha, Uma Bhrugubanda, Duggirala Vasanta, Rama Melkote, Vasudha Nagaraj, Asma Rasheed, Gogu Shyamala, Deepa Sreenivas and Susie Tharu.

Note: Since it is Interdisciplinary Course, Resource Persons can be drawn from the fields of English Literature or Sociology or Political Science or any other qualified faculty who has expertise in this field from engineering departments.

Reference Books:

PC - ELECTRONIC CIRCUITS LAB

The following experiments are required to be conducted compulsory experiments:

1. CE amplifier.
2. CC amplifier (Emitter Follower).
3. FET amplifier (Common Source).
4. Weinbridge and RC Phase shift Oscillator.
6. Colpitt and Hartley Oscillator.
7. Double stage RC coupled amplifier.
8. Clipper and Clampers

In addition to the above eight experiments, at least any two of the experiments from the following list are required to be conducted:

9. Transistor as a switch
10. Study of Logic gates & some applications

PC - ELECTRICAL MACHINES LAB – I

The following experiments are required to be conducted compulsory experiments:

1. Magnetization characteristics of DC shunt generator. Determination of critical field resistance and critical speed.
2. Load test on DC shunt generator. Determination of characteristics.
3. Load test on DC series generator. Determination of characteristics.
4. Load test on DC compound generator. Determination of characteristics.
5. Hopkinson’s test on DC shunt machines. Predetermination of efficiency.
7. Swinburne’s test and speed control of DC shunt motor. Predetermination of efficiencies.

In addition to the above eight experiments, at least any two of the experiments from the following list are required to be conducted:

The following experiments are required to be conducted compulsory experiments:

1. Basic Operations on Matrices.
2. Generation of Various Signals and Sequences (Periodic and Aperiodic), such as Unit Impulse, Unit Step, Square, Saw tooth, Triangular, Sinusoidal, Ramp, Sine.
3. Operations on Signals and Sequences such as Addition, Multiplication, Scaling, Shifting, Folding, Computation of Energy and Average Power.
4. Finding the Even and Odd parts of Signal/Sequence and Real and Imaginary parts of Signal.
5. Convolution between Signals and sequences.
6. Auto Correlation and Cross Correlation between Signals and Sequences.
8. Computation of Unit sample, Unit step and Sinusoidal responses of the given LTI system and verifying its physical realizability and stability properties.

In addition to the above eight experiments, at least any two of the experiments from the following list are required to be conducted.

11. Locating the Zeros and Poles and plotting the Pole-Zero maps in S-plane and Z-Plane for the given transfer function.

UNIT I NUMBER SYSTEMS & CODES:
Philosophy of number systems – complement representation of negative numbers-binary arithmetic – binary codes – error detecting and error correcting codes –hamming codes.

BOOLEAN ALGEBRA AND SWITCHING FUNCTIONS:
Fundamental postulates of Boolean Algebra-Basic theorems and properties - switching functions–Canonical and Standard forms—Algebraic simplification—digital logic gates, properties of XOR gates—universal gates-Multilevel NAND/NOR realizations.

UNIT II MINIMIZATION OF SWITCHING FUNCTIONS:
Map method, Prime implicants, Don’t care combinations, Minimal SOP and POS forms, Tabular Method, Prime –Implicant chart, simplification rules

COMBINATIONAL LOGIC DESIGN:
Design using conventional logic gates, Encoder, Decoder, Multiplexer, De-Multiplexer, Modular design using IC chips, MUX Realization of switching functions Parity bit generator, Code-converters, Hazards and hazard free realizations.

UNIT III PROGRAMMABLE LOGIC DEVICES, THRESHOLD LOGIC:
Basic PLD’s- ROM, PROM, PLA, PLD Realization of Switching functions using PLD’s. Capabilities and limitations of Threshold gate, Synthesis of Threshold functions, Multigate Synthesis.

UNIT IV SEQUENTIAL CIRCUITS – I:
Classification of sequential circuits (Synchronous, Asynchronous, Pulse mode, Level mode with examples) Basic flip-flops-Trigging and excitation tables. Steps in synchronous sequential circuit design. Design of modulo-N Ring and Shift counters, Serial binary adder, sequence detector.

SEQUENTIAL CIRCUITS – II Finite state machine-capabilities and limitations, Mealy and Moore models-minimization of completely specified and incompletely specified sequential machines, Partition techniques and Merger chart methods-concept of minimal cover table.
UNIT V ALGOROTHIMIC STATE MACHINES:
Salient features of the ASM chart-Simple examples-System design using
data path and control subsystems-control implementations-examples
of Weighing machine and Binary multiplier.

TEXTBOOKS

REFERENCES
4. An Engineering Approach To Digital Design – Fletcher, PHI.
specifications and transfer function from the Bode Diagram-Phase margin and Gain margin-Stability Analysis from Bode Plots.

UNIT-IV
STABILITY ANALYSIS IN FREQUENCY DOMAIN: Polar Plots, Nyquist Plots and applications of Nyquist criterion to find the stability - Effects of adding poles and zeros to G(s)H(s) on the shape of the Nyquist diagrams.

Classical Control Design Techniques: Compensation techniques – Lag, Lead, and Lead-Lag Controllers design in frequency Domain, PID Controllers.

UNIT – V
STATE SPACE ANALYSIS OF CONTINUOUS SYSTEMS: Concepts of state, state variables and state model, derivation of state models from block diagrams, Diagonalization- Solving the Time invariant state Equations- State Transition Matrix and its Properties.

OUTCOMES: After this course, the student gets a thorough knowledge of
- Open loop and closed loop control systems.
- Modeling and transfer function derivations of translational and rotational systems.
- Represent transfer functions through block diagrams and signal flow graphs.
- Design a control systems using time domain and frequency domain techniques.
- Time response analysis, stability analysis, frequency response analysis of different ordered systems through their characteristic equation and time-domain specifications.
- Applications of concepts to electrical and electronics problems.

TEXT BOOKS

REFERENCE BOOKS
OBJECTIVES:

- To understand the hydro, thermal, nuclear and gas generating stations.
- To examine A.C. and D.C. distribution systems.
- To understand and compare air insulated and gas insulated substations.
- To illustrate the economic aspects of power generation and tariff methods.

UNIT-I

Thermal Power Stations:

- Line diagram of Thermal Power Station (TPS) showing paths of coal, steam, water, air, ash and flue gasses.
- Brief description of TPS components: Economizers, Boilers, Super heaters, Turbines, Condensers, Chimney and cooling towers.

Gas and Nuclear Power Stations:

Gas Power Stations:

- Principle of Operation and Components (Block Diagram Approach Only).

UNIT-II

Hydroelectric Power Stations:

- Elements of hydro electric power station-types-concept of pumped storage plants-storage requirements, mass curve (explanation only) estimation of power developed from a given catchment area; heads and efficiencies.

Hydraulic Turbines:

- Classification of turbines, impulse and reaction turbines, Pelton wheel, Francis turbine and Kaplan turbine-working proportions, work done, efficiencies, hydraulic design - draft tube-theory- functions and efficiency.

UNIT-III

D.C. Distribution Systems:

- Classification of Distribution Systems.- Comparison of DC vs. AC and Under-Ground vs. Over- Head Distribution Systems.- Requirements and Design features of Distribution Systems.-Voltage Drop Calculations (Numerical Problems) in D.C Distributors for the following cases: Radial D.C Distributor fed one end and at the both the ends (equal/unequal Voltages) and Ring Main Distributor.

A.C. Distribution Systems:

- Voltage Drop Calculations (Numerical Problems) in A.C. Distributors for the following cases: Power Factors referred to receiving end voltage and with respect to respective load voltages.

UNIT-IV

Substations:

- Classification of substations.
- Air insulated substations - Indoor & Outdoor substations: Substations layout showing the location of all the substation equipment.
- Bus bar arrangements in the Sub- Stations: Simple arrangements like single bus bar, sectionalized single bus bar, main and transfer bus bar system with relevant diagrams.
- Gas insulated substations (GIS) – Advantages of Gas insulated substations, different types of gas insulated substations, single line diagram of gas insulated substations, bus bar, construction aspects of GIS, Installation and maintenance of GIS, Comparison of Air insulated substations and Gas insulated substations.

UNIT-V

Economic Aspects of Power Generation:

- Load curve, load duration and integrated load duration curves-load, demand, diversity, capacity, utilization and plant use factors- Numerical Problems.

Tariff Methods:

OUTCOMES:

- Able to demonstrate the operation of hydro, thermal, nuclear and gas generating stations.
- Understand A.C. and D.C. distribution systems.
- Able to distinguish between air and gas insulated substations.
- Compare different tariff methods and economic aspects of power generation.

TEXT BOOKS

REFERENCE BOOKS
1. Principles of Power Systems by V.K Mehta and Rohit Mehta

PC - ELECTRICAL MACHINES – II

Pre-requisite: Electrical Machines-I

Objectives: Objectives of this course are
- to deal with the detailed analysis of polyphase induction motors &
 Synchronous generators and motors
- to understand operation, construction and types of single phase
 motors and their applications in house hold appliances and
 control systems.
- To introduce the concept of parallel operation of synchronous
 generators.
- To introduce the concept of regulation and its calculations.

UNIT- I
Polyphase Induction Motors: Construction details of cage and wound
rotor machines-production of a rotating magnetic field - principle of
operation - rotor EMF and rotor frequency - rotor reactance, rotor
current and PF at standstill and during operation.

UNIT- II
Characteristics of Induction Motors: Rotor power input, rotor copper
loss and mechanical power developed and their inter relation-torque
equation-deduction from torque equation - expressions for maximum
torque and starting torque - torque slip characteristic - equivalent
circuit - phasor diagram - crawling and cogging - No-load Test and
Blocked rotor test – Predetermination of performance - Methods of
starting and starting current and Torque calculations.

Speed Control Methods: Change of voltage, change of frequency,
voltage/frequency, injection of an EMF into rotor circuit (qualitative
treatment only) - induction generator-principle of operation.

UNIT- III
Construction, Principle of operation, Characteristics & Regulation of
Synchronous Generator: Constructional Features of round rotor
and salient pole machines – Armature windings – Integral slot and
fractional slot windings; Distributed and concentrated windings –
distribution, pitch and winding factors – E.M.F Equation.

UNIT - IV

UNIT - V

OUTCOMES: After this course, the student

- gets a thorough knowledge on construction, operation, characteristics and testing of different types of Transformers.
- to understand construction, operation, characteristics, testing and speed control methods of poly-phase induction motors.
- Gets through knowledge an harmonics in generated e.m.f.
- Methods for suppression harmonics.
- applies the above concepts to real-world electrical and electronics problems and applications.

TEXT BOOKS
2. Performance and Design of AC Machines-M.G.Say.BPB Publishers

REFERENCE BOOKS
1. Electro mechanics-II (transformers and induction motors) S. Kamakashaiah Hitech publishers.
5. Electrical Machines – M.V Deshpande, Wheeler Publishing
PC - ELECTRICAL AND ELECTRONIC MEASUREMENTS

Pre-requisite: Basic Electrical and Electronics Engineering.

OBJECTIVES: Objectives of this course are
• to introduce the basic principles of all measuring instruments
• to deal with the measurement of voltage, current, Power factor, power, energy and magnetic measurements.

UNIT-I
INTRODUCTION TO MEASURING INSTRUMENTS: Classification – deflecting, control and damping torques – Ammeters and Voltmeters – PMMC, moving iron type instruments – expression for the deflecting torque and control torque – Errors and compensations, extension of range using shunts and series resistance. Electrostatic Voltmeters - electrometer type and attracted disc type – extension of range of E.S. Voltmeters.

UNIT-II

UNIT-III

UNIT-IV

UNIT-V
TRANSUDCERS: Definition of transducers, Classification of transducers, Advantages of Electrical transducers, Characteristics and choice of transducers; Principle operation of LVDT and capacitor transducers; LVDT Applications, Strain gauge and its principle of operation, gauge factor, Thermistors, Thermocouples, Piezo electric transducers, photovoltaic, photo conductive cells, photo diodes.

OUTCOMES: After this course, the student
• gets a thorough knowledge on, different types of measuring instruments their construction operation and characteristics
• measurements of electrical quantities through potentiometers, instrument transformers, watt meters, energy meters, DC bridges and AC bridges
• To understand the operation of different types of transducers.
• To understand the measurement of non-electrical quantities like velocity, acceleration, temperature etc.
• Applies the above concepts to real-world electrical and electronics problems and applications.

TEXT BOOKS
1. Electrical and Electronic Measurements and Instrumentation, R. K. Rajput, S. Chand & Company Ltd.
REFERENCE BOOKS

2. Electrical and Electronic Measurements, G. K. Banerjee, PHI Learning Pvt. Ltd.
3. Electrical Measurements and Measuring Instruments, Golding and Widdis, Reem Publications.
4. Electrical Measurements, Buckingham and Price, Prentice - Hall

JNTUH COLLEGE OF ENGINEERING HYDERABAD

II Year B.Tech. EEE II-Sem

PC - ELECTRICAL CIRCUITS LAB

The following experiments are required to be conducted as compulsory experiments

3. Two port network parameters – A, B, C, D parameters, Analytical verification
6. Verification of Compensation and Millman’s theorem.
7. Relation between voltage and current in star and delta networks.
8. Generation of non-linear periodic waveform for square wave using clipping and Clamping. Control of average value of the output waveform

In addition to the above eight experiments, at least any two of the experiments from the following list are required to be conducted

9. Current locus diagram with RL with L – varying
10. Harmonic Analysis of non-sinusoidal waveform signals using Harmonic Analyzer and plotting frequency spectrum.
11. Determination of form factor for non-sinusoidal waveform
PC - ELECTRICAL MACHINES LAB – II

The following experiments are required to be conducted as compulsory experiments
1. O.C. & S.C. Tests on Single phase Transformer
2. Sumpner's test on a pair of single phase transformers
3. Scott connection of transformers
4. No-load & Blocked rotor tests on three phase Induction motor
5. Regulation of a three -phase alternator by synchronous impedance & m.m.f. methods
7. Equivalent Circuit of a single phase induction motor
8. Determination of Xd and Xq of a salient pole synchronous machine

In addition to the above eight experiments, at least any two of the following experiments are required to be conducted from the following list
1. Parallel operation of Single phase Transformers
2. Separation of core losses of a single phase transformer
3. Brake test on three phase Induction Motor
4. Regulation of three-phase alternator by Z.P.F. and A.S.A methods
5. Efficiency of a three-phase alternator
6. Heat run test on a bank of 3 Nos. of single phase Delta connected transformers
8. Performance characteristics of a Schrage motor

PART-A: ELECTRICAL CIRCUITS
1. Verification of Thevenin’s and Norton’s theorems.
2. Verification of Superposition and Maximum Power Transfer Theorems.
3. Verification of RMS value of complex wave.
4. Verification of Compensation Theorem.
5. Verification of Reciprocity, Millmann’s Theorems.
7. Series and Parallel Resonance.
8. Determination of Self, Mutual Inductances and Coefficient of coupling.
9. Determination of Z and Y Parameters.
10. Determination of Transmission line and hybrid parameters.
11. Measurement of Active Power for Star and Delta connected balanced loads.

PART-B: SIMULATION EXPERIMENTS
1. Simulation of DC Circuits
2. DC Transient response
3. Mesh Analysis
4. Nodal Analysis

NOTE:
- Eight experiments are to be conducted from PART-A and any two experiments from PART-B
HUMAN VALUES AND PROFESSIONAL ETHICS

Course Objectives
1. To introduce the basic concepts of universal human values
2. To familiarize the students with desirable business and professional ethics, rights and responsibilities
3. To prepare students against possible gaps and unethical practices in contemporary times
4. To sensitize the students so that they can protect themselves and the organization from the possible professional crime malpractices

Learning Outcomes
1. The students learn about diverse ethical issues rooted in society, trade, business, and environment on local as well as a global platform.
2. The students appreciate their role as a responsible citizen, professional, and as managers, advisors, experts and consultants.
3. The students will reflect and learn major values and ethics from their observations of a spiritual discourse and a visit to a business organization as a practical part of this course.

Unit IV Professional Rights: professional rights and employee rights communicating risk and public policy – Whistle blowing - Professionals /engineers as managers, advisors, experts, witnesses and consultants – moral leadership- Regulatory compliances, Monitoring and control-Mini-Cases

Mini-projects
Project 1: The student of this course should invariably attend (or watch on internet/any TV channel/ Youtube/ social media) two speeches of 30 minutes duration each dealing with spiritual discourse and submit a report on the contents of the lecture proceedings.

Project 2: Visit any organization (including shops/ hotels or shopping malls in your region) of your choice and observe how the professionals perform the given job with a focus on professional ethics and human values.

References
1. Aryasri, Human Values and Professional Ethics, Maruthi Publications.
2. S B George, Human Values and Professional Ethics, Vikas Publishing.
PC. LINEAR AND DIGITAL IC APPLICATIONS

Prerequisite: Pulse and Digitl Circuits

Course Objectives:
The main objectives of the course are:
1. To introduce the basic building blocks of linear integrated circuits.
2. To teach the linear and non-linear applications of operational amplifiers.
3. To introduce the theory and applications of analog multipliers and PLL.
4. To teach the theory of ADC and DAC.
5. To introduce the concepts of waveform generation and introduce some special function ICs.
6. To understand and implement the working of basic digital circuits

Course Outcomes:
On completion of this course, the students will have:
1. A thorough understanding of operational amplifiers with linear integrated circuits.
2. Understanding of the different families of digital integrated circuits and their characteristics.
3. Also students will be able to design circuits using operational amplifiers for various applications.

UNIT -I:
Operational Amplifier

UNIT -II:
Op-Amp, IC-555 & IC 565 Applications

UNIT -III:
Data Converters
Introduction, Basic DAC techniques, Different types of DACs-Weighted resistor DAC, R-2R ladder DAC, Inverted R-2R DAC, Different Types of ADCs - Parallel Comparator Type ADC, Counter Type ADC, Successive Approximation ADC and Dual Slope ADC, DAC and ADC Specifications.

UNIT -IV:
Digital Integrated Circuits
Classification of Integrated Circuits, Comparison of Various Logic Families, CMOS Transmission Gate, IC interfacing- TTL Driving CMOS & CMOS Driving TTL, Combinational Logic ICs – Specifications and Applications of TTL-74XX & CMOS 40XX Series ICs - Code Converters, Decoders, Demultiplexers, LED & LCD Decoders with Drivers, Encoders, Priority Encoders, Multiplexers, Demultiplexers, Priority Generators/Checkers, Parallel Binary Adder/Subtractor, Magnitude Comparators.

UNIT -V:
Sequential Logic IC’s and Memories
Familiarity with commonly available 74XX & CMOS 40XX Series ICs – All Types of Flip-flops, Synchronous Counters, Decade Counters, Shift Registers.
Memories - ROM Architecture, Types of ROMS & Applications, RAM Architecture, Static & Dynamic RAMs.

TEXT BOOKS:

REFERENCE BOOKS:
3. Linear Integrated Circuits and Applications – Salivahana, TMH.
JNTUH COLLEGE OF ENGINEERING HYDERABAD

III Year B.Tech. EEE I-Sem

L T P C
4 0 0 4

PC- MICROPROCESSORS AND MICROCONTROLLERS

Pre-requisite: Computer programming and Data Structures

Objective:

- To familiarize with the architecture of 8086 processor, assembling language programming and interfacing with various modules.
- To understand 8051 Microcontroller concepts, architecture, programming and application of Microcontrollers.

UNIT- I

ASSEMBLY LANGUAGE PROGRAMMING OF 8086: Assembly Directives, Macro’s, Simple Programs using Assembler, Implementation of FOR Loop, WHILE, REPEAT and IF-THEN-ELSE Features.

UNIT- II

I/O INTERFACE: 8255 PPI, Various modes of operations and interface of I/O devices to 8086, A/D, D/A Converter Interfacing.

INTERFACING WITH ADVANCED DEVICES: 8086 System bus structure, Memory and I/O Interfacing with 8086, Interfacing through various IC Peripheral Chips, 8257 (DMA Controller), 8259 (Interrupt Priority Control).

UNIT- III

UNIT- IV

INTRODUCTION TO MICRO CONTROLLERS: Overview of 8051 Micro Controller, Architecture, I/O ports and Memory Organization, Addressing modes and Instruction set of 8051, Simple Programs using Stack Pointer, Assembly language programming of 8051

INTERRUPTS COMMUNICATION: Interrupts - Timer/Counter and Serial Communication, Programming Timer Interrupts, Programming

UNIT- V

INTERFACING AND INDUSTRIAL APPLICATIONS: Applications of Micro Controllers, Interfacing 8051 to LED’s, Push button, Relay’s and Latch Connections, Keyboard Interfacing, Interfacing Seven Segment Display, ADC and DAC Interfacing.

OUTCOMES: After this course, the student

- gets a thorough knowledge on, architecture, pin diagram, register and memory organizations, concept of memory segmentation, minimum and maximum mode of operations
- will be able to draw timing diagrams,
- will be able write programs, peripheral and communication interfacing of 8086 microprocessor and 8051 microcontroller
- Applies the above concepts to real-world electrical and electronics problems and applications.

TEXT BOOKS

REFERENCE BOOKS

Course Objective:
- To understand the concepts and importance of economics in managerial problems
- To understand the basic financial management concepts including the principles of financial analysis

Course Outcomes:
- Students will be able to apply the principles of economics for managerial decisions.
- The students will be able to analyze the financial position of a company with the techniques of financial accounting and ratio analysis

Unit II Production & Cost Analysis: Production Function – Isoquants and Isocosts, MRTS, Least Cost Combination of Inputs, Laws of Returns, Internal and External Economies of Scale. Break-even Analysis (BEA)- Determination of Break-Even Point (simple problems) - Managerial Significance.

Unit IV Capital Budgeting: Methods and sources of raising capital - Capital Budgeting: Methods of Capital Budgeting: Payback Method, Accounting Rate of Return (ARR) and Net Present Value Method (simple problems).
III Year B.Tech. EEE I-Sem

PC - POWER SYSTEMS-II

Pre-requisites: Power Systems –I and Electromagnetic field theory

Objectives:
- To compute inductance and capacitance of different transmission lines.
- To understand performance of short, medium and long transmission lines.
- To examine the traveling wave performance and sag of transmission lines.
- To design insulators for overhead lines and understand cables for power transmission.

UNIT- I

TRANSMISSION LINE PARAMETERS: Types of conductors - calculation of resistance for solid conductors - Calculation of inductance for single phase and three phase, single and double circuit lines, concept of GMR & GMD, symmetrical and asymmetrical conductor configuration with and without transposition, Numerical Problems. Calculation of capacitance for 2 wire and 3 wire systems, effect of ground on capacitance, capacitance calculations for symmetrical and asymmetrical single and three phase, single and double circuit lines, Numerical Problems.

UNIT- II

UNIT- III

POWER SYSTEM TRANSIENTS: Types of System Transients - Travelling or Propagation of Surges - Attenuation, Distortion, Reflection and Refraction Coefficients - Termination of lines with different types of conditions - Open Circuited Line, Short Circuited Line, T-Junction, Lumped Reactive Junctions (Numerical Problems), Bewley's Lattice Diagrams (for all the cases mentioned with numerical examples).

VARIOUS FACTORS GOVERNING THE PERFORMANCE OF TRANSMISSION LINE: Skin and Proximity effects - Description and effect on Resistance of Solid Conductors - Ferranti effect - Charging Current - Effect on Regulation of the Transmission Line. Corona - Description of the phenomenon, factors affecting corona, critical voltages and power loss, Radio Interference.

UNIT- IV

OVERHEAD LINE INSULATORS: Types of Insulators, String efficiency and Methods for improvement, Numerical Problems - voltage distribution, calculation of string efficiency, Capacitance grading and Static Shielding.

SAG AND TENSION CALCULATIONS: Sag and Tension Calculations with equal and unequal heights of towers, Effect of Wind and Ice on weight of Conductor, Numerical Problems - Stringing chart and sag template and its applications.

UNIT-V

OUTCOMES:
- Able to compute inductance and capacitance for different configurations of transmission lines.
- Able to analyze the performance of transmission lines
- Can understand transients phenomenon of transmission lines.
- Able to calculate sag and tension calculations.
- Will be able to understand overhead line insulators and underground cables.
TEXT BOOKS

REFERENCE BOOKS
3. Abhijit Chakrpabarti, Sunitha Halder, Power System Analysis, Operation and control, PHI, 3/e, 2010

JNTUH COLLEGE OF ENGINEERING HYDERABAD
III Year B.Tech. EEE I-Sem

PC - CONTROL SYSTEMS LAB

Any Eight of the following experiments are to be conducted
1. Time response of Second order system
2. Characteristics of Synchro’s
3. Programmable logic controller – Study and verification of truth tables of logic gates, simple Boolean expressions and application of speed control of motor.
4. Effect of feedback on DC servo motor
5. Transfer function of DC motor
6. Effect of P, PD, PI, PID Controller on a second order systems
7. Lag and lead compensation – Magnitude and phase plot
8. Transfer function of DC generator
9. Temperature controller using PID
10. Characteristics of magnetic amplifiers
11. Characteristics of AC servo motor

Any two simulation experiments are to be conducted using software tools
1. simulation of Op-Amp based Integrator and Differentiator circuits.
2. Linear system analysis (Time domain analysis, Error analysis).
3. Stability analysis (Bode, Root Locus, Nyquist) of Linear Time Invariant system.
4. State space model for classical transfer function– Verification.

REFERENCE BOOKS
1. Manuals of related software.
The following experiments are required to be conducted as compulsory experiments:

2. Calibration of dynamometer power factor meter.
5. Dielectric oil testing using H.T. testing Kit.
7. Measurement of 3-phase reactive power with single-phase wattmeter.

In addition to the above eight experiments, at least any two of the experiments from the following list are required to be conducted:

9. Calibration LPF wattmeter – by Phantom testing.
10. Measurement of 3-phase power with single wattmeter and two CTs.
11. C.T. testing using mutual Inductor – Measurement of % ratio error and phase angle of given CT by Null method.
12. PT testing by comparison – V.G. as Null detector – Measurement of % ratio error and phase angle of the given PT.
14. Transformer turns ratio measurement using AC bridges.
15. Measurement of % ratio error and phase angle of given CT by comparison.

The following programs are to be written for assembler and execute the same with 8086 kits:

1. Programs for 16 bit arithmetic operations for 8086 (using various addressing modes).
2. Program for sorting an array for 8086.
3. Program for searching for a number or character in a string for 8086.
4. Program for string manipulations for 8086.
5. Interfacing traffic light controller using 8086.
6. Interfacing ADC and DAC to 8086.
7. Parallel communication between two microprocessor kits using 8255.
8. Serial communication between two microprocessor kits using 8251.
9. Interfacing to 8086 and programming to control stepper motor.
11. Program and verify timer/counter in 8086.
12. Program and verify interrupt handling in 8086.
13. UART operation in 8086.
14. Communication between 8086 kit and PC.
15. Interfacing LCD to 8086.
16. Interfacing Matrix/keyboard to 8086.
17. Data Transfer from peripheral to memory through DMA controller 8237/8257.

Note: Minimum of 12 experiments to be conducted.
Pre-requisites: Power Systems-I, Power Systems –II, Electrical Circuits and Mathematics

Objectives: Objectives this course, are

- to understand and develop Y_bus and Z_bus matrices
- to know the importance of load flow studies and its importance
- to understand and applications of short circuit studies
- to explain rotor angle stability of power systems

UNIT-I: POWER SYSTEM NETWORK MATRICES

UNIT–II: POWER FLOW STUDIES-I

UNIT–III: POWER FLOW STUDIES-II

UNIT–IV: SHORT CIRCUIT ANALYSIS

UNIT–V: POWER SYSTEM STABILITY ANALYSIS

OUTCOMES:
After this course, the student will be able to

- develop the Y_bus and Z_bus matrices
- develop load flow programs
- understand the importance of short circuit studies
- understand stability and instability power systems

TEXT BOOKS

REFERENCE BOOKS
PE-I.2- COMPUTER ORGANIZATION

Pre-requisite: None

Objectives: Objectives of this course are
- to deal with the basic principles of organization, operation and performance of modern-day computer systems.
- To cover all aspects of computer technology, from the underlying integrated circuit technology used to construct computer components, and to the use of parallel organization concepts in combining those components.

UNIT-1:
BASIC STRUCTURE OF COMPUTERS:
Computer Types, Functional unit, Basic concepts, Bus structures, Software, Performance, Multiprocessors and Multi computers. Decimal Arithmetic unit, Decimal Arithmetic operations, Data Representation, Fixed Point Representation, Floating Point Representation, Error Detection codes.

UNIT-II:
REGISTER TRANSFER LANGUAGE AND MICROOPERATIONS:
Register Transfer language, Register Transfer Bus and Memory Transfers, Arithmetic Micro operations, Logic micro operations, Shift micro operations, Arithmetic logic shift unit, Instruction codes, Computer Registers, Computer instructions, Instruction cycle.

UNIT-III:
MEMORY – REFERENCE INSTRUCTIONS.
Input Output and Interrupt. STACK organization. Instruction formats. Addressing modes, DATA Transfer and manipulation, Program control, Reduced instruction set computer.
MICRO PROGRAMMED CONTROL: Control memory, Address sequencing, micro program example, design of control unit Hard wired control, Micro programmed control

UNIT-IV:
THE MEMORY SYSTEM:
Basic concepts semiconductor RAM memories, Read-only memories, Cache memories performance considerations, Virtual memories secondary storage, Introduction to RAID.
INPUT-OUTPUT ORGANIZATION: Peripheral Devices, Input-Output Interface, Asynchronous data transfer Modes, Priority Interrupt Direct Memory Access. Input-output processor (IOP) Serial communication; introduction to peripheral component, inter connect (PCI) bus introduction to Standard serial communication protocols like RS232, USB, IEEE 1394.

UNIT-V:
Pipelining and Vector Processing:
Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction Pipeline, RISC Pipeline Vector Processing, Array Processors.

OUTCOMES: After this course, the student
- Evaluates necessary mathematical representations for computer operation
- Understands the arithmetic and logical operations at register level
- Evaluates memory operations, differentiate various storage devices
- Understands input and output devices of the organization
- Understands the interfacing need for multiprocessor systems and their architecture.

TEXT BOOKS:

REFERENCES:
PE- I.3 SPECIAL MACHINES

Pre-requisites: Electrical Machines-I and Electrical Machines-II

Objectives: Objectives of this course are

- To impart knowledge on construction, principle of operation, control and performance of stepper motors
- To impart knowledge on construction, principle of operation, control and performance of switched reluctance motors
- To impart knowledge on construction, principle of operation, control and performance of Brushless DC motors
- To impart knowledge on construction, principle of operation, control and performance of linear induction motor.

UNIT-I

SPECIAL TYPES OF D.C MACHINES-I
Series booster-Shunt booster-Non-reversible boost-Reversible booster

SPECIAL TYPES OF DC MACHINES –II

UNIT -II

STEPPER MOTORS
Introduction-synchronous inductor (or hybrid stepper motor), Hybrid stepping motor, construction, principles of operation, Energisation with two phase at a time- essential conditions for the satisfactory operation of a 2-phase hybrid step motor- very slow-speed synchronous motor for servo control-different configurations for switching the phase windings-control circuits for stepping motors-an open-loop controller for a 2-phase stepping motor.

UNIT-III

VARIABLE RELUCTANCE STEPPING MOTORS
Variable reluctance (VR) Stepper motors, single-stack VR step motors, Multiple stack VR motors-Open-loop control of 3-phase VR step motor-closed-Loop control of step motor, discriminator (or rotor position sensor) transilator, major loop-characteristics of step motor in open-loop drive – comparison between open-loop position control with step motor and a position control servo using a conventional (dc or ac) servo motor- Suitability and areas of application of stepper motors-5- phase hybrid stepping motor-single phase-stepper motor, the construction, operating principle torque developed in the motor.

SWITCHED RELUCTANCE MOTOR
Introduction – improvements in the design of conventional reluctance motors- Some distinctive differences between SR and conventional reluctance motors-principle of operation of SRM- Some design aspects of stator and rotor pole arcs, design of stator and rotor and pole arcs in SR motor-determination of \(L(\theta) \)-- \(\theta \) profile –power converter for SR motor-A numerical example –Rotor sensing mechanism and logic control, drive and power circuits, position sensing of rotor with Hall problems—derivation of torque expression, general linear case.

UNIT –IV

PERMANENT MAGNET MATERIALS AND MOTORS
Introduction, Hysteresis loops and recoil line- stator frames (pole and yoke - part) of conventional PM dc Motors, Equivalent circuit of a PM-Development of Electronically commutated dc motor from conventional dc motor.

BRUSHLESS DC MOTOR
Types of construction – principle of operation of BLDM- sensing and switching logic scheme, sensing logic controller, lockout pulses – drive and power circuits, Base drive circuits, power converter circuit-Theoretical analysis and performance prediction, modeling and magnet circuit d-q analysis of BLDM - transient analysis formulation in terms of flux linkages as state variables-Approximate solution for current and torque under steady state –Theory of BLDM as variable speed synchronous motor (assuming sinusoidal flux distribution)- Methods or reducing Torque Pulsations, 180 degrees pole arc and 120 degree current sheet.

UNIT-V

LINEAR INDUCTION MOTOR
Development of a double sided LIM from rotary type IM- A schematic of LIM drive for electric traction development of one sided LIM with back iron-field analysis of a DSLIM fundamental assumptions.

OUTCOMES: After the course, the student

- Acquires knowledge on constructional features of Rosenberg generator, amplidyne, metadyne, etc.,
- Obtains knowledge on stepper motors and variable reluctance motors
TEXT BOOKS
1. K. Venkatratnam, Special electrical machines, university press.

OBJECTIVES:
- to understand the fundamentals of digital control systems,
- to understand state space representation of the control systems, concepts of controllability and observability
- to study the estimation of stability in different domains
- to understand the design of discrete time control systems, compensators, state feedback controllers, state observers through various transformations

UNIT - I
INTRODUCTION TO DIGITAL CONTROL SYSTEMS AND Z-TRANSFORMS:
Introduction - Merits and Demerits of Digital Control Systems - Practical aspects of the choice of sampling rate and Multirate sampling - Basic discrete time signals - Quantization - Sampling Theorem - Data Conversions and Quantization - Sampling process - Mathematical Modeling - Data Reconstruction and Filtering of sampled signals - Zero - Order Hold (ZOH). z-Transform and Inverse z-Transform, Relationship between s-plane and z-plane - Difference equation - Solution by recursion and z-Transform - Pulse Transfer Functions of the ZOH and relationship between G(s) and G(z) - Bilinear Transformation.

UNIT - I
INPUT/OUTPUT ANALYSIS OF DIGITAL CONTROL SYSTEMS:
Root loci - Frequency domain analysis - Bode plots - Gain margin and phase margin.

UNIT – III
DESIGN OF CONTROLLERS FOR I/O MODEL DIGITAL CONTROL SYSTEMS: Cascade and Feedback Compensation by continuous data controllers - Digital controllers - Design using...
Bilinear Transformation - Realization of Digital PID controllers,
Design of Digital Control Systems based on Root Locus Technique.

UNIT – IV

STATE SPACE ANALYSIS AND STATE FEEDBACK CONTROL
DESIGN OF DIGITAL CONTROL SYSTEMS: State Equations of
discrete data systems, solution of discrete state equations, State
Transition Matrix: Computation methods for State Transition Matrix: z
- transform method - Relation between State Equations and Pulse
Transfer Functions.
Concepts on Controllability and Observability - Pole placement
design by state feed back.

UNIT V

DIGITAL STATE OBSERVER AND STABILITY ANALYSIS
Design of the full order and reduced order state observer, Design of
Dead beat Controller - some case studies - Stability analysis of
discrete time systems based on Lyapunov approach.

OUTCOMES: After this course, the student
• will be able to map S-plane and Z-plane, do state-space analysis
• will be able to do stability analysis in S-domain and Z-domains
• will be able to do stability analysis through bilinear transformation
 and R-H criteria,
• to design of discrete-time control systems, design of lag, lead,
 lead-lag compensators, design of PID controllers and design of
 state feedback controllers and observers,
• applies the above concepts to real-world electrical and
 electronics problems and applications.

TEXT BOOKS
1. K. Ogata, Discrete Time Control Systems, PHI/Addison - Wesley
 Longman Pte. Ltd., India, Delhi, 1995.

REFERENCE BOOKS
1. F. Franklin, J.D. Powell, and M.L. Workman, Digital control of
 Dynamic Systems, Addison - Wesley Longman, Inc., Menlo Park, CA
2. M. Gopal, Digital Control and State Variable Methods, Tata McGraw
 Hill, India, 1997.
 1985.
4. John S. Baey, Fundamentals of Linear State Space Systems,
JNTUH COLLEGE OF ENGINEERING HYDERABAD

III Year B.Tech. EEE III-Sem

L T P C

4 0 0 4

PE- II.2 OPTIMIZATION TECHNIQUES

Pre-requisites: Electrical Circuits, Electronic Devices and Circuits

OBJECTIVES: Objectives of this course are

- to introduce various optimization techniques i.e classical, linear programming, transportation problem, simplex algorithm, dynamic programming
- constrained and unconstrained optimization techniques for solving and optimizing an electrical and electronic engineering circuits design problems in real world situations.
- to explain the concept of Dynamic programming and its applications to project implementation.

UNIT – I

INTRODUCTION AND CLASSICAL OPTIMIZATION TECHNIQUES:

Classical Optimization Techniques:

UNIT – II

LINEAR PROGRAMMING:

Transportation Problem: Finding initial basic feasible solution by north – west corner rule, least cost method and Vogel’s approximation method – testing for optimality of balanced transportation problems.

UNIT – III

UNCONSTRAINED NONLINEAR PROGRAMMING:

One dimensional minimization methods, Classification, Fibonacci method and Quadratic interpolation method

Unconstrained Optimization Techniques: Univariant method, Powell’s method and steepest descent method.

UNIT – IV

CONSTRAINED NONLINEAR PROGRAMMING:

UNIT – V

DYNAMIC PROGRAMMING:

OUTCOMES: After this course, the student will be able to

- explain the need of optimization of engineering systems
- understand optimization of electrical and electronics engineering problems
- apply classical optimization techniques, linear programming, simplex algorithm, transportation problem
- apply unconstrained optimization and constrained non-linear programming and dynamic programming
- formulate optimization problems.

TEXT BOOKS

REFERENCE BOOKS

PE-II.3 -VLSI DESIGN

UNIT- I: INTRODUCTION
Introduction to IC Technology – MOS, PMOS, NMOS, CMOS & Bi-CMOS technologies- Oxidation, Lithography, Diffusion, Ion implantation, Metallization, Encapsulation, Probe testing, Integrated Resistors and Capacitors.

BASIC ELECTRICAL PROPERTIES:
Basic Electrical Properties of MOS and BiCMOS Circuits: Ids-Vds relationships, MOS transistor threshold Voltage, gm, gds, figure of merit wo; Pass transistor, NMOS Inverter, Various pull ups, CMOS Inverter analysis and design, Bi-CMOS Inverters, CMOS Nanotechnology

UNIT - II: VLSI CIRCUIT DESIGN PROCESSES

UNIT - III: GATE LEVEL DESIGN
Logic Gates and Other complex gates, Switch logic, Alternate gate circuits, Basic circuit concepts, Sheet Resistance RS and its concept to MOS, Area Capacitance Units, Calculations - Delays, Driving large Capacitive Loads, Wiring Capacitances, Fan-in and fan-out, Choice of layers.

SUBSYSTEM DESIGN:
Subsystem Design, Shifters, Adders, ALUs, Multipliers, Parity generators, Comparators, Zero/One Detectors, Counters, High Density Memory Elements.

UNIT - IV: SEMICONDUCTOR INTEGRATED CIRCUIT DESIGN
PLAs, FPGAs, CPLDs, Standard Cells, Programmable Array Logic, Design Approach.

VHDL SYNTHESIS

UNIT - V: CMOS TESTING

TEXTBOOKS:

REFERENCES:
PC - POWER ELECTRONICS

Objective:

- to introduce the basic concepts of power semiconductor devices, types, operation and characteristics
- to understand the operation of converters and choppers and their analysis
- to understand the operation of AC voltage controllers and inverters

UNIT – I

POWER SEMI CONDUCTOR DEVICES AND COMMUTATION CIRCUITS:
Thyristors - Silicon Controlled Rectifiers (SCR’s) - BJT - Power MOSFET - Power IGBT and their characteristics and other thyristors - Basic theory of operation of SCR - Static characteristics – Turn-on and Turn-off methods- Dynamic characteristics of SCR - Turn on and Turn off times - Salient points.

UNIT – II

SINGLE PHASE HALF WAVE CONTROLLED CONVERTERS:
Phase control technique - Single phase Line commutated converters - Half wave controlled converters with Resistive, RL load and RLE load - Derivation of average load voltage and current - Active and Reactive power inputs to the converters without and with Free wheeling Diode - Numerical problems

SINGLE PHASE FULLY CONTROLLED CONVERTERS:
Fully controlled converters, Mid point and Bridge connections with Resistive, RL loads and RLE load - Derivation of average load voltage and current – Line commutated inverters, semi-converters, active and Reactive power inputs to the converters, Effect of source inductance - Expressions of load voltage and current - Numerical problems.

THREE PHASE LINE COMMUTATED CONVERTERS:

UNIT – III

AC VOLTAGE CONTROLLERS:

UNIT – IV

CHOPPERS:
Morgan’s chopper - Jones chopper - Oscillation choppers (Principle of operation only) -waveforms — AC Chopper – Problems

UNIT – V

INVERTERS:

OUTCOMES:
After this course, student will be able to
- understand the operation and characteristics of various types of semiconductor devices
- analyze the operation and characteristics of various single-phase converters, three-phase converters and choppers
- analyze the operation and performance of AC voltage controllers and inverters

TEXT BOOKS
1. P.S.Bhimbra, Power Electronics, Khanna publications.
REFERENCE BOOKS
5. Power Electronics, M. S. Jamil Asghar, PHI Private Limited.

JNTUH COLLEGE OF ENGINEERING HYDERABAD
III Year B.Tech. EEE II-Sem

PC- SWITCH GEAR AND PROTECTION

Pre-requisites: Power Systems –I and Power Systems - II

Objectives: Objectives of this course are
- to introduce protection equipment like Circuit Breakers and Relays
- to introduce protection of Generators, Transformers and feeder bus bars from over voltages and other hazards.
- To emphasize Neutral for overall protection.

UNIT - I
INTRODUCTION TO CIRCUIT BREAKERS: Circuit Breakers:
Description and Operation of following types of circuit breakers:
Minimum Oil Circuit breakers, Air Blast Circuit Breakers, Vacuum and SF6 circuit breakers.

UNIT – II
ELECTROMAGNETIC AND STATIC RELAYS: Principle of Operation and Construction of Attracted armature, Balanced Beam, induction Disc and Induction Cup relays.
Types of Over Current Relays: Instantaneous, DMT and IDMT types.
Application of relays: Over current/ under voltage relays, Direction relays, Differential Relays and Percentage Differential Relays.
Universal torque equation, Distance relays: Impedance, Reactance and Mho and Off-Set Mho relays, Characteristics of Distance Relays and Comparison. Static Relays: Static Relays verses Electromagnetic Relays.

UNIT – III
PROTECTION OF POWER EQUIPMENT: Protection of generators against Stator faults, Rotor faults, and Abnormal Conditions.
Restricted Earth fault and Inter-turn fault Protection. Numerical Problems on % Winding Unprotected.
Protection of Bus bars – Differential protection.

UNIT – IV

UNIT - V

OUTCOMES: After this course, the student
- gets a thorough knowledge on, various types of protective devices (circuit breakers, relays etc..) and their co-ordination, protection of generators, transformers, feeders, bus-bars, through different types of protective devices, overvoltage protection, lightening, concept of earthing and grounding
- applies the above concepts to real-world electrical and electronics problems and applications.

TEXT BOOKS

REFERENCE BOOKS

ADVANCED ENGLISH LANGUAGE COMMUNICATION SKILLS LAB

1. Introduction
The introduction of the Advanced Communication Skills Lab is considered essential at 3rd year level. At this stage, the students need to prepare themselves for their careers which may require them to listen to, read, speak and write in English both for their professional and interpersonal communication in the globalised context.

The proposed course should be a laboratory course to enable students to use ‘good’ English and perform the following:
- Gathering ideas and information to organise ideas relevantly and coherently.
- Engaging in debates.
- Participating in group discussions.
- Facing interviews.
- Writing project/research reports/technical reports.
- Making oral presentations.
- Writing formal letters.
- Transferring information from non-verbal to verbal texts and vice-versa.
- Taking part in social and professional communication.

2. Objectives:
This Lab focuses on using multi-media instruction for language development to meet the following targets:
- To improve the students’ fluency in English, through a well-developed vocabulary and enable them to listen to English spoken at normal conversational speed by educated English speakers and respond appropriately in different socio-cultural and professional contexts.
- Further, they would be required to communicate their ideas relevantly and coherently in writing.
- To prepare all the students for their placements.

Learning Outcomes
- Accomplishment of sound vocabulary and its proper use contextually.
3. Syllabus:
The following course content to conduct the activities is prescribed for the Advanced Communication Skills (ACS) Lab:

1. Activities on Fundamentals of Inter-personal Communication and Building Vocabulary - Starting a conversation – responding appropriately and relevantly – using the right body language – Role Play in different situations & Discourse Skills- using visuals - Synonyms and antonyms, word roots, one-word substitutes, prefixes and suffixes, study of word origin, business vocabulary, analogy, idioms and phrases, collocations & usage of vocabulary.

2. Activities on Reading Comprehension – General Vs Local comprehension, reading for facts, guessing meanings from context, scanning, skimming, inferring meaning, critical reading & effective googling.

4. Activities on Presentation Skills – Oral presentations (individual and group) through JAM sessions/seminars/PPTs and written presentations through posters/projects/reports/ e-mails/assignments etc.

5. Activities on Group Discussion and Interview Skills – Dynamics of group discussion, intervention, summarizing, modulation of voice, body language, relevance, fluency and organization of ideas and rubrics for evaluation- Concept and process, pre-interview planning, opening strategies, answering strategies, interview through tele-conference & video-conference and Mock Interviews.

4. Minimum Requirement:
The Advanced Communication Skills (ACS) Laboratory shall have the following infra-structural facilities to accommodate at least 35 students in the lab:

- Spacious room with appropriate acoustics
- Round Tables with movable chairs
- Audio-visual aids
- LCD Projector
- Public Address system

6. Suggested Software:
The software consisting of the prescribed topics elaborated above should be procured and used.

- *Oxford Advanced Learner’s Compass, 8th Edition*
- *DELTAs key to the Next Generation TOEFL Test: Advanced Skill Practice.*
- *Lingua TOEFL CBT Insider*, by Dreamtech
- *TOEFL & GRE* (KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS)
- *The following software from ‘train2success.com’*
 - Preparing for being Interviewed
 - Positive Thinking
 - Interviewing Skills
 - Telephone Skills
 - Time Management

7. Books Recommended:

DISTRIBUTION AND WEIGHTAGE OF MARKS:

Advanced Communication Skills Lab Practicals:
1. The practical examinations for the ACS Laboratory practice shall be conducted as per the University norms prescribed for the core engineering practical sessions.
2. For the English Language lab sessions, there shall be continuous evaluation during the year for 25 sessional marks and 50 End Examination marks. Of the 25 marks, 15 marks shall be awarded for day-to-day work and 10 marks to be awarded by conducting Internal Lab Test(s). The End Examination shall be conducted by the teacher concerned, by inviting the External Examiner from outside. In case of the non-availability of the External Examiner, other teacher of the same department can act as the External Examiner.

Mini Project: As a part of Internal Evaluation
1. Seminar/ Professional Presentation
2. A Report on the same has to be prepared and presented.

* Teachers may use their discretion to choose topics relevant and suitable to the needs of students.
* Not more than two students to work on each mini project.
* Students may be assessed by their performance both in oral presentation and written report.

JNTUH COLLEGE OF ENGINEERING HYDERABAD

III Year B.Tech. EEE II-Sem

PC - POWER ELECTRONICS LAB

Any eight experiments should be conducted
1. Study of Characteristics of SCR, MOSFET & IGBT
2. Gate firing circuits for SCR’s
3. Single Phase AC Voltage Controller with R and RL Loads
4. Single Phase fully controlled bridge converter with R and RL loads
5. Forced Commutation circuits (Class A, Class B, Class C, Class D & Class E)
6. DC Jones chopper with R and RL Loads
7. Single Phase Parallel, inverter with R and RL loads
8. Single Phase Cycloconverter with R and RL loads
9. Single Phase Half controlled converter with R load
10. Three Phase half controlled bridge converter with R-load
11. Single Phase series inverter with R and RL loads
12. Single Phase Bridge converter with R and RL loads
13. Single Phase dual converter with RL loads

Any two simulation experiments should be conducted
15. Simulation of resonant pulse commutation circuit and Buck chopper.
16. Simulation of single phase Inverter with PWM control.

REFERENCE BOOKS
2. User’s manual of related softwares
3. Reference guides of related softwares
4. Rashid, Spice for power electronics and electric power, CRC Press
PC - MICROCONTROLLERS LAB

The following programs are to be written for assembler and execute the same with 8051 kit
1. Programs for 16 bit arithmetic operations for 8051 (using various addressing modes)
2. Program for sorting an array for 8051.
3. Program for searching for a number or character in a string for 8051.
4. Program for string manipulations for 8051.
5. Interfacing traffic light controller using 8051.
6. Interfacing ADC and DAC to 8051.
7. Parallel communication between two microcontroller kits using 8255.
8. Serial communication between two microcontroller kits using 8251.
9. Interfacing ADC and DAC to 8051.
11. Program and verify timer/counter in 8051.
12. Program and verify interrupt handling in 8051.
13. UART operation in 8051.
14. Communication between 8051 kit and PC.
15. Interfacing LCD to 8051.
16. Interfacing Matrix/keyboard to 8051.
17. Data Transfer from peripheral to memory through DMA controller 8237/8257.

Note: Minimum of 12 experiments to be conducted

PC - DIGITAL SIGNAL PROCESSING

Pre-requisite: Mathematics

OBJECTIVES: Objectives of this course are
- to deal with the fundamentals of signal analysis
- to introduce the concepts of Fourier series, Fourier transforms, Laplace transforms, Z-transforms, linear time invariant systems
- to introduce discrete Fourier series, discrete Fourier transform, fast Fourier transform
- to introduce filters and their design aspects

UNIT – I

INTRODUCTION: Introduction to Digital Signal Processing: Sampling process, Discrete time signals & sequences, linear shift invariant systems, stability and causality, Linear constant coefficient difference equations, Frequency domain representation of discrete time signals and systems.

UNIT – II

DISCRETE FOURIER SERIES: Properties and theorems of discrete Fourier series, DFS representation of periodic sequences.

DISCRETE FOURIER TRANSFORMS: Properties of DFT, linear convolution of sequences using DFT, Computation of DFT. Relation between Z-transform and DFS.

FAST FOURIER TRANSFORMS: Fast Fourier transforms (FFT) - Radix-2 decimation in time and decimation in frequency FFT Algorithms, Inverse FFT, and FFT for composite number.

UNIT – III

REALIZATION OF DIGITAL FILTERS; Review of Z-transforms, Applications of Z – transforms, Solution of difference equations of digital filters, Block diagram representation of linear constant-coefficient difference equations, Basic structures of IIR systems, Transposed forms, Basic structures of FIR systems, System function, stability criterion.

UNIT – IV

FIR DIGITAL FILTERS: Characteristics of FIR Digital Filters, frequency response. Design of FIR Digital Filters using Window Techniques - Frequency Sampling technique, Comparison of IIR & FIR filters.

UNIT – V
INTRODUCTION TO DSP PROCESSORS: Introduction to programmable DSPs: Multiplier and Multiplier Accumulator (MAC), Modified Bus Structures and Memory Access schemes DSPs. Multiple access memory, multiport memory, On-Chip Peripherals - All the above with an example of TMS320CXX processors.

OUTCOMES: After this course, the student
- gets a thorough knowledge on signal analysis by various mathematical tools viz., Fourier transforms, Laplace transforms, Z-transforms, Discrete Fourier Transform, Fast-Fourier transforms
- understands importance of filters, their design methodology and necessary mathematical analysis
- gets knowledge of DSP processors, architecture and programming skills

TEXT BOOKS

REFERENCE BOOKS

JNTUH COLLEGE OF ENGINEERING HYDERABAD
IV Year B.Tech. EEE I-Sem

PE.III.1 HVDC TRANSMISSION AND FACTS

Prerequisites: Electrical Circuit, Control System, Power Electronics, Power Systems -I and Power Systems -II
Objectives: Objectives of this course are
- To facilitate the students understand the basic concepts and recent trends in HVDC transmission.
- To introduce the application of a variety of high power-electronic controllers for active and reactive power in AC transmission lines.
- To enable the students to work with the concepts of HVDC transmission and are exposed to the basics and control FACTS controllers.

UNIT-I INTRODUCTION
Comparison of AC and DC Transmission systems, Application of D.C. Transmission, Types of DC links, Typical layout of a HVDC converter station. HVDC converters, pulse number, Analysis of & phase Bridge circuit with and without overlap, converter Bridge characteristics, equivalent circuits or Rectifier and inverter configurations, twelve pulse converters.

UNIT -II CONVERTER AND HVDC SYSTEM CONTROL
Principles of DC links control, converter control characteristics, system control Hierarchy, Firing angle control, current and extinction Angle control starting and stopping of DC link. Harmonics, filters and reactive power control Introduction, generation of Harmonics, AC and DC Filters, Reactive power requirements at steady state, sources of Reactive power static VAR systems.

UNIT – III FACTS CONCEPTS
Flow of power in AC parallel paths and Meshed systems, Basic types of FACTS controllers, Brief description and Definitions of FACTS controllers.VSC for FACTS applications.

UNIT - IV STATIC SHUNT COMPENSATORS
Objectives of shunt compensation, Principles of shunt compensation – Variable Impedance type & switching converter type - Static Synchronous Compensator (STATCOM) configuration - characteristics and control, SVC and STATCOM, comparison.

UNIT - V STATIC SERIES COMPENSATORS
Objectives of series compensation, variable impedance type-thyristor switched series capacitors (TCSC), switching converter type series compensators – static series synchronous compensator(SSSC) – power angle characteristics – Basic operating control Schemes. UPFC introduction(Block diagram)
Outcomes: After this course, the student
- will be skilled enough to work with the HVDC systems, being capable of analyzing the HVDC circuits and develop exquisite interest to work in the area of HVDC transmission.
- shall be able to explain the basic principles of different types of FACTS controllers and their characteristics.
- shall be able to model different FACTS controllers, form a basis for selecting a particular controller for a given application and analyze and compare the performance of various FACTS controllers.

TEXT BOOKS

References books
UNIT – IV

DISCRETE MARKOV CHAINS: Basic concepts- Stochastic transitional probability matrix- time dependent probability evaluation- Limiting State Probability evaluation- Absorbing states –Examples
Continuous Markov Processes: Modeling concepts- State space diagrams- Unreliability evaluation of single and two component repairable systems

UNIT – V

FREQUENCY AND DURATION TECHNIQUES: Frequency and duration concepts, application to multi state problems, Frequency balance approach.

OUTCOMES: After this course, the student will be able to

- model various systems applying reliability networks
- evaluate the reliability of simple and complex systems
- estimate the limiting state probabilities of repairable systems
- apply various mathematical models for evaluating reliability of irreparable systems

TEXT BOOKS

UNIT – IV

UNIT – V
OVER VOLTAGE PHENOMENON AND INSULATION COORDINATION: Natural causes for over voltages – Lightning phenomenon, Overvoltage due to switching surges, system faults and other abnormal conditions, Principles of Insulation Coordination on High voltage and Extra High Voltage power systems.

OUTCOMES: After this course, the student
- gets a thorough knowledge on, basics of high voltage engineering
- to understand break-down phenomenon in different types of dielectrics
- to understand generation and measurement of high voltages and currents
- to understand the phenomenon of over-voltages, concept of insulation co-ordination
- to know testing of various materials and electrical apparatus used in high voltage engineering

TEXT BOOKS

REFERENCE BOOKS

JNTUH COLLEGE OF ENGINEERING HYDERABAD

IV Year B.Tech. EEE I-Sem
L T P C
4 0 0 4

PE- IV.1 SWITCH MODE POWER SUPPLIES

Pre-requisite: Power Electronics
Objectives: This course deals with
- The introduction of concept of switched mode power supply with both D.C. and A.C. outputs.
- To elaborately study the working of switched mode topologies including resonant power suppliers.
- To have the knowledge of their importance and applications in various fields.

UNIT - I

UNIT - II
Multiple Output Flyback Switch Mode Power Supplies: Introduction, operating Modes, operating principles, Direct off line Flyback Switch Mode Power Supplies, Flyback converter, snubber network, Problems.

UNIT – III

UNIT - IV
Rectification: Explanation, Advantages and disadvantages, SMPS and linear power supply comparison, Theory of operation , Input rectifier stage, Inverter stage, Voltage converter and output rectifier, Regulation, An Introduction to Synchronous Rectifier Circuits using Power MOS Transistors
UNIT – V
Switch mode variable power supplies: Introduction, variable SMPS techniques, operating principles, practical limiting factors, Efficiency and EMI Applications.

OUTCOMES: students are in a position to
- Know the concepts and principle of operation of various types of switched mode power supply systems both D.C. and A.C. outputs.

TEXT BOOKS:

REFERENCE BOOKS:
2. Steven M. Sandler, Switch Mode Power Supplies, Tata McGraw Hill.
Memory (Associative Matrix, Association Rules, Hamming Distance, The Linear Associator, Matrix Memories, Content Addressable Memory).

UNIT – IV
CLASSICAL AND FUZZY SETS: Introduction to classical sets - properties, Operations and relations; Fuzzy sets, Membership, Uncertainty, Operations, properties, fuzzy relations, cardinalities, membership functions.

UNIT – V
FUZZY LOGIC SYSTEM: Fuzzification, Membership value assignment, development of rule base and decision making system, Defuzzification to crisp sets, Defuzzification methods.

OUTCOMES: After this course, the student
- To understand artificial neural network models and their training algorithms
- To understand the concept of fuzzy logic system components, fuzzification and defuzzification
- Applies the above concepts to real-world problems and applications.

TEXT BOOKS
1. Rajasekharan and Pai, Neural Networks, Fuzzy logic, Genetic algorithms: synthesis and applications– PHI Publication.

REFERENCE BOOKS
2. Simon Hakins, Neural Networks, Pearson Education.
3. C..Eliasmith and Ch. Anderson, Neural Engineering, PHI.

JNTUH COLLEGE OF ENGINEERING HYDERABAD

IV Year B.Tech. EEE I-Sem

DE.IV.3 ELECTRICAL DISTRIBUTION SYSTEMS

Pre-requisites: Power Systems – I and Power Systems - II

Objectives: Objectives of this course are
- To distinguish between transmission and distribution systems
- To understand design considerations of feeders
- To compute voltage drop and power loss in feeders
- To understand protection of distribution systems
- To examine the power factor improvement and voltage control

UNIT – I
GENERAL CONCEPTS: Introduction to distribution system, Distribution system planning, Factors effecting the Distribution system planning, Load modeling and characteristics. Coincidence factor - contribution factor - Loss factor - Relationship between the load factor and loss factor. Load growth, Classification of loads (Residential, commercial, Agricultural and Industrial) and their characteristics.

DISTRIBUTION FEEDERS: Design Considerations of Distribution Feeders: Radial, loop and network types of primary feeders, Introduction to low voltage distribution systems (LVDS) and High voltage distribution systems (HVDS), voltage levels, Factors effecting the feeder voltage level, feeder loading, Application of general circuit constants (A,B,C,D) to radial feeders, basic design practice of the secondary distribution system, secondary banking, secondary network types, secondary mains.

UNIT – II
SUBSTATIONS: Location of Substations: Rating of distribution substation, service area with ‘n’ primary feeders. Benefits derived through optimal location of substations. Optimal location of Substations (Perpendicular bisector rule and X, Y co-ordinate method).

SYSTEM ANALYSIS: Voltage drop and power-loss calculations: Derivation for voltage drop and power loss in lines, manual methods of solution for radial networks, three phase balanced primary lines, analysis of non-three phase systems, method to analyze the distribution feeder cost.
UNIT – III

COORDINATION: Coordination of Protective Devices: Objectives of protection co-ordination, general coordination procedure, Types of protection coordination: Fuse to Fuse, Auto-Recloser to Fuse, Circuit breaker to Fuse, Circuit breaker to Auto-Recloser.

UNIT – IV

COMPENSATION FOR POWER FACTOR IMPROVEMENT: Capacitive compensation for power-factor control - Different types of power capacitors, shunt and series capacitors, effect of shunt capacitors (Fixed and switched), effect of series capacitors, difference between shunt and series capacitors, Calculation of Power factor correction, capacitor allocation - Economic justification of capacitors - Procedure to determine the best capacitor location.

UNIT – V

VOLTAGE CONTROL: Voltage Control: Importance of voltage control, methods of voltage control, Equipment for voltage control, effect of shunt capacitors, effect of series capacitors, effect of AVB/AVR on voltage control, line drop compensation, voltage fluctuations.

OUTCOMES: After this course, the student will be able to
- distinguish between transmission, and distribution line and design the feeders
- compute power loss and voltage drop of the feeders
- design protection of distribution systems
- understand the importance of voltage control and power factor improvement

TEXT BOOKS

REFERENCE BOOKS
Variable frequency characteristics-Variable frequency control of induction motor by Voltage source and current source inverter and cyclo converters- PWM control – Comparison of VSI and CSI operations – Speed torque characteristics – numerical problems on induction motor drives – Closed loop operation of induction motor drives (Block Diagram Only)
Static rotor resistance control – Slip power recovery – Static Scherbius drive – Static Kramer Drive – their performance and speed torque characteristics – advantages applications – problems

UNIT – V

OUTCOMES: After this course, the student will be able to
- analyze DC motors speed control through phase controlled rectifiers and choppers
- analyze four quadrant operation of DC motors through four-quadrant choppers and dual converters
- analyze the operation of induction motors fed from AC voltage controllers and cyclo-converters
- understand static rotor resistance control slip-power recovery schemes for induction motors.
- understand self control and separate control of synchronous motors.

TEXT BOOKS
2. M.H.Rashid, Power Electronic Circuits, Devices and applications, PHI.

REFERENCE BOOKS
2. B.K.Bose, Modern Power Electronics and AC Drives by PHI.

JNTUH COLLEGE OF ENGINEERING HYDERABAD

IV Year B.Tech. EEE I-Sem

L T P C
4 0 0 4

PE-V.2 SOLAR PHOTO VOLTAIC SYSTEMS

Pre-requisite: None
Objectives: Objectives of this course are
1. to introduce photovoltaic systems
2. to deal with various technologies of solar PV cells
3. to understand details about manufacture, sizing and operating techniques
4. to have knowledge of design considerations.

Unit 1: SOLAR ENERGY:
Sun and Earth, Solar Spectrum, Solar Geometry, Solar radiation on horizontal and inclined planes, Instruments for measurement of solar radiation, Solar cell, Equivalent circuit, V-I characteristics, Performance improvement.

Unit 2: SOLAR CELLS:
Manufacture of Solar Cells-Technologies, Design of Solar cells, Photovoltaic modules, Design requirements, encapsulation systems, manufacture, power rating, hotspot effect, Design qualifications.

Unit 3: PROTECTION AND MEASUREMENTS:
Flat plate arrays, support structures, module interconnection and cabling, lightning protection, Performance measurement – using natural sun light and simulator, determination of temperature coefficients, internal series resistance, curve correction factor.

Unit 4: PHOTOVOLTAIC SYSTEMS:
Photovoltaic systems- types- general design considerations- system sizing-battery sizing- inverter sizing-design examples – Balance of PV systems.

Unit 5: MAXIMUM POWER POINT TRACKERS:
Maximum power point trackers-algorithms- perturb and observe-incremental conductance method, hill climbing method, hybrid and complex methods, data based and other approximate methods, instrument design, other MPP techniques-Grid interactive PV system.
OUTCOMES: After this course, the student will be able to

- identify photovoltaic system components and system types
- calculate electrical energy and power
- correctly size system components, design considerations of solar equipment
- design a basic grid-tie PV system.

Text Books:
1. Generating electricity from Sun, F.C. Treble, Pergamon Press
2. Photovoltaic systems: Analysis and design, A.K. Mukherjee, Nivedita Thakur, PHI 2011

JNTUH COLLEGE OF ENGINEERING HYDERABAD

IV Year B.Tech. EEE I-Sem

PE.V.3 UTILIZATION OF ELECTRIC POWER

Pre-requisites: Electrical Machines-I and Electrical Machines-II

Objectives: Objectives of this course are

- to understand the fundamentals of illumination and good lighting practices
- to understand the methods of electric heating and welding.
- To understand the concepts of electric drives and their application to electrical traction systems.

UNIT – I: ELECTRIC DRIVES
Type of electric drives, choice of motor, starting and running characteristics, speed control, temperature rise, particular applications of electric drives, types of industrial loads, continuous, intermittent and variable loads, load equalization.

UNIT – II: ELECTRIC HEATING
Advantages and methods of electric heating, resistance heating, induction heating and dielectric heating.

ELECTRIC WELDING
Electric welding, resistance and arc welding, electric welding equipment, comparison between A.C. and D.C. Welding.

UNIT – III: ILLUMINATION
Introduction, terms used in illumination, laws of illumination, polar curves, photometry, integrating sphere, sources of light.

VARIOUS ILLUMINATION METHODS
Discharge lamps, MV and SV lamps – comparison between tungsten filament lamps and fluorescent tubes, Basic principles of light control, Types and design of lighting and flood lighting.

UNIT – IV: ELECTRIC TRACTION – I
System of electric traction and track electrification. Review of existing electric traction systems in India. Special features of traction motor, methods of electric braking-plugging, rheostat braking and regenerative braking.
Mechanics of train movement. Speed-time curves for different services – trapezoidal and quadrilateral speed time curves.
UNIT – V: ELECTRIC TRACTION-II
Calculations of tractive effort, power, specific energy consumption for given run, effect of varying acceleration and braking retardation, adhesive weight and coefficient of adhesion.

OUTCOMES:
- After this course, the student gets a thorough knowledge on, electric drives characteristics and their applicability in industry based on the nature of different types of loads and their characteristics
- understands the concepts and methods of electric heating, welding, illumination and electric traction
- applies the above concepts to real-world electrical and electronics problems and applications.

TEXT BOOK:

REFERENCE BOOKS:

JNTUH COLLEGE OF ENGINEERING HYDERABAD
I V Year B.Tech. EEE I-Sem
Pre-requisite: Power Systems-I

PC - POWER SYSTEM OPERATION AND CONTROL

Objectives: Objectives of this course are
- To understand real power control and operation
- To know the importance of frequency control
- To analyze different methods to control reactive power
- To understand unit commitment problem and importance of economic load dispatch
- To understand real time control of power systems.

UNIT – I: LOAD - FREQUENCY CONTROL
Basics of speed governing mechanism and modeling - speed-load characteristics – load sharing between two synchronous machines in parallel. Control area concept LFC control of a single-area system. Static and dynamic analysis of uncontrolled and controlled cases. Integration of economic dispatch control with LFC. Two-area system – modeling - static analysis of uncontrolled case - tie line with frequency bias control of two-area system - state variable model.

UNIT – II: REACTIVE POWER–VOLTAGE CONTROL
Basics of reactive power control. Excitation systems – modeling. Static and dynamic analysis - stability compensation - generation and absorption of reactive power. Relation between voltage, power and reactive power at a node - method of voltage control - tap-changing transformer. System level control using generator voltage magnitude setting, tap setting of OLTC transformer and MVAR injection of switched capacitors to maintain acceptable voltage profile and to minimize transmission loss.

UNIT–III: ECONOMIC LOAD DISPATCH
UNIT – IV UNIT COMMITMENT

UNIT–V: COMPUTER CONTROL OF POWER SYSTEMS
Need of computer control of power systems. Concept of energy control centre (or) load dispatch centre and the functions - system monitoring - data acquisition and control. System hardware configuration – SCADA and EMS functions. Network topology – Importance of Load Forecasting and simple techniques of forecasting.

OUTCOMES: After this course, the student will be able to
- Know importance of frequency and real power control
- Know the reactive power control methods and importance of reactive power
- Compare unit commitment and economic dispatch and their importance
- Understand real time control of power systems.

TEXT BOOKS:

REFERENCE BOOKS

JNTUH COLLEGE OF ENGINEERING HYDERABAD

IV Year B.Tech. EEE I-Sem

L T P C
0 0 3 2

DIGITAL SIGNAL PROCESSING LAB
The Programs shall be implemented in Software (Using MATLAB / Lab View / C Programming/ Equivalent) and Hardware (Using TI / Analog Devices / Motorola / Equivalent DSP processors).
1. Generation of Sinusoidal Waveform / Signal based on Recursive Difference Equations
2. To find DFT / IDFT of given DT Signal
3. To find Frequency Response of a given System given in Transfer Function/ Differential equation form.
4. Implementation of FFT of given Sequence
5. Determination of Power Spectrum of a given Signal(s).
7. Implementation of HP FIR Filter for a given Sequence/Signal
8. Implementation of LP IIR Filter for a given Sequence/Signal
9. Implementation of HP IIR Filter for a given Sequence/Signal
10. Generation of Sinusoidal Signal through Filtering
11. Generation of DTMF Signals
12. Implementation of Decimation Process
13. Implementation of Interpolation Process
14. Implementation of I/D Sampling Rate Converters
15. Audio application such as to plot a Time and Frequency display of Microphone plus a Cosine using DSP. Read a .wav file and match with their respective spectrograms.
16. Noise Removal: Add noise above 3 KHz and then remove, interference suppression using 400 Hz tone.
17. Impulse Response of First order and Second Order Systems.

Note: - Minimum of 12 experiments has to be conducted.
IV Year B.Tech. ECE II-Sem L T P C
4 0 0 4

MANAGEMENT SCIENCE

Prerequisite: Nil

Course Objective:
- The course introduces the basic concepts of Management Science and Operations Management and its application to business.
- The topics include human resource management, project and strategic management; the course develops problem solving and spreadsheet skills, an invaluable tool for modern business.

Course Outcomes:
- To enable students see that many managerial decisions making situations can be addressed using standard techniques and problem structuring methods
- Students will be able to gain an understanding of the core concepts of Management Science and Operations Management;
- To discuss applications in many functional areas (operations and Human resources, strategy, marketing);
- To get familiar with Project management techniques and strategic management

Unit IV Project Management (PERT/CPM): PERT Vs CPM- Identifying critical path, Probability of Completing the project within given time, Project Cost Analysis, Project Crashing (simple problems).

TEXT BOOKS:

REFERENCES:
PC - POWER SYSTEMS LAB

1. Determination of Sequence Impedances of a cylindrical rotor
 Synchronous Machine.
3. Determination of Sub transient reactance’s of a Salient Pole
 Synchronous Machine.

Any four simulation experiments listed below should be conducted
using two electrical related softwares

1. Formation of Y_{BUS}.
5. Short Circuit analysis.
8. Transmission Line Fault Analysis.
9. Verification of Theorems.
Pre Requisites: NIL

Course Objectives:
The subject provide different disasters, tools and methods for disaster management

Course Outcomes:
Estimate, perform quantity survey & valuate various engineering works

UNIT 1: Understanding Disaster
Concept of Disaster
Different approaches
Concept of Risk
Levels of Disasters
Disaster Phenomena and Events (Global, national and regional)

Hazards and Vulnerability
Natural and man-made hazards; response time, frequency and forewarning levels of different hazards
Characteristics and damage potential or natural hazards; hazard assessment
Dimensions of vulnerability factors; vulnerability assessment
Vulnerability and disaster risk
Vulnerabilities to flood and earthquake hazards

UNIT 2: Disaster Management Mechanism
Concepts of risk management and crisis managements
Disaster Management Cycle
Response and Recovery
Development, Prevention, Mitigation and Preparedness
Planning for Relief

UNIT 3: Capacity Building
Capacity Building; Concept
Structural and Nonstructural Measures
Capacity Assessment; Strengthening Capacity for Reducing Risk
Counter-Disaster Resources and their utility in Disaster Management
Legislative Support at the state and national levels

UNIT 4: Coping with Disaster
Coping Strategies; alternative adjustment processes
Changing Concepts of disaster management
Industrial Safety Plan; Safety norms and survival kits
Mass media and disaster management

UNIT 5: Planning for disaster management
Strategies for disaster management planning
Steps for formulating a disaster risk reduction plan
Disaster management Act and Policy in India
Organizational structure for disaster management in India
Preparation of state and district disaster management plans

Text Books

References
OPEN ELECTIVE-I
NON CONVENTIONAL POWER GENERATION

Pre-requisite: Nil.

OBJECTIVES:
- To introduce various types of renewable technologies available.
- The technologies of energy conversion from these resources and their quantitative analysis.

UNIT - I

UNIT - II

UNIT - III

UNIT - IV

UNIT - V

OUTCOMES:
- The student will be able analyse solar thermal and photovoltaic systems and related technologies for energy conversion.
- Wind energy conversion and devices available for it.
- Biomass conversion technologies.
- Geo thermal resources and energy conversion principles and technologies.
- Power from oceans (thermal, wave, tidal) and conversion and devices.
- Fundamentals of fuel cells and commercial batteries.

TEXT BOOKS

REFERENCE BOOKS
2. F.C.Treble, Generating Electricity from Sun.
4. S.P.Sukhatme, Solar Energy Principles and Application - TMH
OPEN ELECTIVE-I
ELECTRICAL ENGINEERING MATERIALS

Pre-requisites: Nil

Objectives: To understand the importance of various materials used in electrical engineering and obtain a qualitative analysis of their behavior and applications.

UNIT – I
DIELECTRIC MATERIALS: Dielectric as Electric Field Medium, leakage currents, dielectric loss, dielectric strength, breakdown voltage, breakdown in solid dielectrics, flashover, liquid dielectrics, electric conductivity in solid, liquid and gaseous dielectrics, Ferromagnetic materials, properties of ferromagnetic materials in static fields, spontaneous, polarization, curie point, anti-ferromagnetic materials, piezoelectric materials, pyroelectric materials.

UNIT – II
MAGNETIC MATERIALS: Classification of magnetic materials, spontaneous magnetization in ferromagnetic materials, magnetic Anisotropy, Magnetostriction, diamagnetism, magnetically soft and hard materials, special purpose materials, feebly magnetic materials, Ferrites, cast and cermet permanent magnets, ageing of magnets. factors effecting permeability and hysteresis

UNIT – III
SEMICONDUCTOR MATERIALS: Properties of semiconductors, Silicon wafers, integration techniques, Large and very large scale integration techniques (VLSI)

UNIT – IV
MATERIALS FOR ELECTRICAL APPLICATIONS: Materials used for Resistors, rheostats, heaters, transmission line structures, stranded conductors, bimetals fuses, soft and hard solders, electric contact materials, electric carbon materials, thermocouple materials. Solid, Liquid and Gaseous insulating materials, Effect of moisture on insulation.

UNIT – V
SPECIAL PURPOSE MATERIALS: Refractory Materials, Structural Materials, Radioactive Materials, Galvanization and Impregnation of materials, Processing of electronic materials, Insulating varishes and coolants, Properties and applications of mineral oils, Testing of Transformer oil as per ISI

OUTCOMES: Will be able to
- Understand various types of dielectric materials, their properties in various conditions.
- Evaluate magnetic materials and their behavior.
- Evaluate semiconductor materials and technologies.
- Materials used in electrical engineering and applications.

TEXT BOOKS
3. TTTI Madras: Electrical Engineering Materials
OPEN ELECTIVE-I
NANO-TECHNOLOGY

Pre-requisites: Nil

OBJECTIVES: To enable the student to understand fundamentals of nano materials and technologies for these materials and their manufacturing, applications in various fields.

UNIT - I
Background of Nanotechnology: Scientific Revolutions, Nanotechnology and Nanomachines - The Periodic Table, Atomic Structure, Molecules and Phases, Energy, Molecular and Atomic size, Surfaces and Dimensional Space, Top down and Bottom up approach.

UNIT - II

UNIT - III
Nanopowders and Nanomaterials: Preparation, Plasma arcing, chemical vapor deposition, Sol-gels, Electrodeposition, Ball milling, using natural nanoparticles, Applications of nanomaterials.

UNIT - IV
Nanoelectronics: Approaches to nanoelectronics, Fabrication of integrated circuits, MEMS, NEMS, Nano circuits, Quantum wire, Quantum well, DNA-directed assembly and application in electronics.

UNIT - V

OUTCOMES:

- To evaluate electronic structural studies of nano materials and different synthesis methods to obtain nano structures.
- Understand characterization techniques through various measurements to study electrical, mechanical,thermal properties of nano materials.
- Applications of nano materials for specific purposes like MEMS, NEMS, nano electronics, energy storage.

TEXT BOOKS
1. Introduction to Nanoscience and Nanotechnology Gabor L. Hornyak, NanoThread, Inc., Golden, Colorado, USA; H.F. Tibbals, University of Texas Southwestern Medical Center, Dallas, USA; Joydeep Dutta, Asian Institute of Technology, Pathumthani, Thailand; John J. Moore, Colorado School of Mines, Golden, USA
2. Introduction to Nanotechnology by Charles P. Poole Jr and Frank J.Owens Wiley India Pvt Ltd.
3. Introduction to Nanoscience and Nanotechnology, Chatopadhyaya.K.K, and Banerjee A.N.
4. Introduction to nano tech by phani kumar
5. Introduction to Nano Technology by Charles P. Poole Jr and Frank J. Owens, Wiley India Pvt Ltd.
6. Introduction to Nanoscience and Nanotechnology, Chatopadhyaya.K.K, and Banerjee A.N.

NANOTECHNOLOGY Basic Science and EmergingTechnologies by Michael Wilson, Kamali Kannangara, Geoff Smith, Michelle Simmons, Burkhard Raguse- CHAPMAN & HALL/CRC PRESS 2002.
Prerequisites: None

Objectives: Understanding the mathematical importance of development of model in a particular optimization model for the issue and solving it.

Outcomes: Understanding the problem, identifying variables & constants, formulas of optimization model and applying appropriate optimization Techniques

UNIT – I

UNIT – II

UNIT – III
SEQUENCING – Introduction – Flow –Shop sequencing – n jobs through two machines – n jobs through three machines – Job shop sequencing – two jobs through ‘m’ machines-graphical model

REPLACEMENT: Introduction – Replacement of items that deteriorate with time – when money value is not counted and counted – Replacement of items that fail completely- Group Replacement.

UNIT – IV

INVENTORY: Introduction – Single item, Deterministic models – Types - Purchase inventory models with one price break and multiple price breaks –Stochastic models – demand discrete variable or continuous variable – Single Period model with no setup cost.

UNIT – V

TEXT BOOK :
2. Operations Research/A.C.S.Kumar/Yesdee

REFERENCE BOOKS :
1. Operations Research: Methods and Problems / Maurice Saseini, Arhur Yaspan and Lawrence Friedman
4. Introduction to O.R/Hillier & Libermann (TMH).
5. Introduction to O.R /Taha/PHI

BASICS OF THERMODYNAMICS
OPEN ELECTIVE-I

Pre-requisite: Engineering Chemistry and Physics

Course Objective: To understand the treatment of classical Thermodynamics and to apply the First and Second laws of Thermodynamics to engineering applications

Course Outcomes:
At the end of the course, the student should be able to
• Understand and differentiate between different thermodynamic systems and processes
• Understand and apply the laws of Thermodynamics to different types of systems undergoing various processes
• Understand and analyze the Thermodynamic cycles

UNIT – I
Introduction: Basic Concepts:

UNIT II

UNIT – III

UNIT IV
Atmospheric air - Psychrometric Properties – Dry bulb Temperature, Wet Bulb Temperature, Dew point Temperature, Relative Humidity, Saturated Air, Vapour pressure, Degree of saturation – Adiabatic Saturation, Psychrometric chart.

UNIT - V
Power Cycles: Otto, Diesel cycles - Description and representation on P–V and T-S diagram, Thermal Efficiency, Mean Effective Pressures on Air standard basis

TEXT BOOKS :
1. Engineering Thermodynamics / PK Nag /TMH, III Edition
2. Thermodynamics / C.P.Arora.

REFERENCE BOOKS:
1. Thermodynamics – An Engineering Approach – Yunus Cengel & Boles /TMH
3. Thermodynamics – J.P.Holman / McGrawHill
4. Engineering Thermodynamics – Jones & Dugan
FABRICATION PROCESSES
OPEN ELECTIVE-I

Prerequisites: Nil

Objectives: Understand the philosophies of various Manufacturing process.

Outcomes: For given product, one should be able identify the manufacturing process.

UNIT – I

UNIT – II
Welding: Classification – Types of welds and welded joints; Gas welding - Types, oxy-fuel gas cutting. Arc welding, forge welding, submerged arc welding, Resistance welding, Thermit welding. Inert Gas Welding – TIG Welding, MIG welding, explosive welding, Laser Welding; Soldering and Brazing; Heat affected zone in welding. Welding defects – causes and remedies; destructive and non-destructive testing of welds.

UNIT – III

UNIT – IV
Extrusion of Metals: Basic extrusion process and its characteristics. Hot extrusion and cold extrusion – Forward extrusion and backward extrusion – Impact extrusion – Extruding equipment – Tube extrusion and pipe making, Hydrostatic extrusion. Forces in extrusion

UNIT – V

TEXT BOOKS:
1. Manufacturing Technology / P.N. Rao/TMH

REFERENCE BOOKS:
1. Production Technology / R.K. Jain
2. Metal Casting / T.V Ramana Rao / New Age
4. Welding Process / Parmar /
5. Production Technology /Sarma P C /
Note: No detailed mathematical treatment is required.
Prerequisite: Nil

Course Objectives:
- It provides an understanding of various measuring systems functioning and metrics for performance analysis.
- Provides understanding of principle of operation, working of different electronic instruments viz. signal generators, signal analyzers, recorders and measuring equipment.
- Provides understanding of use of various measuring techniques for measurement of different physical parameters using different classes of transducers.

Course Outcomes:
On completion of this course student can be able to
- Identify the various electronic instruments based on their specifications for carrying out a particular task of measurement.
- Measure various physical parameters by appropriately selecting the transducers.
- Use various types of signal generators, signal analyzers for generating and analyzing various real-time signals.

Unit-I:
Block Schematics of Measuring Systems and Performance Metrics:
- Performance Characteristics, Static Characteristics, Accuracy, Precision, Resolution, Types of Errors, Gaussian Error, Root Sum Squares formula, Dynamic Characteristics, Repeatability, Reproducibility, Fidelity, Lag.

Unit-II:
Signal Generators: AF, RF Signal Generators, Sweep Frequency Generators, Pulse and Square wave Generators, Function Generators, Arbitrary Waveform Generator, and Specifications.

Unit-III:
Measuring Instruments: DC Voltmeters, D’ Arsonval Movement, DC Current Meters, AC Voltmeters and Current Meters, Ohmmeters, Multimeters, Meter Protection, Extension of Range, True RMS

Unit-IV:
Recorders: X-Y Plotter, Curve tracer, Galvanometric Recorders, Servo transducers, pen driving mechanisms, Magnetic Recording, Magnetic recording techniques.

Unit-V:
Transducers: Classification, Strain Gauges, Bounded, unbounded; Force and Displacement Transducers, Resistance Thermometers, Hotwire Anemometers, LVDT, Thermocouples, Synchros, Special Resistance Thermometers, Digital Temperature sensing system, Piezoelectric Transducers, Variable Capacitance Transducers, Magneto Strictive Transducers.

TEXT BOOKS:

REFERENCES:
OPEN ELECTIVE-I
OBJECT ORIENTED PROGRAMMING THROUGH JAVA

Prerequisites
1. A course on “Computer Programming & Data Structures”

Objectives
1. Introduces object oriented programming concepts using the Java language.
2. Introduces the principles of inheritance and polymorphism; and demonstrates how they relate to the design of abstract classes
3. Introduces the implementation of packages and interfaces
4. Introduces exception handling, event handling and multithreading
5. Introduces the design of Graphical User Interface using applets and swings

Outcomes
1. Develop applications for a range of problems using object-oriented programming techniques
2. Design simple Graphical User Interface applications

UNIT I: Object oriented thinking and Java Basics- Need for OOP paradigm, summary of OOP concepts, coping with complexity, abstraction mechanisms. A way of viewing world – Agents, responsibility, messages, methods, History of Java, Java buzzwords, data types, variables, scope and life time of variables, arrays, operators, expressions, control statements, type conversion and casting, simple java program, concepts of classes, objects, constructors, methods, access control, this keyword, garbage collection, overloading methods and constructors, method binding, inheritance, overriding and exceptions, parameter passing, recursion, nested and inner classes, exploring string class.

UNIT II: Inheritance, Packages and Interfaces – Hierarchical abstractions. Base class object, subclass, subtype, substitutability, forms of inheritance- specialization, specification, construction, extension, limitation, combination, benefits of inheritance, costs of inheritance. Member access rules, super uses, using final with inheritance, polymorphism- method overriding, abstract classes, the Object class. Defining, Creating and Accessing a Package, Understanding CLASSPATH, importing packages, differences between classes and interfaces, defining an interface, implementing interface, applying interfaces, variables in interface and extending interfaces, Exploring java.io.

UNIT III: Exception handling and Multithreading– Concepts of exception handling, benefits of exception handling, Termination or resumptive models, exception hierarchy, usage of try, catch, throw, throws and finally, built in exceptions, creating own exception sub classes. String handling, Exploring java.util.Differences between multi threading and multitasking, thread life cycle, creating threads, thread priorities, synchronizing threads, inter-thread communication, thread groups, daemon threads, Enumerations, auto boxing, annotations, generics.

UNIT IV: Event Handling: Events, Event sources, Event classes, Event Listeners, Delegation event model, handling mouse and keyboard events, Adapter classes. The AWT class hierarchy, user interface components- labels, button, canvas, scrollbars, text components, check box, check box groups, choices, lists panels – scroll pane, dialogs, menu bar, graphics, layout manager – layout manager types – border, grid, flow, card and grid bag.

TEXT BOOKS:
1. Java the complete reference, 7th edition, Herbert Schildt, TMH.
2. Understanding OOP with Java, updated edition, T. Budd, Pearson Education.

REFERENCES:
2. Introduction to Java programming, Y. Daniel Liang, Pearson Education.
3. An introduction to Java programming and object oriented application development, R.A. Johnson-Thomson.
OPEN ELECTIVE-I
COMPUTER GRAPHICS

Prerequisites
1. Familiarity with the theory and use of coordinate geometry and of linear algebra such as matrix multiplication.
2. A course on “Computer Programming and Data Structures”

Objectives
1. The aim of this course is to provide an introduction of fundamental concepts and theory of computer graphics.
2. Topics covered include graphics systems and input devices; geometric representations and 2D/3D transformations; viewing and projections; illumination and color models; animation; rendering and implementation; visible surface detection;

Outcomes
1. Acquire familiarity with the relevant mathematics of computer graphics.
2. Be able to design basic graphics application programs, including animation
3. Be able to design applications that display graphic images to given specifications

UNIT-I:
Introduction: Application areas of Computer Graphics, overview of graphics systems, video-display devices, raster-scan systems, random scan systems, graphics monitors and work stations and input devices
Output primitives: Points and lines, line drawing algorithms (Bresenham’s and DDA Algorithm), mid-point circle and ellipse algorithms
Filled area primitives: Scan-line polygon fills algorithm, boundary-fill and flood-fill algorithms

UNIT-II:
2-D geometrical transforms: Translation, scaling, rotation, reflection and shear transformations, matrix representations and homogeneous coordinates, composite transforms, transformations between coordinate systems
2-D viewing: The viewing pipeline, viewing coordinate reference frame, window to view-port coordinate transformation, viewing functions,

UNIT-III:
3-D object representation: Polygon surfaces, quadric surfaces, spline representation, Hermite curve, Bezier curve and B-Spline curves, Bezier and B-Spline surfaces. Basic illumination models, polygon rendering methods.

UNIT-IV:
3-D Geometric transformations: Translation, rotation, scaling, reflection and shear transformations, composite transformations.
3-D viewing: Viewing pipeline, viewing coordinates, view volume and general projection transforms and clipping.

UNIT-V:
Computer animation: Design of animation sequence, general computer animation functions, raster animation, computer animation languages, key frame systems, motion specifications
Visible surface detection methods: Classification, back-face detection, depth-buffer, scan-line, depth sorting, BSP-tree methods, area subdivision and octree methods

Text Books:
3. Computer Graphics, Steven Harrington, TMH

References:
ENGINEERING MATERIALS
OPEN ELECTIVE-I

Pre requisites: Nil

Course Objectives:
1. To gain an knowledge about the uses and application of various ferrous metals and alloys.
2. To gain an knowledge about the uses and application of various non ferrous alloys.
3. To gain an knowledge about the uses and application of various ceramics, polymers and composites for different engineering applications.

Course Outcomes:
At the end of the course, student would be able to recommend
1. Ferrous metals and alloys for a given engineering applications and service condition.
2. Non ferrous alloys for a given engineering applications and service condition.
3. Ceramics, Polymers and composites for a given engineering applications and service condition.

UNIT-I

UNIT-II
NONFERROUS ALLOYS: Introduction, properties and applications, Aluminum Alloys, Magnesium Alloys, Copper Alloys and Titanium Alloys.

UNIT-III
CERAMIC MATERIALS: Introduction, Properties and Applications of Ceramics, Glasses and Refractories.

UNIT-IV
POLYMERS: Introduction, Classification of Polymers, Polymerization, Degree of Polymerization, Typical Thermoplastics and Thermosets.

UNIT-V
COMPOSITES: Introduction, Classification, Properties and Applications of Polymer matrix, Metal Matrix Ceramic Matrix and Laminar composites.

TEXT / REFERENCE BOOKS:
Pre requisites: Nil

Course Objectives:
1. To describe the basic principles of metallurgy and the importance of metallurgy in various discipline of engineering.
2. Gain a thorough knowledge about heat treatment of steels.
3. Gain a knowledge about properties and uses of cast irons and non ferrous metals.
4. Gain a working knowledge of basic testing methods for metals.

Course Outcomes:
At the end of the course Student would be able
1. To use and apply metallurgy in his own branch of engineering.
2. The student will be able to justify the various testing methods adopted for metals.

UNIT-I
Introduction: Crystal structure and defects, Crystal structure of metals, Classification of steels, Carbon steels

UNIT-II
Heat Treatment of Steels: The Iron carbon systems, Common phases in steels, Annealing, Normalizing, Hardening and tempering

UNIT-III
Cast irons: Properties and applications of Ductile irons, Malleable irons, Compacted graphite iron.

UNIT-IV
Non Ferrous Metals: Properties and applications of Light Metals (Al, Be, Mg, Ti), Super alloys

UNIT-V

TEXT BOOKS
2. Introduction to Physical Metallurgy – SH Avner, TATA Mc GRAW HILL, 1997
3. Metallurgy for Engineers- Clark and Varney
4. Mechanical Metallurgy – G. E. Dieter

REFERENCE BOOKS
1. Engineering Physical Metallurgy and Heat treatment – Y Lakhtin
3. Foundations of Materials Science and Engineering – WF Smith
OPEN ELECTIVE-I
INDUSTRIAL POLLUTION CONTROL ENGINEERING

Objective:
To expose the students to various types of industrial pollutions and controlling techniques.

UNIT -I
Introduction to industrial pollution and types of pollution from chemical industries, Effects of pollution as environment and ecosystems-global warming-green house effect; Environmental legislatures-standards and guidelines.

UNIT -II
Air pollution- Meteorological aspects of pollution dispersion-adiabatic lapse rate-Environmental lapse rate-Turbulence and stability of atmosphere, Richardson number-Plume raise-plume behavior and characteristics, effective stack height. Major air pollutants and their sources, measurement of air pollutants

UNIT -III

UNIT -IV
Introduction to water pollution – water pollutants classification – characteristics of liquid effluents from fertilizer, pulp & paper and petroleum industries, estimation of oxygen demands – DO, BOD, COD, TOC – BOD curves, oxygen sag curve – modeling of BOD curves

UNIT -V

Text books:
1. Pollution control in process industries by S.P. Mahajan TMH.,1985

References:

OUTCOME: The student will be able learn the sources of air, water pollution and also their treatment methods
OPEN ELECTIVE - II

JNTUH COLLEGE OF ENGINEERING HYDERABAD

B.Tech. Civil Engg.

OPEN ELECTIVE -II
ESTIMATION, QUANTITY SURVEY & VALUATION

L T P C
3 0 0 3

Pre Requisites:
Concrete Technology, RC Design, Design of Steel Structure

Course Objectives:
The subject provide process of estimations required for various work in construction. To have knowledge of using SOR & SSR for analysis of rates on various works.

Course Outcomes:
Able to provide control steps for disaster mitigation steps

UNIT – I

UNIT – II
Detailed Estimates of Buildings - Reinforcement bar bending and bar requirement schedules

UNIT – III
Earthwork for roads and canals.

UNIT – IV
Rate Analysis – Working out data for various items of work over head and contingent charges.

UNIT-V

NOTE: NUMBER OF EXERCISES PROPOSED:
1. Three in flat Roof & one in Sloped Roof
2. Exercises on Data – three Nos.
Text Books:
2. Estimating and Costing by G.S. Birdie

Reference books:
2. I. S. 1200 (Parts I to XXV – 1974/ method of measurement of building and Civil Engineering works – B.I.S.)
3. Estimation, Costing and Specifications by M. Chakraborti; Laxmi publications.

JNTUH COLLEGE OF ENGINEERING HYDERABAD

B.Tech. EEE

OPEN ELECTIVE-II
DESIGN ESTIMATION AND COSTING OF ELECTRICAL SYSTEMS

Pre-requisite: Power systems-I and Power Systems-II

Objectives: Objectives of this course are
- To emphasize the estimating and costing aspects of all electrical equipment, installation and designs to analyze the cost viability.
- To design and estimation of wiring,
- To design overhead and underground distribution lines, substations and illumination design.

UNIT - I
DESIGN CONSIDERATIONS OF ELECTRICAL INSTALLATIONS:
Electric Supply System, Three phase four wire distribution system, Protection of Electric Installation against over load, short circuit and Earth fault, Earthing, General requirements of electrical installations, testing of installations, Indian Electricity rules, Neutral and Earth wire, Types of loads, Systems of wiring, Service connections, Service Mains, Sub-Circuits, Location of Outlets, Location of Control Switches, Location of Main Board and Distribution board, Guide lines for Installation of Fittings, Load Assessment, Permissible voltage drops and sizes of wires, estimating and costing of Electric installations.

UNIT - II
ELECTRICAL INSTALLATION FOR DIFFERENT TYPES OF BUILDINGS AND SMALL INDUSTRIES: Electrical installations for residential buildings – estimating and costing of material, Electrical installations for commercial buildings, Electrical installations for small industries.

UNIT - III
OVERHEAD AND UNDERGROUND TRANSMISSION AND DISTRIBUTION LINES: Introduction, Supports for transmission lines, Distribution lines – Materials used, Underground cables, Mechanical Design of overhead lines, Design of underground cables.
UNIT - IV
SUBSTATIONS: Introduction, Types of substations, Outdoor substation – Pole mounted type, Indoor substations – Floor mounted type.

UNIT – V
DESIGN OF ILLUMINATION SCHEMES: Introduction, Terminology in illumination, laws of illumination, various types of light sources, Practical lighting schemes LED, CFL and OCFL differences.

OUTCOMES: Students are in a position to Understand the design considerations of electrical installations.
- To design electrical installation for buildings and small industries.
- To identify and design the various types of light sources for different applications.

TEXT BOOKS
2. Design of Electrical Installations, Er. V. K. Jain, Er. Amitabh Bajaj, University Science Press.

REFERENCE BOOKS

JNTUH COLLEGE OF ENGINEERING HYDERABAD
B.Tech. EEE
L T P C
3 0 0 3

OPEN ELECTIVE-II
ENERGY STORAGE SYSTEMS

Pre-requisite: None

Objectives: Objectives of this course are
- To enable the student to understand the need for energy storage, devices and technologies available and their applications,

UNIT - I
Electrical Energy Storage Technologies: Characteristics of electricity, Electricity and the roles of EES, High generation cost during peak-demand periods, Need for continuous and flexible supply, Long distance between generation and consumption, Congestion in power grids, Transmission by cable.

UNIT - II

UNIT - III
Features of Energy Storage Systems: Classification of EES systems, Mechanical storage systems, Pumped hydro storage (PHS), Compressed air energy storage (CAES), Flywheel energy storage (FES), Electrochemical storage systems, Secondary batteries, Flow batteries, Chemical energy storage, Hydrogen (H2), Synthetic natural gas (SNG).

UNIT - IV
Types of Electrical Energy Storage systems: Electrical storage systems, Double-layer capacitors (DLC), Superconducting magnetic energy storage (SMES), Thermal storage systems, Standards for EES, Technical comparison of EES technologies.

UNIT - V
Applications: Present status of applications, Utility use (conventional power generation, grid operation & service), Consumer use (uninterruptable power supply for large consumers), New trends in applications, Renewable energy generation, Smart
Grid, Smart Micro grid, Smart House, Electric vehicles, Management and control hierarchy of storage systems, Internal configuration of battery storage systems, External connection of EES systems. Aggregating EES systems and distributed generation (Virtual Power Plant). Battery SCADA – aggregation of many dispersed batteries.

OUTCOMES: After this course, the student
- Can analyze the characteristics of energy from various sources and need for storage
- Can classify various types of energy storage and various devices used for the purpose
- Can apply the same concepts to real time problems.

TEXT BOOKS

REFERENCE BOOKS:
UNIT – IV

UNIT – V

TEXT BOOKS
3. Mechatronics by M.D.Singh, J.G.Joshi PHI.
4. Mechatronics HMT

REFERENCE BOOKS

JNTUH COLLEGE OF ENGINEERING HYDERABAD

3 0 0 3

JET PROPULSION & ROCKET ENGINEERING OPEN ELECTIVE-II

Prerequisites: None

Course outcomes:
After doing this course, student should be in position to
1. Understand Turbo Jet Propulsion System
2. Analyze the flight performance
4. Learn the Aero thermo chemistry of the combustion products
5. Understand the physics of Solid propellant rocket engine, Liquid Rocket Propulsion System & Ramjet and Integral Rocket Ramjet Propulsion System:

Unit - I:
Turbo Jet Propulsion System:
Gas turbine cycle analysis – layout of turbo jet engine. Turbo machinery-compressors and turbines, combustor, blade aerodynamics, engine off design performance analysis.

Flight Performance:
Forces acting on vehicle – Basic relations of motion – multi stage vehicles.

Unit - II:
Principles of Jet Propulsion and Rocketry:
Fundamentals of jet propulsion, Rockets and air breathing jet engines – Classification – turbo jet , turbo fan, turbo prop, rocket (Solid and Liquid propellant rockets) and Ramjet engines.

Nozzle Theory and Characteristics Parameters:
Theory of one dimensional convergent – divergent nozzles – aerodynamic choking of nozzles and mass flow through a nozzle – nozzle exhaust velocity – thrust, thrust coefficient, A_c / A_t of a nozzle, Supersonic nozzle shape, non-adapted nozzles, summer field criteria, departure from simple analysis – characteristic parameters – 1) characteristic velocity, 2) specific impulse 3) total impulse 4) relationship between the characteristic parameters 5) nozzle efficiency, combustion efficiency and overall efficiency.
Unit - III: Aero Thermo Chemistry of The Combustion Products:

Solid Propulsion System:

Unit - IV:
Solid propellant rocket engine – internal ballistics, equilibrium motor operation and equilibrium pressure to various parameters. Transient and pseudo equilibrium operation, end burning and burning grains, grain design. Rocket motor hard ware design. Heat transfer considerations in solid rocket motor design. Ignition system, simple pyro devices.

Liquid Rocket Propulsion System:
Liquid propellants – classification, Mono and Bi propellants, Cryogenic and storage propellants, ignition delay of hypergolic propellants, physical and chemical characteristics of liquid propellant. Liquid propellant rocket engine – system layout, pump and pressure feed systems, feed system components. Design of combustion chamber, characteristic length, constructional features, and chamber wall stresses. Heat transfer and cooling aspects. Uncooled engines, injectors – various types, injection patterns, injector characteristics, and atomization and drop size distribution, propellant tank design.

Unit - V: Ramjet and Integral Rocket Ramjet Propulsion System:
Fuel rich solid propellants, gross thrust, gross thrust coefficient, combustion efficiency of ramjet engine, air intakes and their classification – critical, super critical and sub-critical operation of air intakes, engine intake matching, classification and comparison of IIRR propulsion systems.

TEXT BOOKS:

REFERENCE BOOKS:
1. Rocket propulsion –Sutton
2. Gas Turbines /Cohen, Rogers & Sarvana Muttoo/Addision Wesley & Longman.
3. Gas Turbines-V.Ganesan /TMH.
UNIT III
User, Cantered Workspace Design Anthropometric Data, Statistical Essentials, Types of Anthropometric Data, Applications Of Anthropometry in Design, Multiple Workspace Configurations, Status of Anthropometry in Ergonomics.

UNIT IV

UNIT V

Text books
1. Introduction to Ergonomics(Third Edition)/ R.S.Bridger/CRC Press , Taylor & Francis Group

References
1. Human factors in Engineering and Design/E.J.McCormick/ TMH Edison

UNIT – I
INTRODUCTION: Definition – Trends - Control Methods: Standalone , PC Based (Real Time Operating Systems, Graphical User Interface , Simulation) - Applications: identification of sensors and actuators in Washing machine, Automatic Camera, Engine Management, SPM, Robot, CNC, FMS, CIM.

UNIT – II
PRECISION MECHANICAL SYSTEMS :
Modern CNC Machines – Design aspects in machine structures, guideways, feed drives, spindle and spindle bearings, measuring systems, control software and operator interface, gauging and tool monitoring.

UNIT – III
ELECTROMECHANICAL DRIVES :
Relays and Solenoids - Stepper Motors - DC brushed motors – DC brushless motors - DC servomotors -
4-quadrant servo drives, PWM's - Pulse Width Modulation – Variable Frequency Drives, Vector Drives - Drive System load calculation.

UNIT – IV

UNIT – V

TEXT BOOKS:
2. Mechatronics/M.D.Singh/J.G.Joshi/PHI.

REFERENCE:
1. "Designing Intelligent Machines", open University, London.

JNTUH COLLEGE OF ENGINEERING HYDERABAD
B.Tech. ECE.

PRINCIPLES OF ELECTRONIC COMMUNICATIONS
OPEN ELECTIVE-II

Prerequisite: Nil

Course Objectives:
The objective of this subject is to:
- Introduce the students to modulation and various analog and digital modulation schemes.
- They can have a broad understanding of satellite, optical, cellular, mobile, wireless and telecom concepts.

Course Outcomes:
By completing this subject, the student can
- Work on various types of modulations.
- Should be able to use these communication modules in implementation.
- Will have a basic understanding of various wireless and cellular, mobile and telephone communication systems.

Unit 1:
Introduction: Need for Modulation, Frequency translation, Electromagnetic spectrum, Gain, Attenuation and decibels.

Unit 2:

Unit 3:
Telecommunication Systems: Telephones Telephone system, Paging systems, Internet Telephony.

Networking and Local Area Networks: Network fundamentals, LAN hardware, Ethernet LANs, Token Ring LAN.

Unit 4:
Satellite Communication: Satellite Orbits, satellite communication systems, satellite subsystems, Ground Stations Satellite Applications, Global Positioning systems.

Unit 5:
Cellular and Mobile Communications: Cellular telephone systems, AMPS, GSM, CDMA, WCDMA.

Wireless Technologies: Wireless LAN, PANs and Bluetooth, ZigBee and Mesh Wireless networks, WiMax and MANs, Infrared wireless, RFID communication, UWB.

Text Books:
2. Kennady, Davis, Electronic Communications systems, 4e, TMH, 1999

Reference Books:

JNTUH COLLEGE OF ENGINEERING HYDERABAD

B.Tech. CSE

OPEN ELECTIVE-II
DATABSE MANAGEMENT SYSTEMS

Prerequisites
1. A course on "Advanced Data Structures"

Objectives
1. To understand the basic concepts and the applications of database systems.
2. To master the basics of SQL and construct queries using SQL.
3. Topics include data models, database design, relational model, relational algebra, transaction control, concurrency control, storage structures and access techniques.

Outcomes
1. Gain knowledge of fundamentals of DBMS, database design and normal forms
2. Master the basics of SQL for retrieval and management of data.
3. Be acquainted with the basics of transaction processing and concurrency control.
4. Familiarity with database storage structures and access techniques

UNIT I:
Database System Applications: database system Vs. file system, view of data, data abstraction, instances and schemas, data models, the ER model, relational model, other models, database languages, DDL, DML, database access for application programs, database users and administrator, transaction management, database system structure, storage manager, the query processor, history of data base systems, data base design and ER diagrams, beyond ER design entities, attributes and entity sets, relationships and relationship sets, additional features of ER model, concept design with the ER Model, conceptual design for large enterprises.

UNIT II:
Introduction to the Relational Model: integrity constraint over relations, enforcing integrity constraints, querying relational data, logical data base design, introduction to views, destroying/altering
tables and views, form of basic SQL query, examples of basic SQL queries, introduction to nested queries, correlated nested queries, set comparison operators, aggregation operators, NULL values, comparison using null values, logical connectivity's, AND, OR and NOT, impact on SQL constructs, outer joins, disallowing NULL values, complex integrity constraints in SQL, triggers and active data bases, Oracle, SQL Server, DB2.

UNIT III:
Relational Algebra: Selection and projection, set operations, renaming, Joins, Division, Examples of Algebra overviews, Relational calculus, Tuple relational Calculus, Domain relational calculus, Expressive Power of Algebra and calculus.

Schema refinement: Problems caused by redundancy, decompositions, problems related to decomposition, reasoning about functional dependencies, FIRST, SECOND, THIRD normal forms, BCNF, lossless join decomposition, dependency preserving decomposition, schema refinement in database design, multi valued dependencies, FOURTH normal form, FIFTH normal form.

UNIT IV:

UNIT V:

Text Books:

References:
2. Fundamentals of Database Systems, Elmasri Navrate Pearson Education
3. Introduction to Database Systems, C.J. Date Pearson Education
4. Oracle for Professionals, The X Team, S.Shah and V. Shah, SPD.
5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI.
OPEN ELECTIVE -II
CYBER SECURITY

Prerequisites
1. A Course on “Network Security and Cryptography”

Objectives
1. The purpose of the course is to educate on cyber security and the legal perspectives of cyber crimes and cyber offenses.
2. Introduce tools and methods for enhancing cyber security.
3. Topics include cyber crimes, cyber offenses, cyber crimes on mobile and wireless devices, tools and methods to prevent cyber crimes, legal perspectives of cyber crimes and cyber security, computer forensics, Intellectual Property Rights and cyber terrorism

Outcomes
1. Demonstrate the knowledge of cyber security and understand the Indian and Global Act concerning cyber crimes
2. Employ security and privacy methods in the development of modern applications such that personal data is protected; and provide safe Internet usage.

UNIT-I
Introduction to Cybercrime:
Introduction, Cybercrime and Information security, who are cyber criminals, Classification of Cyber crimes, Cybercrime: The legal Perspectives and Indian Perspective, Cybercrime and the Indian ITA 2000, A Global Perspective on Cyber crimes.

Cyber offenses: How criminals Plan Them

UNIT-II
Cybercrime: Mobile and Wireless Devices

UNIT III
Cyber crimes and Cyber Security: the Legal Perspectives
Introduction
Cyber Crime and Legal Landscape around the world, Why Do We Need Cyber laws: The Indian Context, The Indian IT Act, Challenges to Indian Law and Cybercrime Scenario In India, Digital signatures and the Indian IT Act, Amendments to the Indian IT Act, Cybercrime and Punishment Cyber law, Technology and Students: Indian Scenario.

Understanding Computer Forensics
Introduction, Historical background of Cyber forensics, Digital Forensics Science, The Need for Computer Forensics, Cyber Forensics and Digital evidence, Forensics Analysis of Email, Digital Forensics Lifecycle, Chain of Custody concept, Network Forensics, Approaching a computer, Forensics Investigation, Challenges in Computer Forensics, Special Tools and Techniques Forensics Auditing.

UNIT IV
Cyber Security: Organizational Implications
Introduction, cost of cyber crimes and IPR issues, web threats for organizations, security and privacy implications, social media marketing: security risks and perils for organizations, social computing and the associated challenges for organizations.

Cybercrime and Cyber terrorism:
Introduction, intellectual property in the cyberspace, the ethical dimension of cyber crimes the psychology, mindset and skills of hackers and other cyber criminals

UNIT V
Cybercrime: Illustrations, Examples and Mini-Cases
Examples:
Official Website of Maharashtra Government Hacked, Indian Banks Lose Millions of Rupees, Parliament Attack, Pune City Police Bust Nigerian Racket, e-mail spoofing instances.
Mini-Cases:
The Indian Case of online Gambling, An Indian Case of Intellectual Property Crime, Illustrations of Financial Frauds in Cyber Domain, Digital Signature-Related Crime Scenarios.

Text book:

Reference book:

JNTUH COLLEGE OF ENGINEERING HYDERABAD

3 0 0 3

CORROSION ENGINEERING OPEN ELECTIVE-II

Pre-requisites: NIL

Course Objectives:
1. To demonstrate electrometallurgy principles in deposition winning and the efficiency of the bath.
2. To determine corrosion rate/ resistance of metals and alloys.
3. To explain corrosion protection methods and tests.

Course Outcomes:
At the end of the course the student will be able:
1. To gain knowledge in various types of electrolytic cells and the processes taking place in them.
2. To obtain knowledge about the importance of controlling corrosion and its prevention measures.
3. The course is useful for higher studies, R&D, and also for getting into jobs in industries.

UNIT - I
Introduction, Electro Chemistry principles, electrochemical reactions, Polarization, passivity, environmental effects (oxygen, oxidizers, velocity, temperature, corrosive concentration, Galvanic coupling).

UNIT - II

UNIT - III
Intergranular corrosion: Sensitization, weld decay, Knife-Line attack, Stress corrosion cracking: crack morphology, stress effects, environmental factors, metallurgical factors, Erosion corrosion: cavitation damage, fretting corrosion, Corrosion fatigue.
UNIT - IV

UNIT - V
Modern theory and applications of corrosion: Introduction, free energy, cell potentials, emf series, applications of thermodynamics to corrosion, Corrosion rate expressions and measurements, corrosion testing.

Text / Reference Books:

JNTUH COLLEGE OF ENGINEERING HYDERABAD

TESTING OF MATERIALS 3 0 0 3
OPEN ELECTIVE-II

Pre-requisites: NIL

Course Objectives:
1. To gain and understanding of the response of various metals under the application of stress and/or temperature.
2. To build necessary theoretical back ground of the role of lattice defects in governing both elastic and plastic properties of metals will be discussed.
3. Obtain a working knowledge of various hardness testing machines BHN, VHN, RHN
4. Obtain a working knowledge of creep and fatigue and analysis of data.

Course Outcomes:
At the end of the course the student will be able to:
1. Classify mechanical testing of ferrous and non-ferrous metals and alloys.
2. Recognize the importance of crystal defects including dislocations in plastic deformation.
3. Identify the testing methods for obtaining strength and hardness.
4. Examine the mechanisms of materials failure through fatigue and creep

UNIT – I
Introduction, Importance of testing
Hardness Test: Methods of hardness testing – Brinell, Vickers, Rockwell hardness tests.
The Impact Test: Notched bar impact test and its significance, Charpy and Izod Tests, fracture toughness testing - COD and CTOD tests, significance of transition temperature curve.

UNIT - II
The Tension Test: Engineering stress-strain and True stress-strain curves. Tensile properties, conditions for necking, Stress-Strain diagrams for steel, Aluminum and cast iron.
UNIT - III

UNIT – IV
Creep and Stress Rupture: Introduction, The creep curve, Stress-rupture test, Structural changes during creep, Mechanism of creep deformation, theories of creep. Fracture at elevated temperature.

UNIT – V
NDT: Principle, Operation, Advantages and Limitations of Liquid Penetrant, Magnetic Particle, Radio graphy and Ultrasonic tests.

TEXT / REFERENCE BOOKS:
1. Mechanical Metallurgy – G. E. Dieter
2. Mechanical behavior - Ed. Wulf.

JNTUH COLLEGE OF ENGINEERING HYDERABAD

3 0 0 3

OPEN ELECTIVE-II
SOLID WASTE MANAGEMENT

Objectives:
- To know the Classification of solid waste and characterization of the same
- Understand the sense of onsite handling storage and collection systems including transportation
- Understand the different processing technologies of solid waste

Unit I

Unit II

Unit III

Unit IV

Unit V

Case studies: Major industries and management methods used in typical industries – Coal fired power stations, textile industry, oil refinery, distillery, sugar industry, and radioactive waste generation units.

Text Books:

Reference Books:

Outcomes:
The student will be able to

- Apply the knowledge of characterization of waste and develop a suitable management plan
- Assess the cost of transportation and laboratory processing of solid waste
- Identify hazardous nature of waste if any and can suggest suitable dumping methods.
- Suggest processing waste for material for energy recovery.

OPEN ELECTIVE- III
Pre Requisites: Environmental Engineering

Course Objectives:
This subject will cover various aspects of Environment Impact Assessment methodologies, impact of development activities. Impact on surface water, Air and Biological Environment, Environment legislation Environment.

Course Outcomes: Environmental Science

UNIT – I
Basic concept of EIA : Initial environmental Examination, Elements of EIA, - factors affecting E-I-A Impact evaluation and analysis, preparation of Environmental Base map, Classification of environmental parameters.

UNIT-II
Assessment of Impact of development Activities on Vegetation and wildlife, environmental Impact of Deforestation – Causes and effects of deforestation.

UNIT-III
Procurement of relevant soil quality, Impact prediction, Assessment of Impact significance, Identification and Incorporation of mitigation measures.

UNIT – IV
Environmental Audit & Environmental legislation objectives of Environmental Audit, Types of environmental Audit, Audit protocol, stages of Environmental Audit, onsite activities, evaluation of Audit data and preparation of Audit report, Post Audit activities.

UNIT - V

Text Books:

References:
3. Bhatia, H. S. - Environmental Pollution and Control, Galgotia Publication(P) Ltd, Delhi.
OPEN ELECTIVE-III
ENTERPRISE RESOURCE PLANNING

(Students must read text book. Faculty are free to choose any other cases)

Course Aim:
It enables the student to understand the foundations of Enterprise planning and ERP System Options.

Learning Outcome: The student understands the challenges in implementation of ERP system, ERP System Implementation options, and functional modules of ERP.

1. Introduction to ERP- Foundation for Understanding ERP systems-
Business benefits of ERP-The challenges of implementing ERP system-ERP modules and Historical Development.
Case: Response to RFP for ban ERP system (Mary Sumner).

Case: Atlantic Manufacturing (Mary Sumner).

3. ERP system Installation Options- IS/IT Management results-Risk Identification analysis-System Projects- Demonstration of system-Failure method-system Architecture & ERP (David L. Olson).
Case: DataSolutions & Technology Knowledge (Mary Sumner).

4. ERP - sales and Marketing- Management control process in sales and marketing-ERP customer relationship management-ERP systems-
Accounting & Finance control processes. Financial modules in ERP systems.
Case: Atlantic manufacturing (Mary Sumner).

5. ERP – Production and Material Management-Control process on production and manufacturing-Production module in ERP-
supply chain Management & e-market place-e-business & ERP-e supply chain & ERP- Future directions for ERP.
Case: HR in Atlantic manufacturing. (Mary Sumner).

Text Book:

References:
The objective of the course is to provide the basic concepts of Enterprise Resource Planning and Management of Information System.

Unit – 2: IS Security, Control and Audit– System Vulnerability and Abuse, business value of security and control, Need for Security, Methods of minimizing risks IS Audit, ensuring system quality.

References
- C.S.V. Murthy: Management Information System, Himalaya, 2009
- Vaman, ERP in Practice, TMH, 2009
- Dharminder and Sangeetha: Management Information Systems, Excel, 2009
- Olson: Managerial Issues of ERO, TMH, 2009
- Miller: MIS—Cases, Pearson, 2009
OPEN ELECTIVE-III

ORGANIZATIONAL BEHAVIOUR

The objective of the course is to provide the students with the conceptual framework and the theories underlying Organisational Behaviour.

Unit-1: Introduction to OB - Definition, Nature and Scope – Environmental and organizational context – Impact of IT, globalization, Diversity, Ethics, culture, reward systems and organizational design on Organisational Behaviour.

Cognitive Processes-I : Perception and Attribution: Nature and importance of Perception – Perceptual selectivity and organization - Social perception – Attribution Theories – Locus of control – Attribution Errors – Impression Management.

**Unit-3: Dynamics of OB-I: Communication – types - interactive communication in organizations – barriers to communication and strategies to improve the follow of communication - Decision Making: Participative decision making techniques – creativity and group decision making. Dynamics of OB –II Stress and Conflict: Meaning and types of stress – Meaning and types of conflict - Effect of stress and intra-individual conflict - strategies to cope with stress and conflict.

References

- Luthans, Fred: Organizational Behaviour 10/e, McGraw-Hill, 2009
- McShane: Organizational Behaviour, 3e, TMH, 2008
- Aswathappa: Orgganisational Behaviour,7/e,Himalaya, 2009
JNTUH COLLEGE OF ENGINEERING HYDERABAD

FUNDAMENTALS OF ROBOTICS
OPENELECTIVE -III

Pre-Requisites: None

Course outcomes:
After this completion of this course, the student should be able to understand three basic components of robots, differentiate types of robots and robot grippers, model forward and inverse kinematics of robot manipulators, analyse forces in links and joints of a robot, programme a robot to perform tasks in industrial applications, design intelligent robots using sensors.

Unit 1

Unit 2

Unit 3

Unit 4
Trajectory planning: Joint space scheme- Cubic polynomial fit-Obstacle avoidance in operation space-cubic polynomial fit with via point, blending scheme. Introduction Cartesian space scheme.

Textbooks:
2. Industrial Robotics/Grover/ McGraw hill
3. Robotics/ Mittal and Nagarath/ TMH

REFERENCE BOOKS:
1 Robot Dynamics and Controls / Spony and Vidyasagar / John Wiley
2 Robot Analysis and control Asada and Slotine / Wiley Inter-Science
3 Introduction to Robotics / John J Craig / Pearson Education
JNTUH COLLEGE OF ENGINEERING HYDERABAD

3 0 0 3

NON-CONVENTIONAL SOURCES OF ENERGY
OPEN ELECTIVE-III

Pre-requisites: None

Course Outcomes:
At the end of the course, the student will be able to identify renewable energy sources and their utilization. Understand the basic concepts of solar radiation and analyze the working of solar and thermal systems. Understand principles of energy conversion from alternate sources including wind, geothermal, ocean, biomass, biogas and hydrogen. Understand the concepts and applications of fuel cells, thermoelectric convertor and MHD generator. Identify methods of energy storage for specific applications

UNIT – I
PRINCIPLES OF SOLAR RADIATION: Role and potential of new and renewable source, the solar energy option, Environmental impact of solar power - Physics of the sun, the solar constant, extraterrestrial and terrestrial solar radiation, Solar radiation on tilted surface, Instruments for measuring solar radiation and sun shine, solar radiation data.

SOLAR ENERGY COLLECTION: Flat plate and concentrating collectors, classification of concentrating collectors, orientation and thermal analysis, advanced collectors.

UNIT - II
SOLAR ENERGY STORAGE AND APPLICATIONS: Different methods, sensible, latent heat and stratified storage, solar ponds. Solar applications - solar heating/cooling techniques, solar distillation and drying, photovoltaic energy conversion.

WIND ENERGY: Sources and potentials, horizontal and vertical axis windmills, performance characteristics, Betz criteria

UNIT - III

UNIT – IV
GEOTHERMAL ENERGY: Resources, types of wells, methods of harnessing the energy, potential in India.

UNIT – V
DIRECT ENERGY CONVERSION: Need for DEC, Carnot cycle, limitations, Principles of DEC. Thermo-electric generators, Seebeck, Peltier and Joule Thompson effects, figure of merit, materials, applications, MHD generators, principles, dissociation and ionization, hall effect, magnetic flux, MHD accelerator, MHD engine, power generation systems, electron gas dynamic conversion, economic aspects. Fuel cells, principle, faraday’s laws, thermodynamic aspects, selection of fuels and operating conditions.

TEXT BOOKS:
1. Renewable Energy Resources / Tiwari and Ghosal / Narosa
2. Non-conventional Energy Sources / G.D. Rai

REFERENCE BOOKS:
1. Renewable Energy Sources / Twidell & Weir
2. Solar Energy / Sukhame
5. Non-Conventional Energy / Ashok V Desai / Wiley Eastern
7. Renewable Energy Technologies / Ramesh & Kumar / Narosa
JNTUH COLLEGE OF ENGINEERING HYDERABAD

L T P C
3 0 0 3

ASPECTS OF HEAT TRANSFER IN ELECTRONICALLY CONTROLLED UNITS
OPEN ELECTIVE-III

Pre-requisites: None

Outcomes:
After the course student should be able to analyse conduction, convection and radiation heat transfer modes, heat generation, conduction and dissipation in electronically controlled units.

UNIT-I
Conduction Heat transfer: Modes of heat transfer, Fourier’s law of steady state heat conduction (one dimensional conduction), thermal conductivity and its unit, conduction through slab or plane wall, hollow cylinders and spheres conduction through composite walls and hollow cylinders and spheres with multilayers, Convective heat transfer, Newton’s law of cooling, electrical analogy and overall heat transfer coefficient, numerical problems

UNIT-II
Convective and radiation Heat transfer:
Dimensional analysis as a tool for experimental investigation, Buckingham pi theorem and method, radiation and radiation properties of surfaces, black body, emissive power, Stefan Boltzmann’s law, emissivity, monochromatic emissive power and monochromatic emissivity, grey body, Kirchoff’s law, Wien’s displacement law, numerical problems.

UNIT - III
Cooling of Electronic equipment:
Introduction and history, manufacturing of electronic equipment, cooling load of electronic equipment, thermal environment, electronics cooling in different applications, conduction cooling, air cooling: natural convection and radiation, air cooling: forced convection, liquid cooling, immersion cooling, heat pipes, cooling of chips, PCBs, computers, logic chips etc.

UNIT - IV
Refrigeration and Air conditioning: Introduction to refrigeration, necessity and applications, unit of refrigeration and cop, Principle of vapour compression and absorption system – Layout of typical domestic refrigerator – Window and Split type room Air conditioner.

UNIT-V

Text books:
3. A course in Refrigeration and Air conditioning – SC Arora and & Domkundwar / Dhanapratii

Reference books:
PRINCIPLES OF COMPUTER COMMUNICATIONS AND NETWORKS
OPEN ELECTIVE-III

Prerequisite : Nil

Course Objectives:
- To understand the concept of computer communication.
- To learn about the networking concept, layered protocols.
- To understand various communications concepts.
- To get the knowledge of various networking equipment.

Course Outcomes:
- The student can get the knowledge of networking of computers, data transmission between computers.
- Will have the exposure about the various communication concepts.
- Will get awareness about the structure and equipment of computer network structures.

UNIT-I
Overview of Computer Communications and Networking:

UNIT-II
Essential Terms and Concepts:
Computer Applications and application protocols, Computer Communications and Networking models, Communication Service Methods and data transmission modes, analog and Digital Communications, Speed and capacity of a Communication Channel, Multiplexing and switching, Network architecture and the OSI reference model.

UNIT-III
Analog and Digital Communication Concepts:
Representing data as analog signals, representing data as digital signals, data rate and bandwidth reduction, Digital Carrier Systems.

UNIT-IV
Physical and data link layer Concepts:
The Physical and Electrical Characteristics of wire, Copper media, fiber optic media, wireless Communications. Introduction to data link Layer, the logical link control and medium access control sub-layers.

UNIT-V
Network Hardware Components:
Introduction to Connectors, Transreceivers and media convertors, repeaters, network interference cards and PC cards, bridges, switches, switches Vs Routers.

Text Books:

Reference Books:
JNTUH COLLEGE OF ENGINEERING HYDERABAD

B.Tech. C.S.E

3 0 0 3

OPEN ELECTIVE -III
WEB TECHNOLOGIES

Prerequisites
1. A Course on “Computer Programming and Data Structures”

Objectives
1. To learn the basic web concepts and Internet protocols
2. To introduce XML and processing of XML data
3. To introduce client side scripting with Javascript and DHTML
4. To introduce server side programming with Java servlets and JSP

Outcomes
1. Ability to create dynamic and interactive web sites
2. Gain knowledge of client side scripting using java sript and DHTML
3. Demonstrate understanding of what is XML and how to parse and use XML data
4. Able to do server side programming with Java Servelets and JSP

UNIT I: Introduction
Web Essentials - Clients, Servers and Communication:

UNIT II: Client-Side Programming
Introduction to JavaScript, JavaScript in Perspective, Basic Syntax, Variables and Data Types, Statements, Operators, Literals, Functions, Objects, Arrays, Built-in Objects, JavaScript Debuggers.

UNIT III: Server-Side Programming
Java Servlets: Servlet Architecture, Servlets Generating Dynamic Content, Servlet Life Cycle, Parameter Data, Sessions, Cookies, URL Rewriting, Case Study.

UNIT IV: Representing Web Data

UNIT V: Separating Programming and Presentation
JSP Technology: Introduction to JavaServer Pages, Running JSP Applications, Basic JSP, JavaBeans Classes and JSP, Tag Libraries and Files, Support for the Model-View-Controller Paradigm, Case Study.

TEXT BOOKS:
1. Web Technologies: A Computer Science Perspective, Jeffrey C. Jackson, Pearson Education

REFERENCES:
4. Paul Dietel and Harvey Deitel, "Java How to Program", Prentice Hall of India, 8th Edition
OPEN ELECTIVE - III
SIMULATION AND MODELING

Prerequisites
1. A course on “Computer Oriented Statistical Methods”

Objectives
1. The overall aim of the course is to provide an understanding of methods, techniques and tools for modeling, simulation and performance analysis of complex systems
2. The topics include system models and studies; random number generation; simulation of continuous and discrete systems; simulation of queuing systems and pert networks
3. The course also provides practical knowledge of simulation experimentation and introduces simulation languages.

Outcomes
1. Ability to construct a model for a given system/set of data.
2. Ability to generate and test random number variates and apply them to develop simulation models.
3. Ability to interpret the model and apply the results to resolve issues in a real world environment

Unit-I:
System Models and Studies

Unit-II:
Random Number Generation: Properties, Generation of Pseudo-Random Numbers, Techniques of generating random numbers, tests for random numbers

Unit-III:
Simulation of Continuous and Discrete Systems
Simulation of Continuous Systems: A chemical reactor, Numerical integration vs. continuous system simulation. Selection of an integration formula, Runge-Kutta integration formulas, Simulation of a servo system, Simulation of a water reservoir system, Analog vs. digital simulation.
Discrete System Simulation: Fixed time-step vs. event-to-event model, On simulating randomness, Generation of random numbers, Generation of non-uniformly distributed random numbers, Monte-Carlo computation vs. stochastic simulation.

Unit-IV:
Simulation of Queuing Systems: Rudiments of queuing theory, Simulation of a single-server queue, Simulation of a two-server queue, Simulation of more general queues.

Unit-V:
Simulation Experimentation
Design and Evaluation of Simulation Experiments: Length of simulation runs, Variance reduction techniques, Experimental layout, Validation.
Simulation Languages: Continuous and discrete simulation languages, Continuous simulation languages, Block-structured continuous simulation languages, Expression-based languages, Discrete-system simulation languages, GPSS.

Text Books

Reference Books
1. System Modeling and Simulation: An Introduction, Frank L. Severance, Wiley Publisher, 2005
JNTUH COLLEGE OF ENGINEERING HYDERABAD

 3 0 0 3

SURFACE ENGINEERING
OPEN ELECTIVE-III

Pre-requisites: Thermodynamics, Physical Metallurgy.

Course Objectives:
1. To provide a state-of-the-art knowledge to the students and various surface engineering techniques.

Unit-I
Introduction to surface modification, need for surface modification, surface properties, surface property modification, history of surface modification

Unit-II
Plating and coating process: concept of coating, types of coatings, properties of coatings, hard facing, anodizing, PVD, CVD, Electro deposition Electro less deposition, hot deposition, hot dipping.

Unit-III
Thermo-chemical Processes: carburizing, nitriding, carbonitriding, nitro carburizing, Boronising, Plasma nitriding, thermal spraying, Plasma spraying.

Unit-IV

Unit-V
General design principles related to surface engineering, design guidelines for surface preparation, surface engineering solution to specific problems.

Course Outcomes:
1. This course provides an opportunity to the students to engineer the microstructure for an enhanced performance based on the need in actual practice.

Text books/References:
Pre-requisites: Physics, chemistry

Course Objective:
1. This course is primarily intended to expose the students to a highly interdisciplinary subject.
2. This would emphasize on the classification, synthesis and applications of Nano materials.

Course Outcomes:
The student will be able to design a component/material that would provide us a ‘better tomorrow’ via nanotechnology.

Unit I
Introduction

Unit II
Materials of Nano Technology

UNIT-III
Nano Particles: Introduction Synthesis procedures -- wet chemical approach & physical vapor synthesis approach, size effect and shape change and their properties —examples of systems involved characterization techniques properties & their applications

UNIT- IV
Nano Wires: Introduction --- Various synthesis procedures (template assisted method and VLS methods) Principles, characterization procedures, properties and applications of Nano wires
Carbon Nano Tubes: Synthesis procedures properties and applications of carbon Nano tubes.

UNIT-V
Thin films deposition and Doping. Applications of Thin films.

TEXT / REFERENCE BOOKS
2. Nano Essentials: T. Pradeep, TMH
3. Springer Handbook of Nanotechnology
4. The Guest for new materials Author S. T. Lakshmi Kumar, Published by Vigyan Prasar.
INDUSTRIAL SAFETY & HAZARD MANAGEMENT

Objective: The student will be exposed to various industrial hazards and prevention and control methods.

UNIT I

UNIT II
Toxicology: How toxicants enter biological organisms, How toxicants are eliminated from biological organisms.
Industrial Hygiene: Government regulations, Identification, Evaluation, Control.

UNIT III
Fires and Explosions: The fire triangle, Distinction between fire and explosions; Definitions, Flammability characteristics of liquids and vapors, MOC and inerting, ignition energy, Auto ignition, Auto oxidation, Adiabatic compression, Explosions.

UNIT IV
Designs to prevent fires and explosions: Inerting, Explosion proof equipment and instruments, Ventilations, Sprinkler systems. Introduction to Reliefs: Relief concepts, Definitions, Location of reliefs, Relief types, Data for sizing reliefs, Relief systems.

UNIT V
Relief Sizing: Conventional spring operated reliefs in liquids, Conventional spring operated relief’s in vapor or gas service, Rupture disc relief’s in liquid, vapour or gas service. Hazards Identification: Process hazards checklists, Hazard surveys, Hazop safety reviews.

TEXT BOOK:

REFERENCES:

OUTCOME: The student will be equipped with the knowledge by which thorough safety is ensured in the organization.

Prerequisite: Nil