ACADEMIC REGULATIONS
COURSE STRUCTURE AND
DETAILED SYLLABUS

CIVIL ENGINEERING

For

M. Tech. (Geotechnical Engineering)
(Two Year Full Time Programme)

JNTUH COLLEGE OF ENGINEERING HYDERABAD
(Autonomous)
Kukatpally, Hyderabad – 500 085, Telangana, India.

2018
Vision of the Institution
To be recognized as one of the top 10 institutes in the country offering technical education, sustaining and improving its repute of UG programmes, expanding need based PG and research programmes with global outlook, synergizing teaching and research for societal relevance.

Mission of the Institution
1. To identify technological advancements and build the right level of skills at the right time contributing to the industrial and national growth.
2. To identify and keep abreast with the state of the art technology maintaining its legacy of striving for excellence in higher education.
3. To promote world class research of local relevance to society.
4. With a research community of professors, research fellows and research centres, expand the scale and multidisciplinary character of its research activities.
5. With a global outlook strive for collaborations to network with International Universities and National Institutes of Research and Higher Learning.

Vision of the Department
➢ The Department of Civil Engineering is committed to raise the intellectual tone of the young students in understanding and incorporating emerging technologies, with an objective of enhancing their competence by applying their proficiency and skill for infrastructure and economic development of the society.

➢ Mission of the Department:
1. To strengthen the teaching tools in order to orient students to acquire necessary skills to perform in the field or to handle industrial projects.
2. To enhance students into knowledgeable, responsible professionals, successful practitioners and lifelong learners in emerging fields for the betterment of society.
3. To improve the quality of technological education through training, consultancy, research, and innovation.
4. To identify, evaluate and implement scientifically proven technological solutions.

Program Educational Objectives

<table>
<thead>
<tr>
<th>PEO 1</th>
<th>To provide students with a solid foundation in mathematical, scientific and engineering fundamentals required to solve engineering problems and to pursue and to enroll in advanced studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEO 2</td>
<td>To Impart basic technical knowledge and skills in Civil Engineering and related fields to cater to the emerging technological needs of society.</td>
</tr>
<tr>
<td>PEO 3</td>
<td>To perceive the technical knowhow, adaptability and innovation in their work so as to pursue lifelong learning, and to be leaders, both in their chosen profession and in other activities.</td>
</tr>
<tr>
<td>PEO 4</td>
<td>To Provide expertise in carrying out civil engineering projects by using state-of-art of computing and experimental techniques to develop interdisciplinary approach.</td>
</tr>
<tr>
<td>PEO 5</td>
<td>To Train the student to possess good communication and presentation skills with ability to work in teams and contributing significantly to the technological development of the Nation.</td>
</tr>
</tbody>
</table>
Program Outcomes

1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. **Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Out Comes

1. Understand the basics of Science, behavioral mechanics and engineering materials required for Engineering systems.

2. Survey, explore, analyze, formulate, design and manage complete Civil Engineering systems by incorporating socio-cultural and environmental needs

3. Develop social skills required for multidisciplinary and collaborative works

4. Train professionally to understand the ongoing field problems and their solutions.
M.Tech Specialization: GEOTECHNICAL ENGINEERING

COURSE OBJECTIVES

1. To make students learn the principles and applications of soil mechanics. Understand different problems associated with geotechnical engineering. Explain how to select design soil/rock/ geosynthetic parameters for design purpose based on the subsurface exploration. Develop, Analyse and Design various geotechnical structures.

2. Students should gain competency in the design of shallow/deep foundations, earth retaining structures, embankment and earthen dams, underground structures. Can assess stability of slopes and apply preventive measures for stability.

COURSE OUTCOMES (POs):

1. Students will learn soil and substrata behavior. Students will be able to perform various laboratory and in-situ tests on soil/rock/Geosynthetics to find out design parameters.

2. Students can design shallow/deep foundations, earth retaining structures, embankments and earthen dams, tunnel support systems for given site conditions.

3. Student can compute factor of safety to assess stability of slopes and apply preventive measures for stability.

4. Student can develop numerical models to estimate response of various geotechnical structures under different loadings.

5. Students can design ground improvement technique for unsuitable soils
COURSE STRUCTURE

Semester -I

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Course Type/Code</th>
<th>Course Name</th>
<th>Teaching Scheme</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Core-I</td>
<td>Advanced Soil Mechanics</td>
<td>3 -- --</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Core-II</td>
<td>Advanced Foundation Engineering</td>
<td>3 -- --</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Ground Improvement Techniques</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Theoretical Soil Mechanics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Program Elective-II</td>
<td>1. Applied Statics</td>
<td>3 -- --</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Environmental Geotechnology</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Environmental impact Assessment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Core Lab-I</td>
<td>Advance GTE Lab-I</td>
<td>-- -- 3</td>
<td>2</td>
</tr>
<tr>
<td>6.</td>
<td>Core Lab-II</td>
<td>Geotechnical Computational Laboratory</td>
<td>-- -- 3</td>
<td>2</td>
</tr>
<tr>
<td>7.</td>
<td>MLC</td>
<td>Numerical Methods for Geotechnical Engineers</td>
<td>2 -- --</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>Audit 1</td>
<td>Audit course -I</td>
<td>0 -- --</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>14 6</td>
<td>18</td>
</tr>
</tbody>
</table>

Semester -II

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Course Type/Code</th>
<th>Course Name</th>
<th>Teaching Scheme</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Core-III</td>
<td>Soil Dynamics and Machine Foundations</td>
<td>3 -- --</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Core-IV</td>
<td>Engineering rock mechanics</td>
<td>3 -- --</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>Program Elective-III</td>
<td>1. Offshore Geotechnical Engineering</td>
<td>3 -- --</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Design of substructures</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Subsurface investigations and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>instrumentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Program Elective-IV</td>
<td>1. Earth Retaining Structures</td>
<td>3 -- --</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Geotechnics for Infrastructures</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Physical and Constitutive Modeling on</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Geomechanics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Core Lab-III</td>
<td>Rock Mechanics Laboratory</td>
<td>-- -- 3</td>
<td>2</td>
</tr>
<tr>
<td>6.</td>
<td>Core Lab-IV</td>
<td>Advance GTE Lab -II</td>
<td>-- -- 3</td>
<td>2</td>
</tr>
<tr>
<td>7.</td>
<td>Core</td>
<td>Mini Project & Seminar</td>
<td>-- -- 4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>Audit 2</td>
<td>Audit course -II</td>
<td>0 --</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>12 10</td>
<td>18</td>
</tr>
</tbody>
</table>
Semester -III

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Course Type/Code</th>
<th>Course Name</th>
<th>Teaching Scheme</th>
<th>Credits</th>
</tr>
</thead>
</table>
| 1. | Program Elective-V | 1. Stability analysis of slopes
2. Pavement Analysis and Design
3. Geotechnical Earthquake Engineering | 3 -- -- | 3 | |
| 2. | Open Electives | 1. Construction Management
2. Finite Element Methods
3. Artificial Intelligence: Techniques
4. Operation Research
5. Industrial Safety | 3 -- -- | 3 | |
| 3. | Dissertation Stage –I (Preliminary)
(to be continued in semester-IV) | -- -- | 20 10 | |

Total | 20 16 | |

Semester -IV

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Course Type/Code</th>
<th>Course Name</th>
<th>Teaching Scheme</th>
<th>Credits</th>
</tr>
</thead>
</table>
| 1. | | Dissertation Stage-II (Final)
(continued from semester-III) | -- -- | 32 16 | |

Total | 32 16 | |

Audit Course 1 &2

1. English for research Paper Writing
2. Disaster Management
3. Research Methodology and I.P.R
4. Sanskrit for Technical Knowledge
5. Value Education
6. Constitution of India
7. Pedagogy Studies
OBJECTIVES:
To enable the student

✓ To Analyze the field loading conditions and predict the behavior of soil under loading and unloading condition in drained and untrained conditions of soil
✓ Prediction of Probable loss of water from the reservoir and for checking the stability of the structure under hydrodynamic conditions
✓ Determination of various application based parameters of consolidation for safe design of structures on clay soils

UNIT-I
Geostatic Stresses & Stress Paths: Stresses within a soil mass: Concept of stress for a particulate system, Effective stress principle, Geostatic stresses, Soil water hydraulics: Principal stresses and Mohr’s circle of stress, Stress paths; At Rest earth pressure, Stress paths for different practical situations.

UNIT-II

UNIT-III
Compressibility and Consolidation: One dimensional compression, Oedometer test, parameters – coefficient of volume change, constrained modulus, compression index, swell or unloading, maximum past consolidation stress, Over consolidation ratio, Primary and secondary compression, consolidation - One, two and three dimensional problems, Consolidation of partially saturated soils, Creep/Secondary Compression in soils.

UNIT-IV
Stress-Strain-Strength Behaviour of soils: Shear strength of soils; Failure criteria, drained and undrained shear strength of soils. Significance of pore pressure parameters; Determination of shear strength; Drained, Consolidated Undrained and Undrained tests; Interpretation of triaxial test results. Behaviour of sands; Critical void ratio; dilation in soils;

UNIT-V
Critical State Soil Mechanics: Critical state parameters; Critical state for normally consolidated and over consolidated soil; Significance of Roscoe and Hvorslev state boundary surfaces; Yielding, Bounding Surfaces.
REFERENCE:

OUTCOMES:

- To understand the behavior of soils stress paths and to determine the shear parameters under different drainage condition
- To understand Seepage and numerical modeling of State and transient flow condition
- To understand Compressibility characteristics of NCC and OCC soils
OBJECTIVES:

Students can expect to

- Develop understanding of choice of design parameters
- Develop deeper understanding of shallow and pile foundation analysis
- Learn about advanced topics of foundation design and analysis

UNIT- I
Soil Exploration: Exploration Methods; Planning the Exploration Program; Boring and Sampling; In Situ Tests: Standard & Cone Penetration Tests, Field Vane & Borehole shear tests, Dilatometer, Pressuremeter; Rock Sampling, Core Recovery, RQD; Geophysical Exploration; Preparation of Soil Report.

UNIT- II
Shallow Foundations: Bearing Capacity:- General Formulae; Effect of Water Table; Footings with eccentric or Inclined Loads, Foundations on Layered Soils, on finite layer with a Rigid Base at Shallow Depth, effect of compressibility of soil.

UNIT- III
Settlement: Components – Immediate, Consolidation & Creep, Stresses and Displacements in Homogeneous, Layered and Anisotropic Soils; Consolidation Settlement; One, Two & Three Dimensional Consolidation; Secondary Compression Settlement; Bearing Pressure using SPT, CPT, Dilatometer and Pressuremeter; Settlement of foundations on Sands-Schmertmann and Burland & Busbridge methods; Structure Tolerance to Settlement and Differential Settlements, Rotation of Tall Structures.

UNIT- IV
Deep Foundations: Single Pile: Vertically loaded piles, Static capacity α, β and λ Methods, Dynamic formulae; Point Bearing Resistance with SPT and CPT Results; Bearing Resistance of Piles on Rock; Settlement; Pile Load Test; Uplift Resistance; Laterally Loaded Piles - Ultimate Lateral Resistance; Negative Skin Friction; Batter Piles; Under Reamed Piles; Ultimate Capacity of Pile Groups in Compression, Pullout & Lateral Load; Efficiency; Settlements of Pile Groups; Interaction of Axially & Laterally Loaded Pile Groups.

UNIT- V
Special Topics of Foundation Engineering
Foundations on Expansive Soils: The nature, origin and occurrence, Identifying, testing and evaluating expansive soils, typical structural distress patterns and Preventive design & construction measures.

Introduction to Reliability-Based Design: Methods, LRFD for structural strength requirements, LRFD for geotechnical strength requirements, Serviceability requirements.
REFERENCE:

OUTCOMES:
- Able to plan and select the soil exploration methods
- Determine the Bearing capacity of Soil and settlements for the design of shallow foundations
- To design the deep foundations under different loading conditions
- To design the foundations on problematic soils and reliability based design for shallow and deep foundations
OBJECTIVES:

This course will enable students to
- Understand soil structure.
- Understand stress-strain characteristics of soils,
- To learn the mechanism of failure, the factors that affects the shear strength.
- To understand structural behavior with soils

UNIT-I

UNIT-II

UNIT-III

UNIT-IV

Analysis of Axially and Laterally Loaded Piles and Pile Groups: Elastic analysis of single pile, Theoretical solutions for settlement and load distributions, Analysis of pile group, Interaction analysis, Load distribution in groups with rigid cap, Load deflection prediction for laterally loaded piles, Subgrade reaction and elastic analysis, Interaction analysis, Pile-raft system.

UNIT-V

Ground-Foundation-Structure Interaction: Effect of structure on ground-foundation interaction, Static and dynamic loads.
REFERENCE:
1. Selvadurai, A. P. S. - Elastic Analysis of Soil-Foundation Interaction, 1979

OUTCOMES:

- Learn application of different soil response models for specific problem based on the Requirement.
- Students can analyze footings/rafts resting on soil as beams/plates on elastic foundation and work out design bending moments/shear and displacements.
- Learn to compute pile response for various loading condition for design purpose
- To estimate interaction parameters under static and dynamic loading conditions
OBJECTIVES:
To enable the students
- To select suitable ground improvement techniques for problematic soils.
- To select suitable mechanical and hydraulic modifications.
- To select suitable physical and chemical modifications.
- To adept soil reinforcement Techniques.

UNIT- I
Introduction to Engineering Ground Modification: Need and objectives, Identification of soil types, In situ and laboratory tests to characterise problematic soils; Mechanical, Hydraulic, Physico-chemical, Electrical, Thermal methods, and their applications.

UNIT- II
Mechanical Modification – Deep Compaction Techniques- Blasting Vibrocompaction, Dynamic Tamping and Compaction piles.

UNIT- III

UNIT- IV
Physical and Chemical Modification – Modification by admixtures, Shotcreting and Guniting Technology, Modification at depth by grouting, Crack Grouting and compaction grouting, Jet grouting, Thermal Modification, Ground freezing.

UNIT- V
Modification by Inclusions and Confinement - Soil reinforcement, reinforcement with strip, and grid reinforced soil. In-situ ground reinforcement, ground anchors, rock bolting and soil nailing.
REFERENCE:
5. Xianthakos, Abreimson and Bruce - Ground Control and Improvement, John Wiley & Sons, 1994.

OUTCOMES:

- Able to understand the various ground improvement methods to selection suitable method for soil
- Able to design ground improvement technique suitable for coarse grained soils
 Through mechanical stabilization and dewatering techniques
- Learn the Suitability and methods such as grouting, Chemical modification and inclusions to improve the ground
OBJECTIVES:

- To impart knowledge required for computing stress and settlement at any point in the semi-infinite elastic soil medium, anisotropic medium and layered deposits due to foundation loads.
- To evaluate the stability of foundations, slopes, cuts and retaining structures both for the conditions of undrained and drained loading through theorems of plastic collapses.

UNIT-I

Theory of Elasticity: Basic concepts, definitions and notations of stress & strain components – Generalized Hooke’s Law, Equilibrium and Compatible conditions in Cartesian, Polar coordinates – Principal stresses and strains

UNIT-II

UNIT-III

Stresses and Displacements due to Surface and Subsurface Loads – Boussinesq, Cerutti, Mindlin Solutions, Stresses and Displacements in Finite Layer & Multi-Layered Systems. Stress-path methods; Rotation of Foundations.

UNIT-IV

Critical state & constructive behavior of soils – introduction to yield criteria, constructive modeling.

UNIT-V

Underground Structures: Stresses and Displacements around Underground Openings unlined and lined tunnels.
REFERENCE:

OUTCOME:

- At the completion of the course the students will be able to decide the type of mathematical models to be used for analyzing the behavior of soil mass at critical state
- Will be able to understand the elastic and plastic behavior of soils under various loads.
- Stress deformation behavior can be determined for various loads and subsoil conditions.
OBJECTIVES:

To enable the students

- To apply statistics in various areas of Environmental /Water Resources Engineering like sampling and analysis, stochastic modeling etc.
- Use the most common statistical tests and understand their assumptions and limitations.
- Formulate and choose a suitable methodology for testing in a given situation.
- Use the most common estimation methods.
- Perform estimation in regression models and evaluate a proposed model.
- Evaluate results from statistical software.

UNIT-I
Introduction & Sampling Techniques: Histogram, Frequency diagram, Role of Probability and Statistics in Civil Engineering, Skewness; Kurtosis; Definitions and Applications; Simple random sampling; Stratified sampling; Systematic sampling; Sample Size determination; Collection & Presentation of data, Design of Experiment.

UNIT-II
Statistical Distributions and Probability: Random Variability, conditional probability, Uniform, Binomial, Poisson, Exponential and Normal distributions; Fitting of distributions; Skewness and Kurtosis, Mean and variance; Chi-square test of goodness-of-fit; lognormal, Beta distribution Probability - Laws of Probability; Conditional probability and Independent events; Kolmogorov – Smirnov (K-S test) Laws of expectation.

UNIT-III
Regression And Correlation: Linear/non-Linear and multiple linear correlation analysis, Linear regression and correlation; Multiple correlation; Multiple correlation coefficient; Standard error of estimate; Analysis of Variance; Curvilinear regression;

UNIT-IV
Multi-Variate Data Analysis and Exact Sampling Distributions: Types of data; Basic vectors and matrices; Simple estimate of centroid, Standard deviation, Dispersion, Variance and covariance; Correlation matrices; Principal component analysis; Time series analysis. Exact Sampling Distributions - Chi-square distribution; Students T-distribution;

UNIT-V
Tests Of Significance & Confidence Interval Estimation & Statistical Testing – I & II: Large sample and small sample tests; Tests for single mean, Means of two samples, Proportions, two variances, two observed correlation coefficients, paired T-tests, Applications. Tests Of Significance & Confidence Interval – Intervals for mean, variance and regression coefficients; Tests of Hypothesis, goodness of fit test.
REFERENCE:

OUTCOMES:
- students able to identify various methods of statistics to solve problems
- able to understand the different methods of probability and regression analysis
- able to analyse multiple data sets and sampling technique in statistics
JNTUH COLLEGE OF ENGINEERING HYDERABAD
DEPARTMENT OF CIVIL ENGINEERING

M.Tech. I Year I-Sem (Geotechnical Engineering) L T P C
3 0 0 3

ENVIRONMENTAL GEOTECHNOLOGY
(Elective 2)

OBJECTIVES:

 To identify various sources of contamination and to characterize contaminated ground.
 To characterize solid and Hazardous waste.
 To model the contaminant transport.
 To identify suitable Remediation technique.
 To study the types of Landfills.

UNIT-I.
Sources and Site Characterization: Scope of Geoenvironmental Engineering, Various Sources of Contaminations, Need for contaminated site characterization; and Characterisation methods.

UNIT-II.
Solid and Hazardous Waste Management: Classification of waste, Characterisation of solid wastes, Environmental Concerns with waste, waste management strategies.

UNIT-III

UNIT-IV
Remediation Techniques: Objectives of site remediation, various active and passive methods, remediation of NAPL sites, Emerging Remediation Technologies.

UNIT-V
Landfills: Types of landfills, Site Selection, Waste Containment Liners, Leachate collection system, Cover system, Gas collection system.
REFERENCE:

OUTCOME:
- Can identify various sources of contamination of ground
- Characterize contaminated ground and to find extent of contamination
- Understand the various remediation methods for contaminant ground and identify most appropriate method of remediation for different sites.
- Understand the significance of components of landfills
OBJECTIVES:
The objective of this course is

- To educate the students on the scope, steps involved and various methods related to assessment of environmental impact due to development projects.
- To Impart Knowledge On Environmental Management and Environmental Impact Assessment.

UNIT-I
Basic concept of EIA: Initial environmental Examination, Elements of EIA, factors affecting EIA IMPACT evaluation and analysis, preparation of Environmental Base maps, Classification of environmental parameters.

UNIT-II
EIA Methodologies: Introduction, Criteria for the selection of EIA Methodology, EIA methods, Ad-hoc methods, matrix methods, Network method Environmental Media Quality Index method, overlay methods, Benefit Analysis.

UNIT-III
Assessment of impact and Land use: Assessment of impact of development activities on vegetation and wild life, environmental impact of deforestation- Causes and effects of deforestation.

UNIT-IV
Environmental Audit & Environmental legislation: Objectives of Environmental Audit, Types of environmental Audit, Audit protocol, stages of Environmental Audit, on-site activities, evaluation of Audit data and preparation of Audit report, Post Audit activities.

UNIT-V
REFERENCE:

1. Anjaneyulu, Y. - Environmental Impact Assessment Methodologies, B. S. Publication, Sultan Bazar, Hyderabad

OUTCOMES:

- Knowledge on prediction and assessment of environmental impacts due to developmental activities
- Concepts on various environmental impact assessment methodologies
- Can have an outlook on legislations to safeguard environment.
ADVANCED GEOTECHNICAL ENGINEERING LABORATORY– I

OBJECTIVES:

This course will enable students to

- To learn principles and design of experiments.
- To investigate the performance of various soils

1. Classification of soils
2. Hydrometer Analysis
3. Determination of insitu density by core cutter and sand replacement methods
4. Scale effect of permeability
5. Effect of compactive effort on compaction of different soils
6. Variation of CBR values for different soils in soaked and unsoaked conditions
7. Effect of saturation on shear parameters from direct shear tests (tests to be conducted in unsaturated as well as saturated condition)
8. Determination of shear parameters from unconfined compression tests
9. Determination of shear parameters from Triaxial Tests- UU Test
10. Triaxial Tests- CU Test with pore pressure

OUTCOMES:

- Enables the Students to learn and conduct appropriate laboratory tests on soil, so as to apply the obtained results for a specific Civil Engineering project.
M.Tech. I Year I-Sem (Geotechnical Engineering)

GEOTECHNICAL ENGINEERING COMPUTATIONAL LAB.

OBJECTIVES:
Using software student should be able

- To determine bearing capacity of substrata and vertical stress distribution
- To analyze settlements of shallow foundations
- To determine load carrying capacity of piles
- To check the stability of reinforced soil walls

1. Presentation of field test data and borelog preparation
2. Bearing capacity of shallow foundations using different theories for different soils
3. Determination of Vertical Stress distribution under different loading conditions and planes
4. Settlement analysis of shallow foundations for different soils
5. Determination of Pile load carrying capacity under compression
6. Determination of lateral pile load capacity
7. Design of underreamed pile foundation
8. Design of Reinforced soil walls

OUTCOME:
Students can determine design/check the stability of Geotechnical structures using software
NUMERICAL METHODS FOR GEOTECHNICAL ENGINEERS

OBJECTIVES:
- To impart the basic concepts of mathematical modeling of problems in Geotechnical engineering
- To learn procedures for solving different kinds of problems.
- To understand the various numerical techniques which provide solutions to non-linear equations, partial differential equations etc. that describe the mathematical models of problems.

UNIT- I
Approximations and Errors in Numerical Methods - Solutions of Algebraic and Transcendental Equations, Bisection, False Position, Secant & Iterative Methods, Newton-Raphson, Comparison of Iterative Methods.

UNIT- II

UNIT- III
Interpolation – Lagrange’s, Newton’s, Hermite’s, Spline, Inverse Interpolation, Applications. Curve Fitting – Least Square regression

UNIT- IV
Numerical Differentiation & Integration – Finite differences, Newton’s difference formulae-Derivatives, Maxima and Minima of a Tabulated Function; Integration – Quadrature, Romberg’s, Euler-Maclaurin, Applications.

UNIT- V

REFERENCE:

OUTCOMES:
- able to know the approximations in any calculations and give solutions to transcendental & simultaneous equations
- able to formulate equations for given data
- able to calculate differentiation and integration problems using numerical methods
- able to solve ordinary and partial differential equations
SOIL DYNAMICS AND MACHINE FOUNDATIONS

OBJECTIVES:

➢ To study vibration concepts in soils like damping, wave propagation, resonance and effect of modes of vibrations.
➢ To study dynamic soil properties. Determination of dynamic properties by field and laboratory tests.
➢ To study the effect of liquefaction and anti liquefaction measures.
➢ To study vibration isolation, machine foundation design.

UNIT- I

UNIT- II

Wave Propagation and Dynamic Soil Properties: Propagation of seismic waves in soil deposits - Attenuation of stress waves, Stress-strain behavior of cyclically loaded soils, Dynamic soil properties - Laboratory and field testing techniques, Elastic constants of soils, Correlations for shear modulus and damping ratio in sands and clays.

UNIT- III

UNIT- IV

UNIT- V

REFERENCE:

OUTCOME:
- Students understands theory of vibration and resonance phenomenon, Amplification.
- Students understand propagation of body waves and surface waves through soil.
- Students learn determination estimation of dynamic soil properties required for design purpose.
- Students can learn the assess liquefaction potential of any site.
- Students apply theory of vibrations to design machine foundation based on dynamic soil properties and bearing capacity.
- Students can Learn the effect of dynamic load /vibration on bearing capacity.
SUBSURFACE INVESTIGATIONS AND INSTRUMENTATIONS

OBJECTIVES:
Students can expect to

- Learn the soil and rock exploration procedures
- Develop the understanding of different soil and rock parameters required for design of foundations
- Learn about advanced soil exploration methods

UNIT- I
Introduction: Data required for soil investigation - Methods of Exploration - Planning the Exploration Program

UNIT-II
Sampling and Programme: Soil Boring - Soil Samplers and Sampling - Underwater Sampling Groundwater Table (GWT) Location - Number and Depth of Borings - Drilling and/or Exploration of Closed Landfills or Hazardous Waste Sites – Preparation of Soil Report

UNIT-III
Penetration Tests: Standard Penetration Test - SPT Correlations - Design N Values - Cone Penetration Tests - Field Vane Shear Testing - Borehole Shear Test - Flat Dilatometer Test - Pressuremeter Test.

UNIT-IV
Rocks: Rock Sampling – RQD – Strength and modulus from classifications, Classification based on strength & modulus and strength and fracture strain, Geoengineering classification.

UNIT-V
Non-Destructive testing: Techniques–sounding techniques, Rader techniques, Ultrasonic pulse wave tests, Bender elements etc.

REFERENCE:
OUTCOMES:

- Students can learn to plan subsurface investigation based on the requirement of Civil Engineering project and site condition. Can finalize depth and number of boreholes.
- Students can execute different subsurface exploration tests, collect disturbed/undisturbed samples for laboratory tests and can suggest design parameters.
- Student exposed to different methods for estimation of dynamic soil properties required for design purpose.
- Students can develop instrumentation scheme for monitoring of critical sites.
JNTUH COLLEGE OF ENGINEERING HYDERABAD
DEPARTMENT OF CIVIL ENGINEERING
M.Tech. I Year II-Sem (Geotechnical Engineering) OFFSHORE GEOTECHNICAL ENGINEERING (Elective-3)

OBJECTIVES:

- Understand the type of soil strata available in offshore.
- Develop a structure under different environmental condition.
- Design the anchors in the sea.

UNIT- I
The nature of Submarine Soils: origin, classification and distribution of marine sediments; in-situ stress state in submarine deposits; inorganic clay deposits; calcareous sediments; siliceous sediments. Offshore Geotechnical Investigations: phases of the investigation, geophysical survey, drilling and sampling procedures, in-situ testing techniques, laboratory testing.

UNIT- II

UNIT- III
Foundations for Jack-up Rigs: foundations types and design loads, Prediction of individual footing performance, prediction of mat footing performance, seabed anchors, load capacity of anchors, breakout forces, anchor systems for floating structures.

UNIT- IV
Offshore Pile Foundations: types of offshore piles, temporary support of piled structures, dynamic analysis of pile driving, axial load capacity, axial deformation analysis, Lateral loading, and dynamic response.

UNIT -V
Seafloor Stability: causes of seafloor instability, geological features of submarine slides, mechanisms of instability, slope stability under gravity forces and wave forces, Effects of soil instability on piles, installation and stability of submarine pipelines.
REFERENCE:

OUTCOMES:
- understand the marine deposits and their behavior under different loading conditions
- able to design the shallow foundations and study the foundation stability of offshore structures.
- Able to design the piles for offshore structures and submarine pipe lines
OBJECTIVES:

- To gain familiarity with different types of foundation.
- To explore the students to the design of shallow foundations and deep foundations.
- To understand the concept of designing shallow and deep foundations, Machine foundations and Special foundations.

UNIT – I

UNIT – II
Raft Foundations: Types of rafts, Design of slab raft foundation and Design of beam and slab raft foundation used for infrastructure projects.

UNIT – III
Pile Foundations: Introduction, design of piles, pile caps and pile-raft foundation.

UNIT – IV
Design of Retaining walls: Stability Analysis and design of gravity, Cantilever retaining walls.

UNIT – V
REFERENCE:

OUTCOME:
- The learner will be able to design shallow and deep foundations for different loading conditions
- Design and check the stability of retaining walls
- Able to design machine foundations
OBJECTIVES:

Students can expect to:

- Selection of type of classification of rock mass based on application tunneling, mining etc.
- Determination of strength parameters based on the nature of the rock mass and predicting its behavior under loading condition, settlement, bearing capacity etc.
- Check for stability of natural rock slopes & cuts in rock mass - predicting and checking the probable failure modes.
- Blasting operations - suitable explosive products and blast determining selection of approximate method of blasting on site location and condition.

UNIT-I

Engineering Classification of Rocks: Classification of intact rocks, Rock mass classifications, Rock Quality Designation (RQD), Rock Structure Rating (RSR), Rock Mass Rating (RMR), Norwegian Geotechnical Classification (Q-system), Strength and modulus from classifications, Classification based on strength & modulus and strength and fracture strain, Geoengineering classification.

UNIT-II

Laboratory and In-Situ Testing of Rocks: Physical properties, Compressive strength, Tensile strength, Direct shear test, Triaxial shear test, Slake durability test, Schmidt rebound hardness test, Sound velocity test, In-Situ Tests: Seismic methods, Electrical resistivity method, In situ stresses, Plate loading test, Goodman jack test, Plate jacking test, In-situ shear test, Field permeability test.

UNIT-III

Strength, Modulus and Stresses-Strain Responses of Rocks: Factors influencing rock response, Strength criteria for isotropic intact rocks, Modulus of intact rocks, effect of confining pressure, Uniaxial Compressive strength, Stress criteria for intact rocks, Strength due to induced anisotropy in rocks, Stress Strain Models: Constitutive relationships, Elastic, Elasto-plastic, Visco-elastic, Elasto-viscoplastic stress-strain models.

UNIT-IV

UNIT-V

Underground and Open Excavations: Blasting operational planning, Explosive products, Blast Design, Underground blast design, Controlled blasting techniques, blasting damage and control, Safe practice with explosives and shots.

REFERENCE:
2. Ramamurthy, T. - Engineering in Rocks for slopes, foundations and tunnels, Prenice Hall of India.(2007)

OUTCOME:
- Able to determine the required rock properties and classify rock mass
- Determination of bearing capacity of rocks,
- Checking the stability of slopes, and design underground and open excavation.
- The students will be able to predict strength of rock mass with respect to various Civil Engineering applications
OBJECTIVES:
To enable the student
- To calculate earth pressure under different loads and conditions
- To check the stability of gravity and cantilever Retaining walls
- To design sheet pile walls and bracings
- To design Reinforced soil walls

UNIT-I
Earth Pressure Theories: Rankine’s and Coulomb’s Earth pressure theories for cohesive and cohesionless soils, stresses due to compaction and surcharge loads.

UNIT-II
Conventional Retaining Wall: Types of retaining walls, Stability (sliding, overturning, bearing capacity & overall) of gravity and cantilever walls, Proportioning of retaining walls, Backfill material and drainage.

UNIT-III
Flexible Walls: Sheet pile walls, Construction methods- Cantilever and Anchored (Free and Fixed support methods) sheet pile walls in coarse and fine grained soils, moment reduction method.

UNIT-IV
Reinforced Soil Walls/Mechanically Stabilised Earth: - Failure mechanisms-bond and rupture failures, Analysis methods, Limit equilibrium method- Internal and external stability, Static analyses.

UNIT-V
Braced Cuts and Soil Nailing: Lateral earth pressure in braced cuts, Design of various components, Stability of braced cuts, base heave and stability, yielding and settlement of ground surrounding excavation, Soil Nailing.

REFERENCE:
OUTCOMES:
- Able to calculate the earth pressures under different vertical loads and conditions
- Able to design conventional retaining walls and check the stability
- Able to design flexible retaining walls such as sheet pile walls and reinforced earth walls
- To design the supporting systems for excavations
OBJECTIVES:

- To impart Knowledge on Site investigation and soil testing methods.
- To be able to design types of foundations, suitable for different Structures.
- To identify soil types suitable for construction.

UNIT – 1
Site Investigation for Infrastructure Projects: methods of site investigation, types of soil samples and samplers- Geotechnical field testing – SPT, CPT, Plate Load Test, Pile Load Test.

UNIT – 2
Shallow Foundations for Railway & Highway Bridges and Port & Harbour Structures: types of foundations, design forces, safe and allowable bearing capacity of shallow foundations, settlement computation;

UNIT – 3
Pile Foundations for Railway & Highway Bridges and Port & Harbour Structures: Pile foundations – types, axial and lateral capacity of pile, pile group analysis and pile cap; Introduction to drilled piers, caissons, well foundations.

UNIT – 4
Foundations for Transmission Line, Radar Antenna, Microwave and TV Tower and Chimneys: Introduction, foundations for towers and chimneys, design forces, behaviour of pad and chimney foundations, design of chimney and pad foundations, anchor foundations (rock anchors), design of foundations for towers and chimneys, analysis of raft on pile foundations; design and construction of shallow foundations on rocks.

UNIT – 5
Sheet Piles - introduction, types of sheet pile walls, cantilever sheet pile wall, anchored sheet pile wall, stability analysis of anchored bulkhead by free earth support and fixed earth support method, position of anchorage.

Expansive and Collapsible Soil: Difficult soils- loose granular soils, soft clays and shrinkable soils- identification, swell and swell pressure.
REFERENCE:
5. IS: 4091 (1979) - Design and construction of foundations for transmission line towers

OUTCOMES:
- Able to plan and select the soil exploration method which is to be used in the field
- Estimate the bearing capacity and settlements of shallow foundations for different infrastructure projects
- Design deep foundations under different types of loads
- Design foundations for highrise buildings, towers, chimney etc
- Design foundations on soft or problematic soils and supporting systems for excavations
OBJECTIVES:
To enable the students
- To understand geotechnical modeling considerations
- To select model to simulate field conditions
- To use and acquire data using various instruments
- To compare with recent development geotechnical modelling

UNIT-I
Similitude and Modeling Principles: Importance of physical Modeling, scaling laws, small-scale model studies in 1-g and N-g, historical Perspectives.

UNIT-II
Design of physical model and model ground preparation: scale effects, flexible and rigid boundary conditions, preparation of sand/clay bed preparation, wet pluviation, dry pluviation, tamping techniques, slurry consolidation, uniformity of sand/clay beds.

UNIT-III
Model planning and measurement strategy: Selection of Model dimension, model containers, preparation of models to test shallow and deep foundations, pull-out behavior, retaining walls, shaking table studies, vertical and inclined loading system, Perspex walls, markers, digital analysis.

UNIT-IV
Sensors and Data Acquisition: Strain gauges, Load cells, Earth Pressure Transducers, LVDTs, Linear Potentiometers, pore pressure transudes, accelerometers, Hydraulic jack, calibration methods, dead weight calibration, pneumatic calibration, frequency of calibration, calibration charts, calibration factor, In-soil & fluid calibration, data acquisition system.

UNIT-V
Recent Developments in Physical Modelling: Static behaviour of shallow and deep foundations, Piles subjected to lateral loading, behaviour of foundation subjected to earthquake loading, foundations subjected to cyclic loading, use of shaking table, behaviour of foundations on expansive soils.
REFERENCE:

OUTCOMES:
- Student will be able to understand scaling laws and modeling considerations for physical modeling in geotechnical problems both for static and dynamic conditions.
- Able to comprehend physical modeling, scale effects, simulation of field conditions, conceptualization and fixing boundary conditions etc.
- Data acquisition for all the conditions
- Able to know new improvements in physical modeling
OBJECTIVES:
To enable students to
Rock Mass:
- To learn determination of the parameters required for classification
- Strength & Modules determination directly and indirectly for the design purpose

Geotextiles:
- To determine the strength and other properties required for geotextile when used for different applications in roads, RE walls, sand wicks etc.

1. Determination of basic properties of rock –
 a) Unit weight from mercury displacement method for irregular samples
 b) Determination of unit weight for core samples
 c) Void ratio, porosity and specific gravity of rock specimens

2. Determination of RQD

3. Determination of Slake Durability Index

4. Point Load Tests – Determination of point load index value, compressive strength and tensile strength for both core and irregular samples

5. Tensile strength of rock by Brazilian Test

6. Uniaxial compressive strength of rock and determination of modulus of elasticity

7. Determination of hardness of rock
 a) Rebound Hammer Test (insitu)
 b) Los Angeles abrasion test (Road materials)

8. Determination of toughness of rock material (road material)

9. Determination of V_p & V_s – Through rock Sample

OUTCOMES:
- Enable to understand the behavior of rocks and Geosynthetics for various loads, in order to use these properties in designs the geotechnical structures.
ADVANCED GEOTECHNICAL ENGINEERING LABORATORY - II

OBJECTIVES:
To enable students to

- Conduct Field tests & Model field tests for interpretation of result and to understand the testing procedure
- To determine containment transport studies to understand various transport processes involved and the determination of parameters required for prediction of contamination

1. Preparation of borelog & Soil Investigation Report for a) SPT b) DCPT
2. Model Plate Load Test.
4. Pressuremeter Test
5. Block Vibration Test & Hammer Test
6. MASW Test
7. Pollutant Transport using column test (Determination of R)
8. Determination of Chlorides in soils
9. Determination of Sulphates in soils
10. Study of pollutant transport under instant and continuous source (Determination of D_x)
11. Batch tests (Determination of K_d)
12. Tests on Geotextiles
 a) Tensile Strength of Geotextiles
 b) Cone Drop Test on geotextile
 c) Interface friction between geotextile and soil
 d) In-Plane and Cross-Plane Permeability of Geotextiles

OUTCOMES:

- Students can conduct appropriate field tests on soil, so as to apply the obtained results for a specific Civil Engineering project.
- Can determine the dynamic soil properties of sub-soil
- Able to determine the chemical properties present in the soil
OBJECTIVES:

To study

- The basic concepts of stability.

- To make the students aware of various causes of failures of slopes and study the remedial measure

UNIT-I

Earth and Rockfill Dams: General features, Selection of site; Merits and demerits of the earth and rock fill dams, Classification of earth dams, Causes of failure, Safe design criteria. Instrumentation in earth dams: Pore pressure measurements, Settlement gauges, Inclinometers, Stress measurements, Seismic measurements.

UNIT-II

Failures, Damages and Protection of Earth Dams: Nature and importance of failure, piping through embankment and foundations, Methods of seepage control through embankments and foundations, Design Criteria for filters.

UNIT-III

UNIT-IV

UNIT-V

REFERENCE:

OUTCOMES:

- Can select Suitable materials for earth and rockfill dams, causes of failures
- Student will be able to check the stability of earthen dams,
- safety measures to be undertaken to prevent the instability of slopes, earthen dams and embankments
PAVEMENT ANALYSIS AND DESIGN
(Program Elective-5)

OBJECTIVES:

This course will enable students to
- Identify the type of pavement and to know the stress distribution
- Learn the deflection criteria in soils for different pavements
- To know the characteristics of the rigid pavements and flexible pavements
- To carry out design and evaluation of flexible and rigid pavements in varied field conditions.

UNIT-I
Introduction: Types and component parts of pavements, Factors affecting design and performance of pavements. Highway and airport pavements, field CBR, field plate load test, modulus of sub grade reaction, Resilient modulus, Suitability of soil, Compaction equipment and Compaction Control.

UNIT-II
Stresses and strains in flexible pavements: Stresses and strains in an infinite elastic half space use of Boussinesq’s equations - Burmister’s two layer and three layer theories; Wheel load stresses, various factors in traffic wheel loads; Equivalent single wheel load of multiple wheels. Repeated loads and EWL factors.

UNIT-III
Flexible pavement design methods for highways and airports: Empirical, semi-empirical and theoretical approaches; Development, principle, design steps of the different pavement design methods including AASHTO, Asphalt Institute, Shell Methods. IRC method of pavement design.

UNIT-IV
Stresses in rigid pavements: Types of stresses and causes; Introduction to Westergaard’s equations for calculation of stresses in rigid pavement due to the influence of traffic and temperature; Considerations in rigid pavement analysis, EWL; wheel load stresses, warping stresses, frictional stresses, combined stresses.

UNIT-V
Rigid pavement design: Design of cement concrete pavement for highways and runways; Design of joints, reinforcements, tie bars, dowel bars. IRC method of design; Design of continuously reinforced concrete pavements.
REFERENCE:
8. IRC: 37 & 58 Codes for Flexible and Rigid Pavements Design.

OUTCOMES:
- Student will be able to understand various pavement material characterization techniques
- Estimate the stresses and strains in pavements under different wheel load configurations and other conditions
- Design of flexible and rigid pavements as per specification such as Morth &IRC
OBJECTIVES:

- To understand the dynamics of earth and its response, effect on earth structure and measures to mitigate the effects
- Students are able to develop the design ground motion for a site by suitable response analysis
- To analyze and design geotechnical structures.

UNIT – I
Earthquake Seismology – Causes of earthquake, Plate tectonics, Earthquake fault sources, Seismic waves, Elastic rebound theory, Earthquake, Intensity and magnitudes, Effects of earthquake, Modified Mercalis intensity scale and seismic instruments.

UNIT – II
Earthquake Ground Motion – Characteristics of ground motion, Effect of local site conditions on ground motions, Design earthquake, Design spectra, Development of site specification and code-based design.

UNIT – III
Ground Response Analysis – One-dimensional ground response analysis: Linear approach, Nonlinear approach, Comparison of one dimensional ground response analyses. Two-dimensional ground response analysis: Equivalent linear approach, Nonlinear approach, Comparison of two dimensional ground response analyses.

UNIT – IV
Liquefaction and Lateral Spreading - Liquefaction related phenomena, Liquefaction susceptibility: Historical, Geological, Compositional and State criteria. Evaluation of liquefaction by cyclic stress and cyclic strain approaches, Lateral deformation and spreading, Soil improvement for remediation of seismic hazards.

UNIT – V
REFERENCE:

OUTCOMES:
- Students will know the causes and quantification of earthquake.
- To carryout ground response analysis
- To find liquefaction susceptibility and remedial measures for seismic hazards
- Design of foundations considering earthquake loads
OBJECTIVES:

- To know about the various Construction Management Techniques available for execution of project.
- To understand Resource planning, different types of contract.
- To learn the occupational and safety Hazard Assessment.

UNIT I

UNIT II

UNIT III
Resource planning - planning for manpower, materials, costs, equipment. Labour, - Scheduling .Forms of scheduling - Resource allocation. budget and budgetary control methods

UNIT IV

UNIT V
REFERENCE:

OUTCOMES:

- Able to plan, coordination, and control of a project from beginning to completion.
- Adopting the most effect method for meeting the requirement in order to produce a functionally and financially viable project.
OBJECTIVES:

This course will enable students to

- Understand in general how finite elements obtain approximate solutions to differential equations
- Appreciate the structure of a typical finite element program
- Gain experience of finite element analysis applied to classical geotechnical problems (e.g. settlement, seepage, consolidation, slope stability)
- Gain insight into the soil properties needed for finite element analysis

UNIT-I

UNIT-II
Element Properties: Concept of an element, various element shapes, Displacement models, Generalized coordinates, Shape functions, Convergent and Compatibility requirements, Geometric invariance, Natural coordinate system - area and volume coordinates.

UNIT-III
Generation of Element Stiffness and Nodal Load Matrices, Isoparametric Formulation: Concept, Different isoparametric elements for 2D analysis, formulation of 4-noded and 8-noded isoparametric quadrilateral elements, Lagrangian elements, Serendipity elements.

UNIT-IV
Assemblage of Elements: Discretization of a structure, numbering systems, Aspect ratio its effects, Assemblage, Direct Stiffness method.

UNIT-V
Geotechnical Applications: Sequential construction, Excavations and embankments, Bearing capacity and Settlement analysis.
REFERENCE:
5. Tirupati & Belgundu

OUTCOMES:
- To obtain an understanding of the fundamental theory of the Finite Element Method, and apply the theory to solve soil behavior under external loads.
OBJECTIVES:
To introduce the students,
- Neural network characteristics, development of neural network principles.
- Learning methods and neural network models, types of learning, supervised, unsupervised, reinforced learning etc
- Recurrent back propagation, introduction to counter propagation networks
- The concepts of Fuzzy logic, Applications in water resource engineering.

UNIT-I
Introduction to Neural Networks: ANN definition, components, input, output and hidden layers, threshold value, weights. Relationship of ANN with other technologies.

UNIT-II
Neural Networks Models: Perceptron model, Feedforward network-back propagation, Hopfield network, Adaline and Madaline models.

UNIT-III
Learning and Training: Objective of learning, Supervised and Unsupervised learning, Hebb’s rule, Delta Rule.

UNIT-IV

UNIT-V
REFERENCE:
2. Artificial Neural Networks by Robert J. Schalokoff.

OUTCOMES:
- Asses the applicability, strengths and weakness of problems and methods for particular engineering problem.
- Can develop intelligent system for particular problem.
OPERATION RESEARCH
(Open Elective)

OBJECTIVES:
- Aims to introduce students to use quantitative methods and techniques for effective
decisions-making; model formulation and applications that are used in solving business
decision problems.
- To introduce Decision and Game Theory concepts for scientific study of strategic
decision making.

UNIT-I
Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex
Techniques, Sensitivity Analysis, Inventory Control Models

UNIT-II
Formulation of a LPP - Graphical solution revised simplex method - duality theory - dual
simplex method - sensitivity analysis - parametric programming

UNIT-III
Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow
problem - CPM/PERT

UNIT-IV
Scheduling and sequencing - single server and multiple server models - deterministic
inventory models - Probabilistic inventory control models - Geometric Programming.

UNIT-V
Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic
Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation
REFERENCE:

OUTCOMES:
- Students should able to apply the dynamic programming to solve problems of discreet and continuous variables.
- Students should able to apply the concept of non-linear programming
- Students should able to carry out sensitivity analysis
- Student should able to model the real world problem and simulate it.
OBJECTIVES:

- To provide information regarding different elements of industrial water pollution and methods of treatment.
- To expose students to the various industrial applications, maintenance, preventive measures taken against wear and tear.

UNIT-I

Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.

UNIT-II

Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

UNIT-III

Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working applications,

- Screw down grease cup,
- Pressure grease gun,
- Splash lubrication,
- Gravity lubrication,
- Wick feed lubrication
- Side feed lubrication,
- Ring lubrication,

Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.
UNIT-IV
Fault tracing: Fault tracing-concept and importance, decision tree concept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment’s like,
 i. Any one machine tool,
 ii. Pump
 iii. Air compressor
 iv. Internal combustion engine,
 v. Boiler,
 vi. Electrical motors, Types of faults in machine tools and their general causes.

UNIT-V
Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of:
 i. Machine tools,
 ii. Pumps,
 iii. Air compressors,
 iv. Diesel generating (DG) sets,

Program and schedule of preventive maintenance of mechanical and electrical equipment, Advantages of preventive maintenance. Repair cycle concept and importance

REFERENCE:

OUTCOMES:
- Student can know how to take safety measures in executing works
- Can identify the need for maintenance (or) replacement of equipment
- Can understand the need for periodic and preventive maintenance
OBJECTIVES:
Students will be able to:
- Understand that how to improve your writing skills and level of readability.
- Learn about what to write in each section.
- Understand the skills needed when writing a Title

UNIT- I
Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

UNIT- II

UNIT- III
Review of the Literature, Methods, Results, Discussion, Conclusions, Final Check.

UNIT- IV
Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature

UNIT- V
Skills are needed when writing the methods, skills needed when writing the Results, skills are needed when writing the Discussion, and skills are needed when writing the Conclusions

UNIT- VI
Useful phrases, how to ensure paper is as good as it could possibly be the first-time submission
REFERENCE:
3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM.

OUTCOMES:
- To improve writing and readability levels for English.
- How to write and what to write according to section.
- To Acquire Skills in title writing.
JNTUH COLLEGE OF ENGINEERING HYDERABAD
DEPARTMENT OF CIVIL ENGINEERING

M.Tech. I Year (Geotechnical Engineering)

DISASTER MANAGEMENT
(AUDIT 1 and 2)

OBJECTIVES:
To make student understand
- The nature of various types of Natural and Manmade Disasters.
- The concept of Disaster Risk Reduction (Global level, National level, Local level.)
- Disaster Mitigation Strategies (Structural and non Structural Mitigation measures)

UNIT- I
Introduction
Disaster: Definition, Factors And Significance; Difference Between Hazard And Disaster; Natural And Manmade Disasters: Difference, Nature, Types And Magnitude.

UNIT- II

UNIT- III
Disaster Prone Areas in India
Study of Seismic Zones; Areas Prone To Floods and Droughts, Landslides and Avalanches; Areas Prone To Cyclonic and Coastal Hazards with Special Reference to Tsunami; Post-Disaster Diseases and Epidemics

UNIT- IV
Disaster Preparedness and Management
Preparedness: Monitoring of Phenomena Triggering A disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological and other Agencies, Media Reports governmental and Community Preparedness.

UNIT- V
Risk Assessment
 Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk assessment and Warning, People’s Participation in Risk Assessment. Strategies for Survival

UNIT- VI
Disaster Mitigation
Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends in Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs Of Disaster Mitigation in India.
REFERENCE:

2. Sahni, Pardeep Et.Al. (Eds.),” Disaster Mitigation Experiences and Reflections”, Prentice Hall of India, New Delhi.

OUTCOMES:

- Learn to demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response.
- Critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
- Develop an understanding of standards of humanitarian response and practical relevance in Specific types of disasters and conflict situations.
- Critically understand the strengths and weaknesses of disaster management approaches, Planning and programming in different countries, particularly their home country or the countries they work in.
OBJECTIVES:

- To get a working knowledge in illustrious Sanskrit, the scientific language in the world.
- Learning of Sanskrit to improve brain functioning.
- Learning of Sanskrit to develop the logic in mathematics, science & other subjects enhancing the memory power.
- The engineering scholars equipped with Sanskrit will be able to explore the huge knowledge from ancient literature.

UNIT- I
- Alphabets in Sanskrit,
- Past/Present/Future Tense,
- Simple Sentences

UNIT- II
- Order
- Introduction of roots
- Technical information about Sanskrit Literature

UNIT- III
- Technical concepts of Engineering-Electrical, Mechanical,
- Architecture, Mathematics

REFERENCE:
1. “Abhyaspustakam” – Dr. Vishwas, Samskrita-Bharti Publication, New Delhi
2. “Teach Yourself Sanskrit” Prathama Deeksha-VempatiKutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication

OUTCOMES:
- Understanding basic Sanskrit language.
- Ancient Sanskrit literature about science & technology can be understood.
- Being a logical language will help to develop logic in students.
M.Tech. I Year (Geotechnical Engineering)

Research Methodology and IPR
(AUDIT 1 and 2)

OBJECTIVES: To expose the student to,

- The scientific research process and the various steps involved
- Formulation of research problem and research design
- Thesis preparation and presentation.
- Research proposals, publications and ethics
- Important research methods in engineering.

UNIT- I

UNIT- II
Effective literature studies approaches, analysis Plagiarism, Research ethics.

UNIT- III
Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee

UNIT- IV

UNIT- V

UNIT- VI
New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.
REFERENCE:

2. Wayne Goddard and Stuart Melville, “Research Methodology: An Introduction”

OUTCOMES:

- Understand research problem formulation.
- Analyze research related information
- Follow research ethics Understand that today’s world is controlled by Computer, Information
- Technology, but tomorrow world will be ruled by ideas, concept, and creativity.
- Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular.
- Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.
M.Tech. I Year (Geotechnical Engineering)

VALUE EDUCATION
(AUDIT 1 and 2)

OBJECTIVES:
Students will be able to
- Understand value of education and self-development.
- Imbibe good values in students.
- Know the importance of character.

UNIT- I
- Values and self-development – Social values and individual attitudes.
 Work ethics, Indian vision of humanism.
- Value judgements

UNIT- II
- Importance of cultivation of values.
 Truthfulness, Cleanliness.
- Patriotism. Love for nature, Discipline

UNIT- III
- Personality and Behavior Development - Soul and Scientific attitude.
 Positive Thinking. Integrity and discipline.
- Punctuality, Love and Kindness.
- Avoid fault Thinking.
- Free from anger, Dignity of labour.
- Universal brotherhood and religious tolerance.
- True friendship.
- Happiness Vs suffering, love for truth.
- Aware of self-destructive habits.
- Association and Cooperation.
- Doing best for saving nature

UNIT- IV
- Character and Competence – Holy books vs Blind faith.
- Self-management and Good health.
- Science of reincarnation.
- Equality, Nonviolence, Humility, Role of Women.
- All religions and same message.
- Mind your Mind, Self-control.
- Honesty, Studying effectively

67
REFERENCE:

OUTCOMES:

- 1. Knowledge of self-development
- 2. Learn the importance of Human values
- 3. Developing the overall personality
OBJECTIVES:

- Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
- To address the growth of Indian opinion regarding modern Indian intellectuals' constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.
- To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.

UNIT- I
History of Making of the Indian Constitution:
History Drafting Committee, (Composition & Working)

UNIT- II
Philosophy of the Indian Constitution:
Preamble
Salient Features

UNIT- III
Contours of Constitutional Rights & Duties:
- Fundamental Rights
- Right to Equality
- Right to Freedom
- Right against Exploitation
- Right to Freedom of Religion
- Cultural and Educational Rights
- Right to Constitutional Remedies
- Directive Principles of State Policy
- Fundamental Duties.

UNIT- IV
Organs of Governance:
- Parliament
- Composition
- Qualifications and Disqualifications
- Powers and Functions
- Executive
- President
- Governor
- Council of Ministers
- Judiciary, Appointment and Transfer of Judges, Qualifications
- Powers and Functions
UNIT- Vw
Local Administration:
- District’s Administration head: Role and Importance,
- Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation.
- Elected officials and their roles, CEO ZilaPachayat: Position and role.
- Block level: Organizational Hierarchy (Different departments),
- Village level: Role of Elected and Appointed officials,
- Importance of grass root democracy

UNIT- VI
Election Commission:
- Election Commission: Role and Functioning.
- Chief Election Commissioner and Election Commissioners.
- State Election Commission: Role and Functioning.
- Institute and Bodies for the welfare of SC/ST/OBC and women.

REFERENCE:
1. The Constitution of India, 1950 (Bare Act), Government Publication.

OUTCOMES:
- Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics.
- Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.
OBJECTIVES:

- Develop and document their own personal learning networks.
- Develop a project based lesson plan that emphasis students exploration, interaction creation and feedback cycles.
- To articulate a personal philosophy for teaching and learning.

UNIT- I
Introduction and Methodology:

- Aims and rationale, Policy background, Conceptual framework and terminology
- Theories of learning, Curriculum, Teacher education.
- Conceptual framework, Research questions.
- Overview of methodology and Searching.

UNIT- II

- Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries.
- Curriculum, Teacher education.

UNIT- III

- Evidence on the effectiveness of pedagogical practices
- Methodology for the in depth stage: quality assessment of included studies.
- How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?
- Theory of change.
- Strength and nature of the body of evidence for effective pedagogical practices.
- Pedagogic theory and pedagogical approaches.
- Teachers’ attitudes and beliefs and Pedagogic strategies.

UNIT-IV

- Professional development: alignment with classroom practices and follow-up support
- Peer support
- Support from the head teacher and the community.
- Curriculum and assessment
- Barriers to learning: limited resources and large class sizes
UNIT- V.
Research gaps and future directions

- Research design
- Contexts
- Pedagogy
- Teacher education
- Curriculum and assessment
- Dissemination and research impact.

REFERENCE:

OUTCOMES:

- What pedagogical practices are being used by teachers in formal and informal classrooms in developing countries
- What is the evidence on the effectiveness of these pedagogical practices, in what conditions, and with what population of learners
- How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy