I Semester

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Core/Elective</th>
<th>Course Name</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Core 1</td>
<td>Power Electronic Converters</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>Core 2</td>
<td>Machine Modeling and Analysis</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>PE1</td>
<td>1. Power Electronics for Renewable Energy Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Smart Grid Technologies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Dynamics of Electrical Machines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Modern Control Theory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>PE2</td>
<td>1. Power Semiconductor Devices and Modelling</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Reactive Power Compensation and Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. High Frequency Magnetic Components</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Hybrid Electric Vehicles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Research Methodology and IPR</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Lab 1</td>
<td>Machine Modelling and Analysis Lab</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>7.</td>
<td>Lab 2</td>
<td>Power Electronic Converters Lab</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>Audit-I</td>
<td>Audit I</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

II Semester

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Core/Elective</th>
<th>Course Name</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Core 3</td>
<td>Advanced Power Electronic Converters</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>Core 4</td>
<td>Electrical Drives</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>PE3</td>
<td>1. Industrial Load Modelling and Control</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Advanced Digital Signal Processing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. SCADA Systems and Applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. PWM Converters and Applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>PE4</td>
<td>1. Advanced Microcontroller Based Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Distributed Generation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Power Quality</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Integration of Energy Sources</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Mini Project with Seminar</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Lab 3</td>
<td>Advanced Power Electronic Converters Lab</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>7.</td>
<td>Lab 4</td>
<td>Electrical Drives Lab</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>Audit-II</td>
<td>Audit II</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>
III Semester

<table>
<thead>
<tr>
<th>Sr.No</th>
<th>Core/Elective</th>
<th>Course Name</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>PE5</td>
<td>1. Reliability Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Flexible AC Transmission Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. HVDC Transmission</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Energy Storage Technologies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>OE</td>
<td>1. Business Analytics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Industrial Safety</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Operations Research</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Composite Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Energy from Waste</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Major Project</td>
<td>Phase-I Dissertation</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

IV Semester

<table>
<thead>
<tr>
<th>Sr.No</th>
<th>Core/Elective</th>
<th>Course Name</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Major Project</td>
<td>Phase-II Dissertation</td>
<td>0</td>
<td>0</td>
<td>32</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Total Credits: 68

Audit Course I&II

1. English for Research Paper Writing
2. Disaster Management
3. Sanskrit for Technical Knowledge
4. Value Education
5. Constitution of India
6. Pedagogy Studies
7. Stress Management by Yoga
8. Personality Development through Life Enlightenment Skills
M. Tech – I Semester

POWER ELECTRONIC CONVERTERS
(Core 1)

Prerequisite: Power Electronics

Course Objectives:
- To understand the characteristics and principle of operation of modern power semiconductor devices.
- To comprehend the concepts of different power converters and their applications.
- To analyze and design switched mode regulators for various industrial applications.

Course Outcomes: At the end of the course, the student is able to:
- Choose appropriate device for a particular converter topology.
- Use power electronic simulation packages for analyzing and designing power converters.

UNIT-I:
AC VOLTAGE CONTROLLERS
Single phase AC voltage controllers with Resistive, Resistive-inductive and Resistive-inductive-induced e.m.f. loads – ac voltage controllers with PWM Control – Effects of source and load inductances - Synchronous tap changers.
Three phase AC voltage controllers – Analysis of controllers with star and delta Connected Resistive, Resistive-inductive loads – Effects of source and load Inductances – Applications & Problems.

UNIT-II:
CYCLO-CONVERTERS

UNIT-III:
SINGLE PHASE & THREE PHASE CONVERTERS

UNIT-IV:
D.C. TO D.C. CONVERTERS

UNIT-V:
PULSE WIDTH MODULATED INVERTERS

TEXT BOOKS:

REFERENCES:

1. Milliman Shepherd and Lizang –“Power converters circuits” – Chapter 14 (Matrix converter) PP-415-444,
2. M.H.Rashid - Power electronics hand book –
MACHINE MODELING AND ANALYSIS
(Core 2)

Prerequisite: Electrical Machines

Course Objectives:
- Identifying the methods and assumptions in modeling of machines.
- Recognize the different frames for modeling of AC machines.
- To write voltage and torque equations in state space form for different machines.

Course Outcomes: At the end of the course, the student is able to:
- Develop the mathematical models of various machines like, induction motor and Synchronous machines, permanent magnet synchronous motor, brushless DC motor using modeling equations.
- Analyze the developed models in various reference frames.

UNIT-I:

UNIT-II:
Linear transformation – Phase transformation (a, b, c to α, β, o) – Active transformation (α, β, o to d, q). Circuit model of a 3 phase Induction motor – Linear transformation - Phase Transformation – Transformation to a Reference frame – Two axis models for induction motor - dq model based DOL starting of Induction Motors

UNIT-III:

UNIT-IV:

UNIT-V:
Modeling of Permanent Magnet Synchronous motor – Modeling of Brushless DC Motor.

TEXT BOOKS:
2. Analysis of electric machinery and Drives systems - Paul C. Krause, Oleg wasynezuk, Scott D. Sudhioff.

REFERENCES:
1. Thyristor control of Electric Drives - VedamSubramanmanyam.
2. Power System Stability and Control – Prabha Kundur, EPRI.
Prerequisite: Power Electronics, Renewable Energy Systems

Course Objectives:
- To provide knowledge about the stand-alone and grid-connected renewable energy systems.
- To equip with required skills to derive the criteria for the design of power converters for renewable energy applications.
- To analyze and comprehend the various operating modes of wind electrical generators and solar energy systems.
- To design different power converters namely AC to DC, DC to DC and AC to AC converters for renewable energy systems. To develop maximum power point tracking algorithms.

Course Outcomes: At the end of the course, the student is able to:
- Ability to understand and analyze power system operation, stability, control, and protection.
- Ability to handle the engineering aspects of electrical energy generation and utilization.

UNIT-I:
INTRODUCTION
Environmental aspects of electric energy conversion: impacts of renewable energy generation on environment (cost-GHG Emission) - Qualitative study of different renewable energy resources: Solar, wind, ocean, Biomass, Fuel cell, Hydrogen energy systems and hybrid renewable energy systems.

UNIT-II:
ELECTRICAL MACHINES FOR RENEWABLE ENERGY CONVERSION
Reference theory fundamentals-principle of operation and analysis: IG, PMSG, SCIG and DFIG.

UNIT-III:
POWER CONVERTERS
Solar: Block diagram of solar photo voltaic system -Principle of operation: line commutated converters (inversion-mode) - Boost and buck-boost converters- selection of inverter, battery sizing, array sizing
Wind: Three phase AC voltage controllers- AC-DC-AC converters: uncontrolled rectifiers, PWM Inverters, Grid Interactive Inverters-matrix converters.

UNIT-IV:
ANALYSIS OF WIND AND PV SYSTEMS
Stand alone operation of fixed and variable speed wind energy conversion systems and solar system
Grid connection Issues -Grid integrated PMSG, SCIG Based WECS, grid Integrated solar system

UNIT-V:
HYBRID RENEWABLE ENERGY SYSTEMS
Need for Hybrid Systems- Range and type of Hybrid systems- Case studies of Wind-PV Maximum Power Point Tracking (MPPT).

TEXT BOOKS:

REFERENCES:
SMART GRID TECHNOLOGIES

(PE1.2)

Prerequisite: Power Systems, Electrical Measurements, Power Quality

Course Objectives:
- Understand concept of smart grid and its advantages over conventional grid
- Know smart metering techniques
- Learn wide area measurement techniques
- Understanding the problems associated with integration of distributed generation & its solution through smart grid.

Course Outcomes: At the end of the course, the student is able to:
- Appreciate the difference between smart grid & conventional grid
- Apply smart metering concepts to industrial and commercial installations
- Formulate solutions in the areas of smart substations, distributed generation and wide area measurements
- Come up with smart grid solutions using modern communication technologies

UNIT-I:
Introduction to Smart Grid, Evolution of Electric Grid, Concept of Smart Grid, Definitions, Need of Smart Grid, Concept of Robust & Self Healing Grid Present development & International policies in Smart Grid. Introduction to Smart Meters, Real Time Pricing, Smart Appliances, Automatic Meter Reading (AMR), Outage Management System (OMS), Plug in Hybrid Electric Vehicles (PHEV), Vehicle to Grid, Smart Sensors, Home & Building Automation, Smart Substations, Substation Automation, Feeder Automation.

UNIT-II:
Geographic Information System (GIS), Intelligent Electronic Devices (IED) & their application for monitoring & protection, Smart storage like Battery, SMES, Pumped Hydro, Compressed Air Energy Storage, Wide Area Measurement System (WAMS), Phase Measurement Unit (PMU)

UNIT-III:
Concept of micro-grid, need & applications of micro-grid, formation of micro-grid, Issues of interconnection, protection & control of micro-grid, Plastic & Organic solar cells, Thin film solar cells, Variable speed wind generators, fuel-cells, micro-turbines, Captive power plants, Integration of renewable energy sources

UNIT-IV:
Power Quality & EMC in Smart Grid, Power Quality issues of Grid connected Renewable Energy Sources, Power Quality Conditioners for Smart Grid, Web based Power Quality monitoring, Power Quality Audit

UNIT-V:
Advanced Metering Infrastructure (AMI), Home Area Network (HAN), Neighborhood Area Network (NAN), Wide Area Network (WAN), Bluetooth, ZigBee, GPS, Wi-Fi, Wi-Max based communication, Wireless Mesh Network, Basics of CLOUD Computing & Cyber Security for Smart Grid, Broadband over Power line (BPL), IP based protocols

TEXT BOOKS:
REFERENCES:
DYNAMICS OF ELECTRICAL MACHINES (PE1.3)

Prerequisite: Machine Modeling and Analysis

Course Objectives:
- To introduce generalized modeling of electrical machines
- To analyze different electrical machines with dynamic modeling

Course Outcomes: After taking this course, the student will be able to:
- Understand the basic mathematical analysis of electrical machines and its characteristics.
- Understand behavior of electrical machines under steady state and transient state.
- Understand dynamic modeling of electrical machines.

UNIT-I:
BASIC MACHINE THEORY

UNIT-II:
ELECTRODYNAMICAL EQUATION & THEIR SOLUTIONS
Spring and Plunger system - Rotational motion – mutually coupled coils – Lagrange’s equation – Application of Lagrange’s equation solution of Electro dynamical equations.

UNIT-III:
DYNAMICS OF DC MACHINES

UNIT-IV:
INDUCTION MACHINE DYNAMICS

UNIT-V:
SYNCHRONOUS MACHINE DYNAMICS

TEXT BOOKS:

REFERENCES:
1. Thyristor control of Electric Drives - VedamSubranmanyam.
MODERN CONTROL THEORY

(PE1.4)

Prerequisite: Control Systems

Course Objectives:

- To explain the concepts of basics and modern control system for the real time analysis and design of control systems.
- To explain the concepts of state variables analysis.
- To study and analyze non linear systems.
- To analyze the concept of stability for nonlinear systems and their categorization.
- To apply the comprehensive knowledge of optimal theory for Control Systems.

Course Outcomes: Upon completion of this course, students should be able to

- Various terms of basic and modern control system for the real time analysis and design of control systems.
- To perform state variables analysis for any real time system.
- Apply the concept of optimal control to any system.
- Able to examine a system for its stability, controllability and observability.
- Implement basic principles and techniques in designing linear control systems.
- Formulate and solve deterministic optimal control problems in terms of performance indices.
- Apply knowledge of control theory for practical implementations in engineering and network analysis.

UNIT-I: MATHEMATICAL PRELIMINARIES AND STATE VARIABLE ANALYSIS

UNIT-II: CONTROLLABILITY AND OBSERVABILITY

General concept of controllability – Controllability tests, different state transformations such as diagonalization, Jordan canonical forms and Controllability canonical forms for Continuous-Time Invariant Systems – General concept of Observability – Observability tests for Continuous-Time Invariant Systems – Observability of different State transformation forms.

UNIT-III: STATE FEEDBACK CONTROLLERS AND OBSERVERS

State feedback controller design through Pole Assignment, using Ackkermans formula– State observers: Full order and Reduced order observers.

UNIT-IV: NON-LINEAR SYSTEMS

UNIT-V: STABILITY ANALYSIS

TEXT BOOKS:
1. M.Gopal, Modern Control System Theory, New Age International - 1984

REFERENCES:
POWER SEMICONDUCTOR DEVICES AND MODELLING
(PE2.1)

Prerequisite: Power Electronics

Course Objectives:
- To improve power semiconductor device structures for adjustable speed motor control applications.
- To understand the static and dynamic characteristics of current controlled power semiconductor devices.
- To understand the static and dynamic characteristics of voltage controlled power semiconductor devices.
- To enable the students for the selection of devices for different power electronics applications.
- To understand the control and firing circuit for different devices.

Course Outcomes: Upon completion of this course, students should be able to:
- Know the operating characteristics of various basic semiconductor devices and switches.
- Understand the advanced power semiconductor devices operation.
- Know the modeling of basic and advanced semiconductor devices and switches through simulation.
- Analyze the applications of various power semiconductor switches.

UNIT-I:
POWER DIODES: Basic structure and V-I characteristics, breakdown voltages and control, on-state losses, switching characteristics-turn-on transient, turn off transient and reverse recovery transient, Schottky diodes, snubber requirements for diodes, diode snubber, modelling and simulation of Power diodes. 5 Hrs. Power BJT’S: Basic structure and V-I characteristics, breakdown voltages and control, secondary breakdown and its control- FBSOA and RBSOA curves - on state losses, switching characteristics, resistive switching specifications, clamped inductive switching specifications, turnon transient, turn-off transient, storage time, base drive requirements, switching losses.

UNIT-II:
POWER BJT’S: Device protection- snubber requirements for BJT’S and snubber design switching aids, modeling and simulation of power BJT’S.
SILICON CONTROLLED RECTIFIERS (THYRISTORS): Basic structure, V-I characteristics, turn-on process, on-state operation, turn-off process, switching characteristics, turn-on transient and di/dt limitations, turn-off transient, turnoff time and reapplied dv/dt limitations, gate drive requirements, ratings of thyristors, snubber requirements and snubber design, modelling and simulation of Thyristor.
TRIACS: Basic structure and operation-I characteristics, ratings, snubber requirements, modelling and simulation of triacs.

UNIT-III:
GATE TURNOFF THYRISTOR (GTO): Basic structure and operation, GTO switching characteristics, GTO turn-on transient, GTO turn-off transient, minimum on and off state times, gate drive requirements, maximum controllable anode current, over current protection of GTO’S, modelling and simulation of GTO’S.
POWER MOSFET’S: Basic structure, V-I characteristics, turn-on process, on state operation, turnoff process, switching characteristics, resistive switching specifications, clamped inductive switching specifications - turn-on transient and di/dt limitations, turn-off transient, turn off time, switching losses, effect of reverse recovery transients on switching stresses and losses - dv/dt limitations, gating requirements, gate charge - ratings of MOSFET’S, FBSOA and RBSOA curves, device protection - snubber requirements, modeling and simulation of Power MOSFET’S.
UNIT-IV:
INSULATED GATE BIPOLAR TRANSISTORS (IGBT’S): Basic structure and operation, latch up IGBT, switching characteristics, resistive switching specifications, clamped inductive switching specification – IGBT turn-on transient, IGBT turn off transient- current tailing - gating requirements ,ratings of IGBT’S, FBSOA and RBSOA curves, switching losses – minimum on and off state times, switching frequency capability – overcurrent protection of IGBT’S, short circuit protection, snubber requirements and snubber design.

UNIT-V:
ADVANCED POWER SEMICONDUCTOR DEVICES: MOS gated thyristors, MOS controlled thyristors or MOS GTO’S, base resistance controlled thyristors, emitter switched thyristor, thermal design of power electronic equipment, modelling and simulation, heat transfer by conduction, transient thermal impedance, heat sinks, heat transfer by radiation and convection - heat sinkselection for power semiconductor devices.

TEXT BOOKS:

REFERENCES:

Prerequisite: Power Systems

Course Objectives:
- To identify the necessity of reactive power compensation
- To describe load compensation
- To select various types of reactive power compensation in transmission systems
- To illustrate reactive power coordination system
- To characterize distribution side and utility side reactive power management.

Course Outcomes: Upon the completion of this course, the student will be able to
- Distinguish the importance of load compensation in symmetrical as well as un symmetrical loads
- Observe various compensation methods in transmission lines
- Construct model for reactive power coordination
- Distinguish demand side reactive power management & user side reactive power management

UNIT-I: LOAD COMPENSATION
Objectives and specifications – reactive power characteristics – inductive and capacitive approximate biasing – Load compensator as a voltage regulator – phase balancing and power factor correction of unsymmetrical loads- examples.

UNIT-II: STEADY–STATE REACTIVE POWER COMPENSATION IN TRANSMISSION SYSTEM
Uncompensated line – types of compensation – Passive shunt and series and dynamic shunt compensation – examples

TRANSIENT STATE REACTIVE POWER COMPENSATION IN TRANSMISSION SYSTEMS:

UNIT-III: REACTIVE POWER COORDINATION
Objective – Mathematical modeling – Operation planning – transmission benefits – Basic concepts of quality of power supply – disturbances- steady –state variations – effects of under voltages – frequency – Harmonics, radio frequency and electromagnetic interferences

UNIT-IV: DEMAND SIDE MANAGEMENT
Load patterns – basic methods load shaping – power tariffs- KVAR based tariffs penalties for voltage flickers and Harmonic voltage levels

DISTRIBUTION SIDE REACTIVE POWER MANAGEMENT:

UNIT-V: USER SIDE REACTIVE POWER MANAGEMENT
KVAR requirements for domestic appliances – Purpose of using capacitors – selection of capacitors – deciding factors – types of available capacitor, characteristics and Limitations
REACTIVE POWER MANAGEMENT IN ELECTRIC TRACTION SYSTEMS AND ARC FURNACES:
Typical layout of traction systems – reactive power control requirements – distribution transformers-
Electric arc furnaces – basic operations- furnaces transformer –filter requirements – remedial measures –
power factor of an arc furnace

TEXT BOOKS:

REFERENCES:
HIGH FREQUENCY MAGNETIC COMPONENTS
(PE2.3)

Prerequisite: None

Course Objectives:
- To have a knowledge on magnetic circuits
- To know the skin effect and proximity effect

Course Outcomes: Upon the completion of this course, the student will be able to
- Design of magnetic components (i.e., inductor and transformer) in a converter.
- Perform steady-state analysis of switched mode power supply.
- Understand core loss in an electromagnetic device, recognize& describe its effect.
- Describe the engineering uses of electromagnetic waves, by frequency band, and the respective hazards associated with them

UNIT-I:

UNIT-II:

UNIT-III:

UNIT-IV:

UNIT-V:

TEXT BOOKS:

REFERENCES:
3. “Thompson --- Electrodynamc Magnetic Suspension.pdf”
5. P. L. Dowell, "Effects of eddy currents in transformer windings.pdf”
6. Dixon---- “Eddy current losses in transformer windings.pdf”
8. Texas Instruments --- “Windings.pdf”
HYBRID ELECTRIC VEHICLES (PE2.4)

Prerequisite: Power Electronics, Power Semiconductor Drives, Advanced control of Electric Drives

Course Objectives:
- To understand upcoming technology of hybrid system
- To understand different aspects of drives application
- Learning the electric Traction

Course Outcomes: Upon the completion of this course, the student will be able to
- Acquire knowledge about fundamental concepts, principles, analysis and design of hybrid and electric vehicles.
- To learn electric drive in vehicles / traction.

UNIT-I:
History of hybrid and electric vehicles, Social and environmental importance of hybrid and electric vehicles, Impact of modern drive-trains on energy supplies, Basics of vehicle performance, vehicle power source characterization, Transmission characteristics, Mathematical models to describe vehicle performance

UNIT-II:
Basic concept of hybrid traction, Introduction to various hybrid drive-train topologies, Power flow control in hybrid drive-train topologies, Fuel efficiency analysis.

UNIT-III:
Introduction to electric components used in hybrid and electric Vehicles, Configuration and control of DC Motor drives, Configuration and control of Introduction Motor drives configuration and control of Permanent Magnet Motor drives Configuration and control of Switch Reluctance, Motor drives, drive system efficiency

UNIT-IV:
Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics Selecting the energy storage technology, Communications, supporting subsystems

UNIT-V:
Introduction to energy management and their strategies used in hybrid and electric vehicle, Classification of different energy management strategies Comparison of different energy management strategies Implementation issues of energy strategies

TEXT BOOKS
2. Siew-Chong Tan, Yuk-Ming Lai, Chi Kong Tse, “Sliding mode control of switching Power Converters”

REFERENCES:
RESEARCH METHODOLOGY AND IPR

Prerequisite: --

Course Objectives:
- To understand the research problem
- To know the literature studies, plagiarism and ethics
- To get the knowledge about technical writing
- To analyze the nature of intellectual property rights and new developments
- To know the patent rights

Course Outcomes: At the end of this course, students will be able to
- Understand research problem formulation.
- Analyze research related information
- Follow research ethics
- Understand that today’s world is controlled by Computer, Information Technology, but tomorrow’s world will be ruled by ideas, concept, and creativity.
- Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular.
- Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.

UNIT-I:
Effective literature studies approaches, analysis Plagiarism, Research ethics

UNIT-II:
Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee

UNIT-III:

UNIT-IV:

UNIT-V:
New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.
TEXT BOOKS:

2. Wayne Goddard and Stuart Melville, “Research Methodology: An Introduction”

REFERENCES:

Prerequisite: Electrical Machines, Machine Modelling Analysis

Course Objectives:
- Identifying the methods and assumptions in modeling of machines.
- Recognize the different frames for modeling of AC machines.
- To write voltage and torque equations in state space form for different machines.

Course Outcomes: At the end of the course, the student is able to:
- Develop the mathematical models of various machines like, induction motor and Synchronous machines, permament magnet synchronous motor, brushless DC motor using modeling equations.
- Analyze the developed models in various reference frames.

1. Develop a dynamic model of open loop controlled dc motor
2. Develop a dynamic model of closed loop controlled dc motor
3. Convert ABC voltages into stationary frame
4. Convert ABC voltages into synchronous frames
5. Convert ABC voltages into rotor reference frames
6. Develop dynamic model of 3-phase Induction motor and generator
7. Develop a mathematical model for V/f controlled 3-phase Induction motor
8. Develop a mathematical model for 3-phase Synchronous motor
9. Develop a mathematical model for 3-phase Permanent Magnet Synchronous motor
10. Develop a mathematical model for Brushless DC Motor
11. Develop a dynamic model for closed loop control of Induction Motor
12. Develop a dynamic model for closed loop control of Synchronous motor

Note: Conduct any 10 experiments from the above using any simulation tool
Prerequisite: Power Electronic Converters

Course Objectives:
Upon successful completion of the lab students will be familiar with:

- Simulation of various AC-AC, AC-DC, DC-DC, DC-AC converter topologies

Course Outcomes:
At the end of the course, the student should be able to:

- Simulate AC-AC Converters
- Simulate AC-DC Converters
- Simulate DC-DC Converters
- Simulate DC-AC Converters
- Analysis of various converter topologies developed

PART-A

2. Single phase semi converter using RL and E loads.
3. Three phase full converter using RL and E loads.
4. Three phase semi converter using RL and E loads.
7. Three phase six stepped inverter
8. Three-phase inverter with PWM controller.
9. BUCK, BOOST and CUCK regulators
10. Space vector PWM converter

Note: Conduct any 5 hardware experiments from PART-A

PART-B

2. Single phase semi converter using RL and E loads.
3. Three phase full converter using RL and E loads.
4. Three phase semi converter using RL and E loads.
7. Three phase six stepped inverter
8. Three-phase inverter with PWM controller.
9. BUCK, BOOST and CUCK regulators
10. Space vector PWM converter

Note: Conduct any 5 experiments from PART-B using any simulation tool
ADVANCED POWER ELECTRONIC CONVERTERS
(Core 3)

Prerequisite: Power Electronics, Power Electronic Converters

Course Objectives:
- To understand various advanced power electronics devices.
- To describe the operation of multi level inverters with switching strategies for high power applications.
- To comprehend the design of resonant converters and switched mode power supplies.

Course Outcomes: After taking this course, student will be able to:
- Develop and analyze various converter topologies.
- Design AC or DC switched mode power supplies.

UNIT-I: MODERN POWER SEMICONDUCTOR DEVICES
Modern power semiconductor devices – Insulated Gate Bipolar Transistor (IGBT) –MOSFET-MOS Turn off Thyristor (MTO) – Emitter Turn Off Thyristor (ETO) – Integrated Gate-Commutated Thyristor (IGCTs) – MOS-controlled thyristors(MCTs)– Power integrated circuits (PICs) – symbol, structure and equivalent circuit – comparison of their features.

UNIT-II: RESONANT PULSE INVERTERS

UNIT-III: RESONANT CONVERTERS

UNIT-IV: MULTILEVEL INVERTERS

UNIT-V: D.C & A.C POWER SUPPLIES

TEXT BOOKS

REFERENCES:

1. Milliman Shepherd and Lizang –“Power converters circuits” – Chapter 14 (Matrix converter) PP- 415-444,
2. M.H.Rashid - Power electronics hand book –
ELECTRICAL DRIVES
(Core 4)

Prerequisite: Power Electronic Converters, Electrical Machines

Course Objectives:
- To understand the principle operation of scalar control of ac motor and corresponding speed-torque characteristics.
- To comprehend the vector control for ac motor drives (IM and SM).
- To explain the static resistance control and slip power recovery drives.
- To explain synchronous motor drive characteristics and its control strategies.
- To comprehend the brushless DC motor principle of operation.

Course Outcomes: After taking this course, student will be able to:
- Develop induction motor for variable speed operations using scalar and vector control techniques.
- Identify the difference between the rotor resistance control and static rotor resistance control method and significance of slip power recovery drives.
- Develop controllers for synchronous motor and variable reluctance motor.

UNIT–I:
RECTIFIER CONTROLLED DC MOTOR:
Separately excited DC motors and DC series motors with single phase semi converter and single phase full converter-Three-phase controlled converter, control circuit, control modeling of three phase converter – Steady state analysis of three phase converter control DC motor drive – Two quadrant, Three phase converter controlled DC motor drive – DC motor and load, converter.

CLOSED LOOP CONTROL OF DC DRIVE:

UNIT–II:
CHOPPER CONTROLLED DC MOTOR DRIVES:

UNIT–III:
CONTROL OF INDUCTION MOTOR:
Introduction to motor drives – Torque production – Equivalent circuit analysis – Speed – Torque Characteristics with variable voltage operation Variable frequency operation constant v/t operation – Variable stator current operation – Induction motor characteristics in constant torque and field weakening regions.

STATOR SIDE CONTROL:
Scalar control – Voltage fed inverter control – Open loop volts/Hz control – speed control slip regulation – speed control with torque and flux control – current controlled voltage fed inverter drive –

ROTOR SIDE CONTROL OF INDUCTION MOTOR DRIVES:
UNIT–IV:
VECTOR CONTROL OF INDUCTION MOTOR DRIVES:

UNIT–V:
CONTROL OF SYNCHRONOUS MOTOR DRIVES:
Synchronous motor and its characteristics – Control strategies – Constant torque angle control – Unity power factor control – Constant mutual flux linkage control – closed loop operation.

TEXT BOOKS:

REFERENCES:
Prerequisites: Power Systems

Course Objectives:

- To understand the energy demand scenario
- To understand the modeling of load and its ease to study load demand industrially
- To know Electricity pricing models
- Study Reactive power management in Industries

Course Outcomes: After taking this course, student will be able to:

- Knowledge about load control techniques in industries and its application.
- Different types of industrial processes and optimize the process using tools like LINDO and LINGO.
- Apply load management to reduce demand of electricity during peak time.
- Apply different energy saving opportunities in industries.

UNIT-I:
Electric Energy Scenario-Demand Side Management-Industrial Load Management, Load Curves-Load Shaping Objectives-Methodologies, Barriers; Classification of Industrial Loads- Continuous and Batch processes -Load Modeling.

UNIT-II:
Electricity pricing – Dynamic and spot pricing –Models, Direct load control- Interruptible load control, Bottom up approach- scheduling- Formulation of loadmodels- Optimization and control algorithms - Case studies.

UNIT-III:
Reactive power management in industries-controls-power quality impactsapplication of filters Energy saving in industries.
Cooling and heating loads- load profiling- Modeling, Cool storage-Types- Control strategies, Optimal operation-Problem formulation- Case studies.

UNIT-IV:
Captive power units- Operating and control strategies- Power Pooling- Operation models, Energy banking-Industrial Cogeneration

UNIT-V:
Selection of Schemes Optimal Operating Strategies, Peak load saving-Constraints-Problem formulation- Case study, Integrated Load management for Industries

TEXT BOOKS:

REFERENCES:
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
M. Tech – II Semester

ADVANCED DIGITAL SIGNAL PROCESSING
(PE3.2)

Prerequisite: Digital Signal Processing

Course Objectives:
- To understand the difference between discrete-time and continuous-time signals
- To understand and apply Discrete Fourier Transforms (DFT)

Course Outcomes: After taking this course, student will be able to:
- Knowledge about the time domain and frequency domain representations as well analysis of discrete
time signals and systems
- Study the design techniques for IIR and FIR filters and their realization structures.
- Acquire knowledge about the finite word length effects in implementation of digital filters.
- Knowledge about the various linear signal models and estimation of power spectrum of stationary random signals
- Design of optimum FIR and IIR filters

UNIT-I:
Discrete time signals, Linear shift invariant systems-Stability and causality, Sampling of continuous time signals-Discrete time Fourier transform- Discrete Fourier series- Discrete Fourier transform, Z transform- Properties of different transforms

UNIT-II:
Linear convolution using DFT, Computation of DFT Design of IIR digital filters from analog filters,
Impulse invariance method, Bilinear transformation method

UNIT-III:
FIR filter design using window functions, Comparison of IIR and FIR digital filters, Basic IIR and FIR
filter realization structures, Signal flow graph representations Quantization process and errors, Coefficient
quantisation effects in IIR and FIR filters

UNIT-IV:
A/D conversion noise- Arithmetic round-off errors, Dynamic range scaling, Overflow oscillations and zero Input limit cycles in IIR filters, Linear Signal Models

UNIT-V:
All pole, All zero and Pole-zero models, Power spectrum estimation- Spectral analysis of deterministic
signals, Estimation of power spectrum of stationary random signals. Optimum linear filters, Optimum
signal estimation, Mean square error estimation, Optimum FIR and IIR Filters

TEXT BOOKS:
 1998

REFERENCES:
3. Auntoniam, Digital Filter Analysis and Design, TMH.
Prerequisite: None

Course Objectives:
- To understand what is meant by SCADA and its functions.
- To know SCADA communication.
- To get an insight into its application.

Course Outcomes: After taking this course, student will be able to:
- Describe the basic tasks of Supervisory Control Systems (SCADA) as well as their typical applications.
- Acquire knowledge about SCADA architecture, various advantages and disadvantages of each system.
- Knowledge about single unified standard architecture IEC 61850.
- To learn about SCADA system components: remote terminal units, PLCs, intelligent electronic devices, HMI systems, SCADA server.
- Learn and understand about SCADA applications in transmission and distribution sector, industries etc.

UNIT-I:
Introduction to SCADA: Data acquisition systems, Evolution of SCADA, Communication technologies, Monitoring and supervisory functions, SCADA applications in Utility Automation, Industries SCADA

UNIT-II:
Industries SCADA System Components: Schemes - Remote Terminal Unit (RTU), Intelligent Electronic Devices (IED), Programmable Logic Controller (PLC), Communication Network, SCADA Server, SCADA/HMI Systems

UNIT-III:
SCADA Architecture: Various SCADA architectures, advantages and disadvantages of each system - single unified standard architecture - IEC 61850.

UNIT-IV:
SCADA Communication: various industrial communication technologies - wired and wireless methods and fiber optics. open standard communication protocols.

UNIT-V:
SCADA Applications: Utility applications - Transmission and Distribution sector - operations, monitoring, analysis and improvement. Industries - oil, gas and water, Case studies, Implementation, Simulation Exercises

TEXT BOOKS:

REFERENCES:
PWM CONVERTERS AND APPLICATIONS
(PE3.4)

Prerequisite: Power Electronics

Course Objectives:
- Understand the concepts and basic operation of PWM converters, including basic circuit operation and design.
- Understand the steady-state and dynamic analysis of PWM converters along with the applications like solid state drives and power quality.

Course Outcomes: After taking this course, student will be able to:
- Knowledge concepts and basic operation of PWM converters, including basic circuit operation and design
- Learn the steady-state and dynamic analysis of PWM converters along with the applications like solid state drives and power quality
- Able to recognize and use the following concepts and ideas: Steady-State and transient modeling and analysis of power converters with various PWM techniques.

UNIT-I:
AC/DC and DC/AC power conversion, Overview of applications of voltage source converters and current source converters.

UNIT-II:
Pulse width modulation techniques for bridge converters, Bus clamping PWM, Space vector based PWM, Advanced PWM techniques.

UNIT-III:
Practical devices in converter, Calculation of switching and conduction power losses.

UNIT-IV:
Compensation for dead time and DC voltage regulation, Dynamic model of PWM converter, Multilevel converters, Constant V/F induction motor drives.

UNIT-V:
Estimation of current ripple and torque ripple in inverter fed drives, Line-side converters with power factor compensation, Active power filtering, Reactive power compensation, Harmonic current compensation, Selective harmonic elimination PWM technique for high power electric drives.

TEXT BOOKS:

REFERENCES:
ADVANCED MICROCONTROLLER BASED SYSTEMS
(PE4.1)

Prerequisite: Micrprocessors and Microcontrollers

Course Objectives:
- To understand the architecture of advance microcontrollers
- To understand the applications of these controllers
- To get some introduction to FPGA.

Course Outcomes: After taking this course, student will be able to:
- To learn how to program a processor in assembly language and develop an advanced processor based system
- To learn configuring and using different peripherals in a digital system
- To compile and debug a Program
- To generate an executable file and use it

UNIT-I:
Basic Computer Organization, Accumulator based processes-Architecture-Memory Organization-I/O Organization

UNIT-II:
Intel 8051 – Assembly language programming-Addressing-Operations-Stack & Subroutines, Interrupts-DMA.

UNIT-III:
PIC 16F877- Architecture Programming, Interfacing Memory/I/O Devices, Serial I/O and data communication

UNIT-IV:
Digital Signal Processor (DSP) - Architecture – Programming, Introduction to FPGA

UNIT-V:
Microcontroller development for motor control applications, Stepper motor control using micro controller.

TEXT BOOKS:

REFERENCES:
DISTRIBUTED GENERATION (PE4.2)

Prerequisite: Power Systems, Power Electronics

Course Objectives:
- To understand renewable energy sources.
- To gain understanding of the working of off-grid and grid-connected renewable energy generation schemes.

Course Outcomes: After taking this course, student will be able to:
- To understand the planning and operational issues related to Distributed Generation.
- Acquire Knowledge about Distributed Generation Learn Micro-Grids

UNIT-I:
Need for Distributed generation, Renewable sources in distributed generation and current scenario in Distributed Generation.

UNIT-II:
Planning of DGs, Sitting and sizing of DGs optimal placement of DG sources in distribution systems, Grid integration of DGs Different types of interfaces, Inverter based DGs and rotating machine based interfaces, Aggregation of multiple DG units.

UNIT-III:

UNIT-IV:
Economic and control aspects of DGs Market facts, Issues and challenges Limitations of DGs, Voltage control techniques, Reactive power control, Harmonics Power quality issues, Reliability of DG based systems.

UNIT-V:

TEXT BOOKS:

REFERENCES:
Prerequisite: Power Systems

Course Objectives:
- To Study the basics of power quality, power quality problems and power quality standards,
- To Study about the characteristics of non-linear loads
- To Study Voltage, Current, Power and Energy measurements and analysis methods of Laplace's, Fourier and Hartley and Wavelet Transforms
- To Study the analysis and conventional mitigation methods
- To Study about various devices used to enhance power quality.

Course Outcomes: After taking this course, the student will be able to:
- Know the different characteristics of electric power quality in power systems,
- Learn about the applications of non-linear loads,
- Know the applications of Hartley and Wavelet Transforms,
- Learn how to mitigate the power quality problems
- Learn about the application of FACTS device on DG side.

UNIT-I:
INTRODUCTION
Introduction of the Power Quality (PQ) problem, Terms used in PQ: Voltage, Sag, Swell, Surges, Harmonics, over voltages, spikes, Voltage fluctuations, Transients, Interruption, overview of power quality phenomenon, Remedies to improve power quality, power quality monitoring.

UNIT-II:
LONG & SHORT INTERRUPTIONS
SHORT INTERRUPTIONS: definition, origin of short interruptions, basic principle, fuse saving, voltage magnitude events due to re-closing, voltage during the interruption, monitoring of short interruptions, difference between medium and low voltage systems. Multiple events, single phase tripping – voltage and current during fault period, voltage and current at post fault period, stochastic prediction of short interruptions.

UNIT-III:
SINGLE AND THREE-PHASE VOLTAGE Sag CHARACTERIZATION
Voltage sag – definition, causes of voltage sag, voltage sag magnitude, and monitoring, theoretical calculation of voltage sag magnitude, voltage sag calculation in non-radial systems, meshed systems, and voltage sag duration.
Three phase faults, phase angle jumps, magnitude and phase angle jumps for three phase unbalanced sags, load influence on voltage sags.

UNIT-IV:
POWER QUALITY CONSIDERATIONS IN INDUSTRIAL POWER SYSTEMS
Voltage sag – equipment behavior of Power electronic loads, induction motors, synchronous motors, computers, consumer electronics, adjustable speed AC drives and its operation. Mitigation of AC Drives, adjustable speed DC drives and its operation, mitigation methods of DC drives.
UNIT-V:
MITIGATION OF INTERRUPTIONS & VOLTAGE SAGS
Overview of mitigation methods – from fault to trip, reducing the number of faults, reducing the fault clearing time changing the power system, installing mitigation equipment, improving equipment immunity, different events and mitigation methods. System equipment interface – voltage source converter, series voltage controller, shunt controller, combined shunt and series controller.

POWER QUALITY AND EMC STANDARDS:
Introduction to standardization, IEC Electromagnetic compatibility standards, European voltage characteristics standards, PQ surveys.

TEXT BOOKS:

REFERENCES:
INTEGRATION OF ENERGY SOURCES
(PE4.4)

Prerequisite: Power Electronics, Renewable Energy Systems

Course Objectives:
- To introduce the characteristics of various types of renewable energy sources and converters.
- To explain the importance of storage and sizing of hybrid systems.
- To introduce the control issues of isolated systems.
- To explain the harmonics, power quality, voltage imperfections, power injection issues on the grid by integrating renewable energy sources.

Course Outcomes: At the end of the course, the student should be able to:
- Identify the characteristics of renewable energy sources and converters.
- Analyze the importance of storage and sizing of hybrid systems.
- Realize the problems related to isolated systems.
- Analyze the challenges faced by the grid by integrating renewable energy sources.

UNIT-I:
REVIEW OF CHARACTERISTICS OF POWER SOURCES:
Basic review of power generation from wind - Solar PV - Thermal - Small hydro - Biomass power strategies in each of these energy conversion systems - Review of maximum power point tracking techniques in solar PV and wind (perturb & observe, hill climbs, incremental conductance).

UNIT-II:
CONVERTER TOPOLOGIES:
DC/DC converter (buck, boost, buck boost) - DC/AC inverters (sine, triangular, PWM techniques) - Phase locked loop for inverters.

UNIT-III:
HYBRID SYSTEMS:
Advantages of hybrid power systems - Importance of storage in hybrid power systems - Design of hybrid power system based on load curve - Sizing of hybrid power systems.

UNIT-IV:
ISOLATED SYSTEMS:
Control issues in isolated systems for voltage and frequency - Small signal stability in isolated power systems - Importance of storage and dump load in isolated systems.

UNIT-V:
ISSUES IN INTEGRATION OF RENEWABLE ENERGY SOURCES:
Overview of challenges in integrating renewable sources to the grid - Impact of harmonics on power quality - Need to maintain voltage within a band and fluctuations in voltage because of renewable integration - Power inverter and converter technologies - Mechanism to synchronize power from renewable sources to the grid - Overview of challenges faced in designing power injection from offshore generation sources - Challenges in modeling intermittent nature of renewable power in a power system.

TEXT BOOKS:
2. Renewable Energy Integration Challenges and Solutions Series:Green Energy and TechnologyHossain, Jahangir, Mahmud, Apel (Eds.).

REFERENCES:
Prerequisite: Power Electronic Converters

Course Objectives:
- Speed control techniques of DC and AC drives
- Gate drive circuit configurations for converter circuits
- Advanced converter topologies
- Open loop and closed loop speed control analysis of AC and DC drives

Course Outcomes: At the end of the course, the student should be able to:
- Know the speed control strategies of AC and DC drives
- Design speed and current controllers for AC and DC drives
- Get the knowledge on multi-level inverter/converter topologies
- Perform the open loop and closed loop speed control analysis of AC and DC drives
- Design the gate driver circuits for converter topologies
- Know the complete study of advanced converter technologies

PART-A:
1. Single phase diode clamped Multilevel inverter.
2. Single phase flying capacitor Multilevel inverter
3. Single phase cascaded Multilevel inverter
4. Push pull converter
5. Fly back converter
6. Forward converter
7. Series resonant converter
8. Parallel resonant converter
9. ZVS
10. ZCS

Note: Conduct any 5 hardware experiments from the above

PART-B:
1. Single phase diode clamped Multilevel inverter.
2. Single phase flying capacitor Multilevel inverter
3. Single phase cascaded Multilevel inverter
4. Push pull converter
5. Fly back converter
6. Forward converter
7. Series resonant converter
8. Parallel resonant converter
9. ZVS
10. ZCS

Note: Conduct any 5 experiments using any simulation tool
ELECTRICAL DRIVES LAB (Lab4)

Prerequisite: Power Electronic Devices and Circuits and Electrical Machines

Course Objectives:
- To understand principle operation of scalar control of ac motor and corresponding speed-torque characteristics
- To comprehend the vector control for ac motor drive (IM and SM)
- To explain the static resistance control and Slip power recovery drive
- To explain synchronous motor drive characteristics and its control strategies
- To comprehend the brushless dc motor principle of operation.

Course Outcomes: After taking this course, student will be able to:
- Develop induction motor for variable speed operations using scalar and vector control techniques.
- Identify the difference between the rotor resistance control and static rotor resistance control method and significance of slip power recovery drives.
- Develop controllers for synchronous motor and variable reluctance motor.

List of Experiments:

1. Speed control of separately excited DC Motor Drive with 1 quadrant chopper
2. Speed control of separately excited DC Motor Drive with 4 quadrant chopper.
3. Speed control of BLDC Motor Drive.
4. Multi-level inverter based AC Induction Motor Drive control equipment.
5. Speed control of 3-phase wound rotor Induction Motor Drive.
7. Speed control of 5-phase Induction Motor Drive.
8. Speed control of 3-phase Induction Motor Drive using V/F control.
9. Speed control of 3-phase Induction Motor Drive using Vector Control technique.
10. Speed Measurement and closed loop control using PMDC Motor Drive.
11. Speed measurement and closed loop control of PMDC Motor Drive with thyristor circuit.
12. Matrix Converter
13. Speed measurement and closed loop control of IGBT used single 4 quadrant chopper for PMDC Motor Drive.

Note: Any ten experiments can be conducted.
Prerequisite: Mathematics

Course Objectives:
- To comprehend the concept of Reliability and Unreliability
- Derive the expressions for probability of failure, Expected value and standard deviation of Binominal distribution, Poisson distribution, normal distribution and weibull distributions.
- Formulating expressions for Reliability analysis of series-parallel and Non-series parallel systems
- Deriving expressions for Time dependent and Limiting State Probabilities using Markov models.

Course Outcomes: Upon the completion of this course, the student will be able to
- Apply fundamental knowledge of Reliability to modeling and analysis of series-parallel and Non-series parallel systems.
- Solve some practical problems related
- Understand or become aware of various failures, causes of failures and remedies for failures in practical systems.

Reliability evaluation of Non-series-parallel configurations: Decomposition, Path based and cutest based methods, Deduction of the Paths and cut-sets from Event tree.

UNIT-IV: DISCRETE MARKOV CHAINS: General modeling concepts, stochastic transitional probability matrix, time dependent probability evaluation and limiting state probability evaluation of one component repairable model. Absorbing states.

UNIT-V: FREQUENCY AND DURATION TECHNIQUES: Frequency and duration concepts, application to multi state problems, Frequency balance approach.
TEXT BOOKS:

REFERENCES:

FLEXIBLE AC TRANSMISSION SYSTEMS (PE5.2)

Prerequisite: Power Electronics and Power Systems

Course Objectives:
- To develop the understanding of uncompensated lines and their behavior under heavy loading conditions.
- To understand the concept and importance controllable parameters of FACTS controllers.
- To emphasize the objectives of Shunt compensation, and basic operation of SVC and STATCOM.
- To analyze the functioning of series controllers like GCSC, TSSC and TCSC

Course Outcomes: Upon the completion of this course, the student will be able to
- Choose proper controller for the specific application based on system requirements
- Understand various systems thoroughly and their requirements
- Interpret the control circuits of Shunt Controllers SVC & STATCOM for various functions viz. Transient stability Enhancement, voltage instability prevention and power oscillation damping
- Detect the Power and control circuits of Series Controllers GCSC, TSSC and TCSC

UNIT-I: FACTS CONCEPTS
Transmission interconnections power flow in an AC system, loading capability limits, Dynamic stability considerations, importance of controllable parameters basic types of FACTS controllers, benefits from FACTS controllers.

UNIT-II: VOLTAGE SOURCE CONVERTERS
Single phase three phase full wave bridge converters transformer connections for 12 pulse 24 and 48 pulse operation. Three level voltage source converter, pulse width modulation converter, basic concept of current source Converters, and comparison of current source converters with voltage source converters.

UNIT-III: STATIC SHUNT COMPENSATION
Objectives of shunt compensation, mid-point voltage regulation voltage instability prevention, improvement of transient stability, Power oscillation damping, Methods of controllable VAR generation, variable impedance type static VAR generators switching converter type VAR generators hybrid VAR generators.

UNIT-IV: SVC AND STATCOM
The regulation and slope transfer function and dynamic performance, transient stability enhancement and power oscillation damping operating point control and summary of compensator control.

UNIT-V: STATIC SERIES COMPENSATORS
Concept of series capacitive compensation, improvement of transient stability, power oscillation damping, and functional requirements of GTO thyristor controlled series capacitor (GSC), thyristor switched series capacitor (TSSC), and thyristor controlled series capacitor (TCSC)
Control schemes for GSC TSSC and TCSC.
TEXT BOOKS:

REFERENCES:

Prerequisite: Power Electronics and Power Systems

Course Objectives:
- Understand state of the art HVDC technology.
- Learn the Methods to carry out modeling and analysis of HVDC system frontier-area power flow regulation.

Course Outcomes: Upon the completion of this course, the student will be able to
- Expose the students to the state of the art HVDC technology.
- Knowledge of modelling and analysis of HVDC system for inter-area power flow regulation.
- Study of Neetishatakam will help in developing.

UNIT-I:
Development of HVDC Technology, DC versus AC Transmission, Selection of converter configuration, Rectifier and Inverter operation, Digital Simulation of converters, Control of HVDC converters and Systems.

UNIT-II:
Individual phase control, Equidistant firing controls, Higher level controls, Characteristics and non characteristics harmonics filter design, Fault development and protection.

UNIT-III:
Interaction between AC-DC power systems. Over voltages on AC/DC side, multi-terminal HVDC systems, control of MTDC systems.

UNIT-IV:
Modelling of HVDC systems, per unit system, Representation for power flow solution, representation for stability studies.

UNIT-V:
Introduction to relevant national and international standards, safe clearances for HV, Study regulations for HV tests, Digital techniques in HV measurements.

TEXT BOOKS:

REFERENCES:
ENERGY STORAGE TECHNOLOGIES
(PE5.4)

Prerequisite:

Course Objectives:
- To introduce generalized storage techniques
- To analyze the different features of energy storage systems
- To know the management and applications of energy storage technologies
- To have an idea about electrical energy storage market potential by different forecasting methods

Course Outcomes: After taking this course, the student will be able to:
- Understand the role of electrical energy storage technologies in electricity usage
- Know the behavior and features of electrical energy storage systems
- Analyze the applications of energy storage system
- Understand the hierarchy, demand for energy storage and valuation techniques.
- Get knowledge about energy storage forecasting methods

UNIT-I:
THE ROLES OF ELECTRICAL ENERGY STORAGE TECHNOLOGIES IN ELECTRICITY USE: Characteristics of electricity, Electricity and the roles of EES, High generation cost during peak-demand periods, Need for continuous and flexible supply, Long distance between generation and consumption, Congestion in power grids, Transmission by cable, Emerging needs for EES, More renewable energy, less fossil fuel, Smart Grid uses, The roles of electrical energy storage technologies, The roles from the viewpoint of a utility, The roles from the viewpoint of consumers, The roles from the viewpoint of generators of renewable energy.

UNIT-II:
TYPES AND FEATURES OF ENERGY STORAGE SYSTEMS: Classification of EES systems, Mechanical storage systems, Pumped hydro storage (PHS), Compressed air energy storage (CAES), Flywheel energy storage (FES), Electrochemical storage systems, Secondary batteries, Lead-Acid Batteries, Lithium-Ion Batteries, Flow batteries, Other Batteries in Development, Chemical energy storage, Hydrogen (H2), Synthetic natural gas (SNG), Electrical storage systems, Double-layer capacitors (DLC), Superconducting magnetic energy storage (SMES), Thermal storage systems, Standards for EES, Technical comparison of EES technologies.

UNIT-III:
APPLICATIONS OF EES: Present status of applications, Utility use (conventional power generation, grid operation & service), Consumer use (uninterruptable power supply for large consumers), EES installed capacity worldwide, New trends in applications, Renewable energy generation, Smart Grid, Smart Micro grid, Smart House, Electric vehicles.

UNIT-IV:
MANAGEMENT AND CONTROL HIERARCHY OF EES: Internal configuration of battery storage systems, External connection of EES systems, Aggregating EES systems and distributed generation (Virtual Power Plant), “Battery SCADA” – aggregation of many dispersed batteries.

DEMAND FOR ENERGY STORAGE: Growth in Variable Energy Resources, Relationship between balancing services and variable energy resources, Energy Storage Alternatives, Variable Generator Control, Demand Management, Market Mechanisms, and Longer Term Outlook.

UNIT-V:

FORECAST OF EES MARKET POTENTIAL BY 2030:
EES market potential for overall applications,
EES market estimation by Sandia National Laboratory (SNL),
EES market estimation by the Boston Consulting Group (BCG),
EES market estimation for Li-ion batteries by the Panasonic Group,
EES market potential estimation for broad introduction of renewable energies,
EES market potential estimation for Germany by Fraunhofer,
Storage of large amounts of energy in gas grids,
EES market potential estimation for Europe by Siemens,
EES market potential estimation by the IEA,
Vehicle to grid concept,
EES market potential in the future

TEXT BOOKS:

REFERENCES:
2. andreasoberhofer@gmx.de
3. www.ecofys.com/com/publications
4. www.iec.ch
BUSINESS ANALYTICS

Prerequisite:

Course objectives:
- Understand the role of business analytics within an organization.
- Analyze data using statistical and data mining techniques and understand relationships between the underlying business processes of an organization.
- To gain an understanding of how managers use business analytics to formulate and solve business problems and to support managerial decision making.
- To become familiar with processes needed to develop, report, and analyze business data.
- Use decision-making tools/Operations research techniques.
- Manage business process using analytical and management tools.
- Analyze and solve problems from different industries such as manufacturing, service, retail, software, banking and finance, sports, pharmaceutical, aerospace etc.

Course Outcomes:
- Students will demonstrate knowledge of data analytics.
- Students will demonstrate the ability of think critically in making decisions based on data and deep analytics.
- Students will demonstrate the ability to use technical skills in predictive and prescriptive modeling to support business decision-making.
- Students will demonstrate the ability to translate data into clear, actionable insights.

UNIT-I:

UNIT-II:

UNIT-III:
Organization Structures of Business analytics, Team management, Management Issues, Designing Information Policy, Outsourcing, Ensuring Data Quality, Measuring contribution of Business analytics, Managing Changes. Descriptive Analytics, predictive analytics, predicative Modelling, Predictive analytics analysis, Data Mining, Data Mining Methodologies, Prescriptive analytics and its step in the business analytics Process, Prescriptive Modelling, nonlinear Optimization.

UNIT-IV:
UNIT-V:
Recent Trends in: Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data journalism.

TEXT BOOKS:
2. Business Analytics by James Evans, persons Education.

REFERENCES:
1. Business Analytics with Management Science Models and Methods by Arbeen Asllani, Pearson
3. R for Business Analytics, by A. Ohri
INDUSTRIAL SAFETY

Prerequisite:

UNIT-I:
INDUSTRIAL SAFETY: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc. Safety color codes. Fire prevention and firefighting, equipment and methods.

UNIT-II:
FUNDAMENTALS OF MAINTENANCE ENGINEERING: Definition and aim of maintenance engineering, primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost and its relation with replacement economy, Service life of equipment.

UNIT-III:

UNIT-IV:
FAULT TRACING: Fault tracing concept and importance, decision tree concept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment like i. Any one machine tool, ii. Pump, iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

UNIT-V:

TEXT BOOKS:

REFERENCES:
Prerequisite: -

Course Outcomes:
At the end of the course, the student should be able to
- Students should be able to apply the dynamic programming to solve problems of discrete and continuous variables.
- Students should be able to apply the concept of non-linear programming
- Students should be able to carry out sensitivity analysis
- Student should be able to model the real world problem and simulate it.

UNIT-I:
Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex Techniques, Sensitivity Analysis, Inventory Control Models

UNIT-II:
Formulation of a LPP - Graphical solution revised simplex method - duality theory – dual simplex method - sensitivity analysis - parametric programming

UNIT-III:
Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem – max flow problem - CPM/PERT

UNIT-IV:
Scheduling and sequencing - single server and multiple server models – deterministic inventory models - Probabilistic inventory control models - Geometric Programming.

UNIT-V:
Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation

TEXT BOOKS:

REFERENCES:
COST MANAGEMENT OF ENGINEERING PROJECTS (OE4)

Prerequisite:

UNIT-I:

UNIT-II:
Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process

UNIT-III:

UNIT-IV:
Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

UNIT-V:

TEXT BOOKS:

1. Cost Accounting A Managerial Emphasis, Prentice Hall of India, New Delhi
2. Charles T. Horngren and George Foster, Advanced Management Accounting

REFERENCES:

1. Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting
COMPOSITE MATERIALS

Prerequisite:

UNIT–I:

UNIT – II:

UNIT – III:

UNIT–IV:

UNIT – V:
Strength: Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. Laminate first ply failure-insightstrength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

TEXT BOOKS:

REFERENCES:
ENERGY FROM WASTE
(0E6)

Prerequisite:

UNIT-I:
Introduction to Energy from Waste: Classification of waste as fuel – Agro based, Forest residue, Industrial waste - MSW – Conversion devices – Incinerators, gasifiers, digestors

UNIT-II:

UNIT-III:

UNIT-IV:
Biomass Combustion: Biomass stoves – Improved chullahs, types, some exotic designs, Fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.

UNIT-V:
Biogas: Properties of biogas (Calorific value and composition) - Biogas plant technology and status - Bio energy system - Design and constructional features - Biomass resources and their classification - Biomass conversion processes - Thermo chemical conversion - Direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion - anaerobic digestion Types of biogas Plants – Applications - Alcohol production from biomass - Bio diesel production - Urban waste to energy conversion - Biomass energy programme in India.

TEXT BOOKS:

REFERENCES:

ENGLISH FOR RESEARCH PAPER WRITING
(Audit-I&II .1)

Prerequisite:

Course objectives:
- Understand that how to improve your writing skills and level of readability
- Learn about what to write in each section
- Understand the skills needed when writing a Title Ensure the good quality of paper at very first-time submission

UNIT-I:
Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

UNIT-II:

UNIT-III:
Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check.

UNIT-IV:
key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature,

UNIT-V:
skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions, useful phrases, how to ensure paper is as good as it could possibly be the first-time submission

TEXT BOOKS:

REFERENCES:
Prerequisite:

Course Objectives:
- learn to demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response.
- critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
- develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
- critically understand the strengths and weaknesses of disaster management approaches.
- planning and programming in different countries, particularly their home country or the countries they work in

UNIT-I:
INTRODUCTION:
Disaster: Definition, Factors And Significance; Difference Between HazardAnd Disaster; Natural And Manmade Disasters: Difference, Nature, Types And Magnitude.

UNIT-II:
REPERCUSSIONS OF DISASTERS AND HAZARDS:
Economic Damage, Loss Of Human And Animal Life, Destruction Of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.

UNIT-III:
DISASTER PRONE AREAS IN INDIA:
Study Of Seismic Zones; Areas Prone To Floods And Droughts, Landslides And Avalanches; Areas Prone To Cyclonic And Coastal Hazards With Special Reference To Tsunami; Post-Disaster Diseases And Epidemics

UNIT-IV:
DISASTER PREPAREDNESS AND MANAGEMENT:
Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness.

UNIT-V:
RISK ASSESSMENT DISASTER RISK:
Concept And Elements, Disaster Risk Reduction, Global And National Disaster Risk Situation, Techniques Of Risk Assessment, Global Co-Operation In Risk Assessment And Warning, People’s Participation In Risk Assessment, Strategies For Survival.

DISASTER MITIGATION:
Meaning, Concept And Strategies Of Disaster Mitigation, Emerging Trends In Mitigation. Structural Mitigation And Non-Structural Mitigation, Programs Of Disaster Mitigation In India.

TEXT BOOKS:
2. Sahni, Pardeep Et Al. (Eds.),” Disaster Mitigation Experiences And Reflections”, Prentice Hall Of India, New Delhi.
REFERENCES:

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
M. Tech – I & II Semester

SANSKRIT FOR TECHNICAL KNOWLEDGE
(Audit-I & II .3)

Prerequisite: -
Course Objectives:
- To get a working knowledge in illustrious Sanskrit, the scientific language in the world
- Learning of Sanskrit to improve brain functioning
- Learning of Sanskrit to develop the logic in mathematics, science & other subjects enhancing the memory power
- The engineering scholars equipped with Sanskrit will be able to explore the huge knowledge from ancient literature

Course Outcomes: Students will be able to
- Understanding basic Sanskrit language
- Ancient Sanskrit literature about science & technology can be understood
- Being a logical language will help to develop logic in students

UNIT-I:
Alphabets in Sanskrit,

UNIT-II:
Past/Present/Future Tense, Simple Sentences

UNIT-III:
Order, Introduction of roots,

UNIT-IV:
Technical information about Sanskrit Literature

UNIT-V:
Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics

TEXT BOOKS
1. “Abhyaspustakam” – Dr. Vishwas, Samskrita-Bharti Publication, New Delhi
2. “Teach Yourself Sanskrit” Prathama Deeksha-VempatiKutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication

REFERENCES:
VALUE EDUCATION
(Audit-I & II .4)

Prerequisite: None

Course Objectives: Students will be able to
- Understand value of education and self-development
- Imbibe good values in students
- Let the should know about the importance of character

Course outcomes: Students will be able to
- Knowledge of self-development
- Learn the importance of Human values
- Developing the overall personality

UNIT-I:

UNIT-II:

UNIT-III:

UNIT-IV:
Character and Competence – Holy books vs Blind faith - Self-management and Good health - Science of reincarnation - Equality, Nonviolence, Humility, Role of Women - All religions and same message - Mind your Mind, Self-control - Honesty, Studying effectively

TEXT BOOKS/ REFERENCES:
Prerequisite:
Course Objectives:
• Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
• To address the growth of Indian opinion regarding modern Indian intellectuals’ constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.
• To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.

Course Outcomes:
• Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics.
• Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.
• Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution.
• Discuss the passage of the Hindu Code Bill of 1956.

UNIT-I:
HISTORY OF MAKING OF THE INDIAN CONSTITUTION:
HistoryDrafting Committee, (Composition& Working)
PHILOSOPHY OF THE INDIAN CONSTITUTION:
Preamble, Salient Features

UNIT-II:
CONTOURS OF CONSTITUTIONAL RIGHTS & DUTIES:

UNIT-III:
ORGANS OF GOVERNANCE:
Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualification, Powers and Functions

UNIT-IV:
LOCAL ADMINISTRATION:

UNIT-V:
ELECTION COMMISSION:
Election Commission: Role and Functioning.Chief Election Commissioner and Election Commissioners.State Election Commission: Role and Functioning.Institute and Bodies for the welfare of SC/ST/OBC and women.
TEXT BOOKS:

1. The Constitution of India, 1950 (Bare Act), Government Publication.

REFERENCES:

PEDAGOGY STUDIES
(Audit-I &II .6)

Prerequisite: -

Course Objectives:
- Review existing evidence on the review topic to inform programme design and policy making undertaken by the DfID, other agencies and researchers.
- Identify critical evidence gaps to guide the development.

Course Outcomes: Students will be able to understand:
- What pedagogical practices are being used by teachers in formal and informal classrooms in developing countries?
- What is the evidence on the effectiveness of these pedagogical practices, in what conditions, and with what population of learners?
- How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?

UNIT-I:

UNIT-II:
THEMATIC OVERVIEW: Pedagogical practices are being used by teachers informal and informal classrooms in developing countries. Curriculum, Teacher education.

UNIT-III:

UNIT-IV:
PROFESSIONAL DEVELOPMENT: alignment with classroom practices and follow-up support, Peer support, Support from the head teacher and the community. Curriculum and assessment, Barriers to learning: limited resources and large class sizes

UNIT-V:
RESEARCH GAPS AND FUTURE DIRECTIONS: Research design, Contexts, Pedagogy, Teacher education, Curriculum and assessment, Dissemination and research impact.

TEXT BOOKS:

REFERENCES:

STRESS MANAGEMENT BY YOGA
(Audit-I &II .7)

Prerequisite:

Course Objectives:
- To achieve overall health of body and mind
- To overcome stress

Course Outcomes: Students will be able to
- Develop healthy mind in a healthy body thus improving social health also
- Improve efficiency

UNIT-I:
Definitions of Eight parts of yog. (Ashtanga)

UNIT-II:
Yam and Niyam.

UNIT-III:
Do’s and Don’t’s in life.
i) Ahinsa, satya, astheya, bramhacharya and aparigraha
ii) Shaucha, santosh, tapa, swadhyay, ishwarpriyanidhan

UNIT-IV:
Asan and Pranayam

UNIT-V:
i) Various yog poses and their benefits for mind & body
ii) Regularization of breathing techniques and its effects-Types of pranayam

TEXT BOOKS:
1. ‘Yogic Asanas for Group Tarining-Part-I’ : Janardan Swami Yogabhyasi Mandal, Nagpur
2. “Rajayoga or conquering the Internal Nature” by Swami Vivekananda, Advaita Ashrama (Publication Department), Kolkata

REFERENCES:
1. ‘ Stress and Its Management by Yoga” : by K.N.Udupa and R.C Prasad
PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS
(Audit-I &II .8)

Prerequisite: -

Course Objectives:
- To learn to achieve the highest goal happily
- To become a person with stable mind, pleasing personality and determination
- To awaken wisdom in students

Course Outcomes: Students will be able to
- Study of Shrimad-Bhagwad-Geeta will help the student in developing his personality and achieve the highest goal in life
- The person who has studied Geeta will lead the nation and mankind to peace and prosperity
- Study of Neetishatakam will help in developing versatile personality of students

UNIT-I:
Neetisatakam-Holistic development of personality
- Verses- 19,20,21,22 (wisdom)
- Verses- 29,31,32 (pride & heroism)
- Verses- 26,28,63,65 (virtue)

UNIT-II:
Neetisatakam-Holistic development of personality
- Verses- 52,53,59 (dont’s)
- Verses- 71,73,75,78 (do’s)

UNIT-III:
Approach to day to day work and duties.
- Shrimad BhagwadGeeta : Chapter 2-Verses 41, 47,48,
- Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5,13,17, 23, 35,
- Chapter 18-Verses 45, 46, 48.

UNIT-IV:
Statements of basic knowledge.
- Shrimad Bhagwad Geeta: Chapter2-Verses 56, 62, 68
- Chapter 12 -Verses 13, 14, 15, 16,17, 18
- Personality of Role model. Shrimad Bhagwad Geeta:

UNIT-V:
- Chapter2-Verses 17, Chapter 3-Verses 36,37,42,
- Chapter 4-Verses 18, 38,39
- Chapter18 – Verses 37,38,63

TEXT BOOKS:
1. “Srimad Bhagavad Gita” by Swami SwarupanandaAdvaita Ashram (Publication Department), Kolkata.
2. Bhartrihari’s Three Satakam (Niti-sringar-vairagya) by P.Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.

REFERENCES: