ACADEMIC REGULATIONS
COURSE STRUCTURE
AND
DETAILED SYLLABUS

COMPUTER SCIENCE & ENGINEERING

For
5 YEAR INTEGRATED DUAL DEGREE PROGRAM (I.D.P)
Leading to
(B.TECH. & M.Tech. / MBA )
(Applicable for the batches admitted from 2017-2018)

JNTUH COLLEGE OF ENGINEERING HYDERABAD
(Autonomous)
Kukatpally, Hyderabad – 500085
Telangana, India
1.0 5 Year Integrated Dual Degree Program in Engineering & Technology (IDP)

JNTUH offers 5 Year (10 Semesters) Integrated Dual Degree (IDP) Programme, under Choice Based Credit System (CBCS) at its Constituent Autonomous College - JNTUH College of Engineering Hyderabad, with effect from the Academic Year 2017-18 onwards, in the following Branches of Engineering:

<table>
<thead>
<tr>
<th>S.No.</th>
<th>UG Program</th>
<th>PG Program</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>M.Tech. (Specialization)</td>
</tr>
<tr>
<td>1)</td>
<td>B.Tech. in Electronics &amp; Communication Engineering</td>
<td>M.Tech. (Communications &amp; Signal Processing)</td>
</tr>
<tr>
<td>2)</td>
<td>B.Tech. in Computer Science &amp; Engineering</td>
<td>M.Tech. (Computer Science)</td>
</tr>
<tr>
<td>3)</td>
<td>B.Tech. in Electrical &amp; Electronics Engineering</td>
<td>M.Tech. (Power Electronics)</td>
</tr>
<tr>
<td>4)</td>
<td>B.Tech. in Mechanical Engineering</td>
<td>M.Tech. (Manufacturing Systems)</td>
</tr>
<tr>
<td>5)</td>
<td>B.Tech. in Civil Engineering</td>
<td>M.Tech. (Structural Engineering)</td>
</tr>
</tbody>
</table>

(* A Minimum of 15 students is necessary for any specialization to be offered.)

A student would be conferred the B.Tech Degree and M.Tech or MBA Degree in this IDP, after the successful completion of all the requirements for the 10 semesters of study and earning the appropriate credits.

2.0 Eligibility for Admission

2.1 Admission to the IDP shall be made either on the basis of the merit rank obtained by the qualifying candidate at an Entrance Test conducted by the Telangana State Government (EAMCET), OR the University, OR on the basis of any other order of merit approved by the University, subject to reservations as prescribed by the Government from time to time.

2.2 The medium of instructions for the entire IDP in E&T will be ENGLISH only.

2.3 Students opting for the 5 year integrated IDP must specify their choice for M.Tech. (within the specializations given above) or MBA as the case may be, after choosing the appropriate Branch of Engineering, at the time of Admissions only. Option thus exercised is final, and cannot be changed during the study period.
2.4 Students opting for 5 years integrated IDP have to study for the specified period, to earn the relevant credits for the award of both the B.Tech. and M.Tech. / MBA Degrees, and they will not be permitted to have a choice for B.Tech. Degree alone after 4 years study.

3.0 IDP Structure

3.1 The IDP Programmes of JNTUH-CEH are of Semester Pattern, with 10 Semesters constituting 5 Academic Years, each Academic Year having TWO Semesters (First/Odd and Second/Even Semesters). Each Semester shall be of 22 Weeks duration (inclusive of Examinations), with a minimum of 90 Instructional Days per Semester.

3.2 UGC/ AICTE specified Definitions/ Descriptions are adopted appropriately for various terms and abbreviations used in these Academic Regulations, which are as listed below.

3.3 Semester Scheme:
Each Semester having - ‘Continuous Internal Evaluation (CIE)’ and ‘Semester End Examination (SEE)’. Choice Based Credit System (CBCS) and Credit Based Semester System (CBSS) as denoted by UGC.

3.4 Credit Courses:
All Subjects/Courses are to be registered by a student in a Semester to earn Credits. Credits shall be assigned to each Subject/Course in a L: T: P: C (Lecture Periods: Tutorial Periods: Practicals Periods: Credits) Structure, based on the following general pattern ..

- One Credit - for One hour/ Week/ Semester for Theory/ Lecture (L) Courses; and,
- One Credit - for Two hours/ Week/ Semester for Laboratory/ Practical (P) Courses or Tutorials (T).
Other student activities like NCC, NSS, NSO, Study Tour, Guest Lecture etc., and identified Mandatory Courses will not carry Credits.

3.5 Subject/ Course Classification:
All Subjects/Courses offered for the UGP are broadly classified as : (a) Foundation Courses (FnC), (b) Core Courses (CoC), and (c) Elective Courses (E/C).

- Foundation Courses (FnC) are further categorized as : (i) HS (Humanities and Social Sciences), (ii) BS (Basic Sciences), and (iii) ES (Engineering Sciences);
- Core Courses (CoC) and Elective Courses (E/C) are categorized as PS (Professional Subjects), which are further subdivided as – (i) PC (Professional/ Departmental Core) Subjects, (ii) PE (Professional/ Departmental Electives) , (iii) OE (Open Electives); and (iv) Project Works (PW);
- Minor Courses (1 or 2 Credit Courses, belonging to HS/ BS/ ES/ PC as per relevance); and
- Mandatory Courses (MC - non-credit oriented).

3.6 Course Nomenclature:
The Curriculum Nomenclature or Course-Structure Grouping for the each of the IDP E&T is as listed below :

<table>
<thead>
<tr>
<th>S.No</th>
<th>UG/PG Program</th>
<th>Group/Category/Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>UG</td>
<td>BS – Basic Sciences</td>
<td>Includes - Mathematics, Physics and Chemistry Subjects</td>
</tr>
<tr>
<td>2)</td>
<td>UG</td>
<td>ES - Engineering Arts and Sciences</td>
<td>Include fundamental engineering subjects</td>
</tr>
</tbody>
</table>
3) UG HS – Humanities and Social Sciences
Includes subjects related to Humanities, Social Sciences and Management

4) UG PC – Professional Core
Includes core subjects related to the parent discipline, department or branch of engineering

5) UG PE – Professional Electives
Includes Elective subjects related to the parent discipline, department or branch of engineering

6) UG OE – Open Electives
Elective subjects which include interdisciplinary subjects or subjects in an area outside the parent discipline, department or branch of engineering

7) UG Project
B.Tech. Project or UG Project or UG Major Project

8) UG Industrial Training/Mini Project
Industrial Training/Internship/UG Mini Project/Mini Project

9) PG PGC
PG Core Subjects related to the M.Tech. Specialization / MBA

10) PG PGE
PG Elective Subjects related to the M.Tech. Specialization / MBA

11) PG Project
PG Project M.Tech. / MBA

12) PG Seminar
Seminar / Colloquium at PG level, in M.Tech. / MBA

13) PG Comprehensive Viva
Comprehensive Viva based on all Subjects

| Total   | 254 |

4.0 Course Work

4.1 A student, after securing admission, shall pursue the IDP (B.Tech+M.Tech or MBA) in a minimum period of 5 Academic Years, and a maximum period of 10 Academic Years (starting from the Date of Commencement of I Year). The entire course of study is of five academic years, comprising of 10 semesters. All the I, II, III, IV and V years are on two-semester pattern.

4.2 Each student shall Register for and Secure the specified number of Credits required for the completion of the IDP and Award of the B.Tech+M.Tech / MBA. Degree in respective Branch of Engineering.

4.3 The student must secure a total of 260 credits for the IDP - 174 credits for the B.Tech. Degree Program, plus 86 credits for the M.Tech./ MBA Program.

4.4 The course work and curriculum for first 3 years (6 Semesters) would be same as that the Regular B.Tech (4 year) in the relevant branch of Engineering.

5.0 Course Registration

5.1 A ‘Faculty Advisor or Counselor’ shall be assigned to each student, who will advise him about the IDP, its Course Structure and Curriculum, Choice/Option for Subjects/Courses, based on his competence, progress, pre-requisites and interest.

5.2 Academic Section of the College invites ‘Registration Forms’ from students before the beginning of the Semester, through ‘ON-LINE SUBMISSIONS’, ensuring ‘DATE and TIME Stamping’. The ON-LINE Registration Requests for any ‘CURRENT SEMESTER’ shall be completed BEFORE the commencement of SEE (Semester End Examinations) of the ‘PRECEDING SEMESTER’.

5.3 A Student can apply for ON-LINE Registration, ONLY AFTER obtaining the ‘WRITTEN APPROVAL’ from his Faculty Advisor, which should be submitted to the College Academic Section through the Head of Department (a copy of the same being retained with Head of Department, Faculty Advisor and the Student).
5.4 A Student may be permitted to Register for his Subjects/ Course of CHOICE upto III year II semester with a typical total of 24 Credits per Semester (Minimum being 20 C and Maximum being 28 C, permitted deviation being ±17%), based on his PROGRESS and SGPA/CGPA, and completion of the ‘PRE-REQUISITES’ as indicated for various Subjects/ Courses, in the Department Course Structure and Syllabus contents. However, a MINIMUM of 20 Credits per Semester must be registered to ensure the ‘STUDENTSHIP’ in any Semester.

A Student may be permitted to Register for his Subjects/ Course of CHOICE in IV year I semester and V year I semester with a typical total of 30 Credits per Semester (Minimum being 26 C and Maximum being 34 C, permitted deviation being ±14%), based on his PROGRESS and SGPA/CGPA, and completion of the ‘PRE-REQUISITES’ as indicated for various Subjects/ Courses, in the Department Course Structure and Syllabus contents. However, a MINIMUM of 26 Credits per Semester must be registered to ensure the ‘STUDENTSHIP’ in any Semester.

A Student may be permitted to Register for his Subjects/ Course of CHOICE in IV year II semester with a typical total of 28 Credits per Semester (Minimum being 24 C and Maximum being 32 C, permitted deviation being ±14%), based on his PROGRESS and SGPA/CGPA, and completion of the ‘PRE-REQUISITES’ as indicated for various Subjects/ Courses, in the Department Course Structure and Syllabus contents. However, a MINIMUM of 24 Credits per Semester must be registered to ensure the ‘STUDENTSHIP’ in any Semester.

A Student must Register for his Subjects/ Course in V year II semester with a total of 22 Credits per Semester.

5.5 Open Electives: Students are to register One Open Elective (OE-I) during III Year I Semester, one (OE-II) during III Year II Semester, from the list of Open Electives given. However, Students can not opt for an Open Elective Subject offered by their own (parent) Department, if it is already listed under any category of the Subjects offered by parent Department in any Semester.

5.6 There shall be an Industry oriented Mini-Project, in collaboration with an Industry of the relevant specialization, to be registered immediately after III year II semester examinations, and taken up during the summer vacation for about eight weeks duration.

5.7 Each Student shall Register the UG Project Work during the IV Year II Semester, as per the instructions of the Project Guide/ Project Supervisor assigned by the Head of Department.

5.8 The PG Project shall start immediately after the completion of the IV Year II Semester, and shall continue through V Year I and II Semesters as per the instructions of the Project Guide/ Project Supervisor assigned by the Head of Department and registered after approval from PRC.

5.9 Choice for ‘additional Subjects/ Courses’ to reach the Maximum Permissible Limit of 28/32/34 Credits (above the typical 24/28/30 Credit norm) must be clearly indicated, which needs the specific approval and signature of the Faculty Advisor/ Counselor.

5.10 If the Student submits ambiguous choices or multiple options or erroneous entries - during ON-LINE Registration for the Subject(s) / Course(s) under a given/ specified Course Group/ Category as listed in the Course Structure, only the first mentioned Subject/ Course in that Category will be taken into consideration.

5.11 Subject/ Course Options exercised through ON-LINE Registration are final and CAN NOT be changed, and CAN NOT be inter-changed; further, alternate choices will also not be considered. However, if the Subject/ Course that has already been listed for Registration (by the Head of Department) in a Semester could not be offered due to any unforeseen or unexpected reasons, then the Student shall be allowed to have
alternate choice - either for a new Subject (subject to offering of such a Subject), or for another existing Subject (subject to availability of seats), which may be considered. Such alternate arrangements will be made by the Head of Department, with due notification and time-framed schedule, within the FIRST WEEK from the commencement of Class-work for that Semester.

5.12 Cancelation of Registration of Subjects/ Courses may be permitted, ONLY AFTER obtaining prior approval from the Faculty Advisor (subject to retaining a minimum of required credits) ‘within 15 Days of Time’ from the beginning of the current Semester.

6.0 Subjects/ Courses to be offered

6.1 A Subject/ Course may be offered to the Students, ONLY IF a Minimum of 1/3 of the class Strength opt for the same. The Maximum Strength of a class is limited to 80 (60 + 1/3 of the class Strength).

6.2 More than ONE TEACHER may offer the SAME SUBJECT (Lab./ Practicals may be included with the corresponding Theory Subject in the same Semester) in any Semester. However, selection choice for students will be based on - ‘FIRST COME FIRST SERVE Basis and CGPA Criterion’ (ie., the first focus shall be on early ON-LINE ENTRY from the student for Registration in that Semester, and the second focus, if needed, will be on CGPA of the student).

6.3 If more entries for Registration of a Subject come into picture, then the concerned Head of Department shall take necessary action, whether to offer such a Subject/ Course for TWO (or multiple) SECTIONS or NOT.

6.4 In case of options coming from Students of other Departments/ Branches/ Disciplines (not considering OPEN ELECTIVES), PRIORITY shall be given to the student of the ‘Parent Department’ first.

7.0 Attendance Requirements

7.1 A student shall be eligible to appear for the End Semester Examinations upto III year II semester, if he acquires a minimum of 75% of attendance in aggregate of all the Subjects/ Courses (excluding Mandatory or Non-Credit Courses) for that Semester.

A student shall be eligible to appear for the End Semester Examinations in IV and V year, I Semester and II Semester, if he acquires a minimum of 75% of attendance in that subject.

7.2 Condoning of shortage of attendance is up to 10% (65% and above, and below 75%) in each Semester may be granted by the College Academic Committee on genuine and valid grounds, based on the student’s representation with supporting evidence.

7.3 A stipulated fee shall be payable towards condoning of shortage of attendance.

7.4 Shortage of Attendance below 65% shall in NO case be condoned.

7.5 Students, whose shortage of attendance is not condoned in any Semester, are not eligible to take their End Examinations of that Semester; they get detained and their registration for that Semester shall stand cancelled. They will not be promoted to the next Semester. They may seek re-registration for all those Subjects registered in that Semester in which he got detained, by seeking re-admission for that Semester as and when offered; in case if there are any Professional Electives and/ or Open Electives, the same may also be re-registered if offered, however, if those Electives are not offered in later Semesters, then alternate Electives may be chosen from the SAME set of Elective Subjects offered under that category.
7.6 Students from IV year I semester onwards, whose shortage of attendance is not condoned in any Subject, are not eligible to take their End Examinations of that Subject. They get detained and their registration for that Subject shall stand cancelled. They may seek re-registration for all those Subjects registered in which they got detained, by seeking re-register for that Subjects as and when offered.

8.0 Academic Requirements
The following Academic Requirements have to be satisfied, in addition to the Attendance Requirements mentioned in Item No.7.

8.1 (a) UG Part
A student shall be deemed to have satisfied the Academic Requirements and earned the Credits allotted to each Subject/Course, if he secures not less than 35% marks (25 out of 70 marks) in the End Semester Examination, and a minimum of 40% of marks in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together; in terms of Letter Grades, this implies securing P Grade or above in that Subject/ Course.

A student shall be deemed to have satisfied the Academic Requirements and earned the Credits allotted to - Industry oriented Mini-Project/ Seminar, if he secures not less than 40% of the total marks (40 marks) to be awarded for each. The student would be treated as failed, if he - (i) does not submit a report on his Industry oriented Mini-Project, or does not make a presentation of the same before the Evaluation Committee as per schedule, or (ii) does not present the Seminar as required in the IV year II Semester, or (iii) secures less than 40% of marks (40 marks) in Industry oriented Mini-Project/ Seminar evaluations.

He may reappear once for each of the above evaluations, when they are scheduled again; if he fails in such ‘one reappearance’ evaluation also, he has to reappear for the same in the next subsequent Semester, as and when it is scheduled.

(b) PG Part
A Student shall be deemed to have satisfied the Academic Requirements and earned the Credits allotted to - Seminar, and Comprehensive Viva-voce, if he secures not less than 40% Marks (28 out of 70 Marks) in the End Semester Examination, and a minimum of 50% of Marks in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together; in terms of Letter Grades, this implies securing B Grade or above in that Subject.

A Student shall be deemed to have satisfied the Academic Requirements and earned the Credits allotted to - Seminar, and Comprehensive Viva-voce, if he secures not less than 50% of the total Marks to be awarded for each. The Student would be treated as failed, if he - (i) does not attend the Comprehensive Viva-voce as per the schedule given, or (ii) does not present the Seminar as required, or (ii) secures less than 50% of Marks (< 50 Marks) in Seminar/ Comprehensive Viva-voce evaluations.

He may reappear for comprehensive viva where it is scheduled again; For seminar, he has to reappear in the next subsequent Semesters, as and when scheduled.

8.2 A Student will not be promoted from I Year to II Year, unless he fulfills the Attendance and Academic Requirements and secures a total of 24 Credits out of 48 Credits i.e. 50% credits up to first year second semester from all the relevant regular and supplementary examinations, whether the student takes those examinations or not.

8.3 A Student will not be promoted from II Year to III Year, unless he fulfills the Attendance and Academic Requirements and secures a total of 58 Credits out of 96 Credits i.e. 60% credits up to second year second semester from all the relevant regular and supplementary examinations, whether the student takes those examinations or not.
8.4 A Student will not be promoted from III Year to IV Year, unless he fulfils the Attendance and Academic Requirements and secures a total of 86 Credits out of 144 Credits i.e., 60% credits up to third year second semester from all the relevant regular and supplementary examinations, whether the student takes those examinations or not.

A student shall be promoted from IV Year to V Year, if the student completes the UG Project satisfactorily and earns the prescribed number of credits for UG Project by the end of IV Year II Semester.

8.5 A Student shall - register for all Subjects covering 254 Credits as specified and listed (with the relevant Course/Subject Classifications as mentioned) in the Course Structure, put up all the Attendance and Academic requirements for 254 Credits securing a minimum of P/B Grade (Pass Grade) or above in each Subject, and ‘earn ALL 254 Credits securing SGPA ≥ 5.0/6.0 (in each Semester), and CGPA (at the end of each successive Semester) ≥ 5.0/6.0, to successfully complete the UGP and PGP.

8.6 If a Student registers for some more ‘extra Subjects’ (in the parent Department or other Departments/Branches of Engg.) other than those listed Subjects totaling to 254 Credits as specified in the Course Structure of his Department, the performances in those ‘extra Subjects’ (although evaluated and graded using the same procedure as that of the required 254 Credits) will not be taken into account while calculating the SGPA and CGPA. For such ‘extra Subjects’ registered, % marks and Letter Grade alone will be indicated in the Grade Card, as a performance measure, subject to completion of the Attendance and Academic Requirements as stated in Items 7 and 8.1 – 8.4 above.

8.7 Students who fail to earn 254 Credits as per the Course Structure, and as indicated above, within 10 Academic Years from the Date of Commencement of their I Year shall forfeit their seats in IDP Programme and their admissions shall stand cancelled.

8.8 When a Student is detained due to shortage of attendance in any Semester, he may be re-admitted into that Semester, as and when offered, with the Academic Regulations of the Batch into which he gets readmitted. However, no Grade Allotments or SGPA/CGPA calculations will be done for that entire Semester in which he got detained.

8.9 When a Student is detained due to lack of Credits in any year, he may be readmitted in the next year, after fulfilment of the Academic Requirements, with the Academic Regulations of the Batch into which he gets readmitted.

8.10 A student eligible to appear in the End Semester Examination in any Subject/Course, but absent at it or failed (thereby failing to secure P Grade or above), may reappear for that Subject/Course at the supplementary examination / SEE as and when conducted. In such cases, his Internal Marks assessed earlier for that Subject/Course will be carried over, and added to the Marks to be obtained in the supplementary examination/SEE, for evaluating his performance in that Subject.

9.0 Evaluation - Distribution and Weightage of Marks

(a) UG Part

9.1 The performance of a student in each Semester shall be evaluated Subject-wise (irrespective of Credits assigned) with a maximum of 100 marks for Theory or Practicals or Seminar or Drawing/Design or Industry oriented Mini-Project or Minor Course, etc; For all Subjects/Courses as mentioned above, the distribution shall be 30 marks for CIE, and 70 marks for the SEE. However, the UG Project Work (Major Project) will be evaluated for 200 Marks. These evaluations shall be based on 30% CIE (Continuous Internal Evaluation) and 70% SEE (Semester End Examination), and a Letter Grade corresponding to the % marks obtained shall be given.
9.2 a) For Theory Subjects (inclusive of Minor Courses), during the Semester, there shall be 2 mid-term examinations for 25 marks each. Each mid-term examination consists of one objective paper for 10 marks, plus one subjective paper for 15 marks, with a duration of 120 minutes (20 minutes for objective and 100 minutes for subjective papers). Further, there will be an allocation of 5 marks for Assignment. Objective paper may be set with multiple choice questions, True/False, fill-in the blanks, matching type questions, etc. Subjective paper shall contain 5 questions, out of which the Student has to answer 3 questions, each for 5 marks.

b) The first mid-term examination shall be conducted for the first 50% of the syllabus, and the second mid-term examination shall be conducted for the remaining 50% of the syllabus.

c) First Assignment should be submitted before the conduct of the first mid-term examinations, and the Second Assignment should be submitted before the conduct of the second mid-term examinations. The Assignments shall be as specified by the concerned subject teacher.

d) The first mid-term examination Marks and first Assignment Marks shall make one set of CIE Marks, and the second mid-term examination Marks and second Assignment Marks shall make second set of CIE Marks; and the better of these two sets of marks shall be taken as the final marks secured by the Student towards Continuous Internal Evaluation in that Theory Subject.

9.3 For Practical Subjects, there shall be a Continuous Internal Evaluation (CIE) during the Semester for 30 internal marks, and 70 marks are assigned for Lab./Practical End Semester Examination (SEE). Out of the 30 marks for internals, day-to-day work in the laboratory shall be evaluated for 20 marks; and for the remaining 10 marks - two internal practical tests (each of 10 marks) shall be conducted by the concerned laboratory teacher and the better of these two tests is taken into account. The SEE for Practicals shall be conducted at the end of the Semester by Two Examiners appointed by Head of the Department.

9.4 For the Subjects having Design and/or Drawing, (such as Engineering Graphics, Engineering Drawing, Machine Drawing, Production Drawing Practice, and Estimation), the distribution shall be 30 marks for CIE (20 marks for day-to-day work, and 10 marks for internal tests) and 70 marks for SEE. There shall be two internal tests in a Semester and the better of the two shall be considered for the award of marks for internal tests.

9.5 The Industry oriented Mini-Project shall be submitted in a Report form, and a presentation of the same shall be made before a Committee, which evaluates it for 100 marks. The Committee shall consist of Head of the Department, the supervisor of Mini-Project, and a Senior Faculty Member of the Department. There shall be no internal marks for Industry oriented Mini-Project. The Mini-Project shall be evaluated in the IV Year I Semester.

9.6 Out of a total 200 marks allotted for the Project Work, 60 marks shall be for CIE (Continuous Internal Evaluation and 140 marks for the SEE (End Semester Viva-voce Examination). The Project Viva-voce shall be conducted by a Committee comprising of an External Examiner, Head of the Department, Senior faculty and Project Supervisor. Out of 60 marks allocated for CIE, 30 marks shall be awarded by the Project Supervisor (based on the continuous evaluation of student’s performance throughout the Project Work period), and the other 30 marks shall be awarded by a Departmental Committee consisting of Head of the Department and Project Supervisor, based on the work carried out and the presentation made by the Student at the time of Viva-voce Examination.

9.7 For NCC/ NSS/ NSO types of Courses, and/or any other Mandatory Non-Credit Course offered in a Semester, a ‘Satisfactory Participation Certificate’ shall be issued to the Student from the concerned authorities, only after securing ≥ 65% attendance in such a Course. No marks or Letter Grade shall be allotted for these activities.
(b) **PG Part (M.Tech.)**

9.8 The performance of a Student in each Semester shall be evaluated Subject-wise (irrespective of Credits assigned) with a maximum of 100 Marks for Theory or Practicals or Seminar or Drawing/Design or Comprehensive Viva-voce etc. These evaluations shall be based on 30% CIE (Continuous Internal Evaluation) and 70% SEE (Semester End Examination), and a Letter Grade corresponding to the % Marks obtained shall be given.

i) For Theory Subjects, CIE Marks shall comprise of - Mid-Term Examination Marks (for 25 Marks), and Assignment Marks (for 5 Marks).

ii) During the Semester, there shall be 2 Mid-Term examinations. Each Mid-Term examination shall be for 25 Marks (120 minutes duration). The better performance out of these two Mid-Term Examinations shall be considered for the award of 25 Marks.

9.9 For Practical Subjects, there shall be a Continuous Internal Evaluation (CIE) during the Semester for 30 Internal Marks, and 70 Marks are assigned for Lab./Practicals End Semester Examination (SEE). Out of the 30 Marks for Internals, day-to-day work assessment in the laboratory shall be evaluated for 20 Marks; and the performance in an internal Lab./Practical Test shall be evaluated for 10 marks. The SEE for Lab./Practicals shall be conducted at the end of the Semester by the concerned Laboratory Teacher and another faculty member of the same Department as assigned by the Head of the Department.

9.10 There shall be a Seminar Presentation in V Year I Semester. For the Seminar, the Student shall collect the information on a specialized topic, prepare a Technical Report and submit to the Department at the time of Seminar Presentation. The Seminar Presentation (along with the Technical Report) shall be evaluated by Two Faculty Members assigned by Head of the Department, for 100 Marks. There shall be no SEE or External Examination for Seminar.

9.11 Each Student shall appear for a Comprehensive Viva-Voce at the end of the V Year II Semester. The Comprehensive Viva-Voce shall be conducted by a Committee, consisting of three senior faculty members of Department nominated by the Head of the Department, and the performance evaluation shall be for 100 Marks. There are no Internal Marks for the Comprehensive Viva-voce.

9.12 i) The PGP Project shall start immediately after the completion of the IV Year II Semester, and shall continue through V Year I and II Semesters after approval of PRC. The Student shall carry out the literature survey, select an appropriate topic and submit a Project Proposal within 6 weeks (immediately after his IV Year II Semester End Examinations), for approval by the Project Review Committee (PRC). The PRC shall be constituted by the Head of Department, and shall consist of the Head of Department, Project Supervisor, and a Senior Faculty Member of the Department. The Student shall present his Project Work Proposal to the PRC (PRC-I Presentation), on whose approval he can ‘REGISTER for the PG Project’. After Registration, the Student shall carry out his work, and continually submit ‘a fortnightly progress report’ to his Supervisor throughout the Project period. The PRC will monitor the progress of the Project Work and review, through PRC-II and PRC-III Presentations – one at the end of the V Year I Semester, and one before the submission of M.Tech. Project Work Report/Dissertation.

ii) After PRC-III presentation, the PRC shall evaluate the entire performance of the Student and declare the Project Report as ‘Satisfactory’ or ‘Unsatisfactory’. Every Project Work Report/Dissertation (that has been declared ‘satisfactory’) shall undergo ‘Plagiarism Check’ as per the University/College norms to ensure content plagiarism below a specified level of 30%, and to become acceptable for submission. In case of
unacceptable plagiarism levels, the student shall resubmit the Project Work Report, after carrying out the necessary modifications/additions to his Project Work Report as per his Supervisor’s advice, within the specified time, as suggested by the PRC.

iii) If any Student could not be present for PRC-II at the scheduled time (after approval and registration of his Project Work at PRC-I), his submission and presentation at the PRC-III time (or at any other PRC specified dates) may be treated as PRC-II performance evaluation, and delayed PRC-III dates for him may be considered as per PRC recommendations. Any Student is allowed to submit his M.Tech. Project Dissertation ‘only after completion of 40 weeks from the date of approval/registration’ of his Project, and after obtaining all approvals from the PRC.

iv) A total of 200 Marks are allotted for the M.Tech. Project Work, (out of which 100 Marks are allotted for internal evaluation and 100 Marks for external evaluation). For internal Evaluation of 100 marks, Project Supervisor shall evaluate for 60 marks based on the continuous Internal Evaluation (CIE) of the student’s performance and combined PRC-I, II & III performance evaluation will be for 40 marks (to be awarded by PRC, as SEE).

9.13 i) The Student shall be allowed to submit his Project Dissertation, only on the successful completion of all the prescribed PG Subjects (Theory and Labs.), Seminar, Comprehensive Viva-voce etc. (securing B Grade or above), and after obtaining all approvals from PRC. In such cases, the M.Tech. Dissertations will be sent to an External Examiner nominated by the Principal of the College, on whose ‘approval’, the Student can appear for the M.Tech. Project Viva-voce Examination, which shall be conducted by a Board, consisting of the PG Project Supervisor, Head of the Department, and the External Examiner who adjudicate the M.Tech. Project Work and Dissertation. The Board shall jointly declare the Project Work Performance as ‘satisfactory’, or ‘unsatisfactory’; and in successful cases, the External Examiner shall evaluate the Student’s Project Work presentation and performance for 100 Marks (SEE).

ii) If the adjudication report of the External Examiner is ‘not favourable’, then the Student shall revise and resubmit his Dissertation after one Semester, or as per the time specified by the External Examiner and/or the PRC. If the resubmitted report is again evaluated by the External Examiner as ‘not favourable’, then that Dissertation will be summarily rejected. Subsequent actions for such Dissertations may be considered, only on the specific recommendations of the External Examiner and/or PRC.

iii) In cases, where the Board declared the Project Work Performance as ‘unsatisfactory’, the Student is deemed to have failed in the Project Viva-voce Examination, and he has to reappear for the Viva-voce Examination as per the Board recommendations. If he fails in the second Viva-voce Examination also, he will not be considered eligible for the Award of the Degree, unless he is asked to revise and resubmit his Project Work by the Board within a specified time period (within 5 years from the date of commencement of his I Year I Semester).

(c) PG Part (MBA)

10.1 Theory Subjects are evaluated for 100 marks, and Practicals/Lab. Subjects are also evaluated for 100 marks.

10.2 PG Summer Internship, Seminar and Comprehensive Viva-voce shall be evaluated for 100 marks each.

10.3. There shall be a PG Summer Internship, preferably in an industry, to be taken up during the vacation, immediately after the IV year II Semester End Examinations. The Internship Activity shall be submitted in a Report form, and the student shall also deliver a Seminar (based on the PG Summer Internship) before the MBA Project Evaluation Committee (PEC); both the Report and the Seminar shall be evaluated for 100 marks each by the PEC, at the beginning of the V Year I Semester. The PEC shall be constituted by the Head of Dept. or
Principal/Director of the College/School, and shall consist of the Head of the Department, the Supervisor of PG Summer Internship Program/Seminar/PG Project and a Senior Faculty Member of the Department. There shall be no internal marks for this PG Summer Internship Program.

10.4 For theory subjects, the distribution shall be 30 marks for Internal Evaluation and 70 marks for the End-Examination. For the award of the 30 Internal (sessional) marks for theory subjects, there shall be 2 internal examinations during the Semester, one at the middle of the Semester and the other immediately after the completion of instructions; each of which shall be evaluated for 25 marks, and the better of these two internals shall be considered for awarding the 25 sessional marks. The remaining 5 sessional marks, will be awarded based on the student’s performance in the Assignments.

10.5 i) Every PGP Student shall be required to execute his MBA Project, under the guidance of the Supervisor assigned to him by the Head of Department. The PGP Project shall start immediately after the completion of the V Year I Semester, and shall continue through V Year II Semesters. The Student shall carry out the literature survey, select an appropriate topic and submit a Project Proposal within 6 weeks (immediately after his V Year I Semester End Examinations), for approval by the Project Review Committee (PRC). The PRC shall be constituted by the Head of Department, and shall consist of the Head of Department, Project Supervisor, and a Senior Faculty Member of the Department. The Student shall present his Project Work Proposal to the PRC (PRC-I Presentation), on whose approval he can ‘REGISTER for the PG Project’. Every Student must compulsorily register for his MBA Project Work, within the 6 weeks of time-frame as specified above. After Registration, the Student shall carry out his work, and continually submit ‘a fortnightly progress report’ to his Supervisor throughout the Project period. The PRC will monitor the progress of the Project Work and review, through PRC-II and PRC-III Presentations – one at the end of the V Year II Semester, and one before the submission of MBA Project Work Report/Dissertation.

ii) After PRC-III presentation, the PRC shall evaluate the entire performance of the Student and declare the Project Report as ‘Satisfactory’ or ‘Unsatisfactory’. Every Project Work Report/ Dissertation (that has been declared ‘satisfactory’) shall undergo ‘Plagiarism Check’ as per the University/College norms to ensure content plagiarism below a specified level of 30%, and to become acceptable for submission. In case of unacceptable plagiarism levels, the student shall resubmit the Project Work Report, after carrying out the necessary modifications/additions to his Project Work/Report as per his Supervisor’s advice, within the specified time, as suggested by the PRC.

iii) If any Student could not be present for PRC-II at the scheduled time (after approval and registration of his Project Work at PRC-I), his submission and presentation at the PRC-III time (or at any other PRC specified dates) may be treated as PRC-II performance evaluation, and delayed PRC-III dates for him may be considered as per PRC recommendations. Any Student is allowed to submit his MBA Project Dissertation ‘only after completion of 24 weeks from the date of approval/registration’ of his Project, and after obtaining all approvals from the PRC.

iv) A total of 200 Marks are allotted for the MBA Project Work, (out of which 100 Marks are allotted for internal evaluation and 100 Marks for external evaluation). For internal Evaluation of 100 marks, Project Supervisor shall evaluate for 60 marks based on the continuous Internal Evaluation(CIE) of the student’s performance and combined PRC-I, II & III performance evaluation will be for 40 marks (to be awarded by PRC, as SEE).

10.6.5 i) The Student shall be allowed to submit his Project Dissertation, only on the successful completion of all the prescribed PG Subjects (Theory and Labs.), Seminar, Comprehensive Viva-voce etc. (securing B Grade or above), and after obtaining all approvals from PRC. In such cases, the MBA. Dissertations will be sent to an External Examiner nominated by the Principal of the College, on whose ‘approval’, the Student can appear for the MBA. Project Viva-voce Examination, which shall be conducted by a Board, consisting of the PG Project Supervisor, Head of the
Department, and the External Examiner who adjudicated the MBA Project Work and Dissertation. The Board shall jointly declare the Project Work Performance as ‘satisfactory’, or ‘unsatisfactory’; and in successful cases, the External Examiner shall evaluate the Student’s Project Work presentation and performance for 100 Marks (SEE).

ii) If the adjudication report of the External Examiner is ‘not favourable’, then the Student shall revise and resubmit his Dissertation after one Semester, or as per the time specified by the External Examiner and/or the PRC. If the resubmitted report is again evaluated by the External Examiner as ‘not favourable’, then that Dissertation will be summarily rejected. Subsequent actions for such Dissertations may be considered, only on the specific recommendations of the External Examiner and/or PRC.

iii) In cases, where the Board declared the Project Work Performance as ‘unsatisfactory’, the Student is deemed to have failed in the Project Viva-voce Examination, and he has to reappear for the Viva-voce Examination as per the Board recommendations. If he fails in the second Viva-voce Examination also, he will not be considered eligible for the Award of the Degree, unless he is asked to revise and resubmit his Project Work by the Board within a specified time period (within 5 years from the date of commencement of his I Year I Semester).

10.7 There shall be a Comprehensive Viva at the end of the V year II Semester, for the award of 100 marks. The Comprehensive Viva-Voce shall be conducted by the PRC, with the addition of one more Senior Faculty Member of the Department/School. The Comprehensive Viva is aimed to assess the student’s understanding in various subjects studied during the PG part of Dual Degree Program. There are no internal marks for the Comprehensive Viva.

11.0 Grading Procedure

11.1 Marks will be awarded to indicate the performance of each student in each Theory Subject, or Lab/Practicals, or Seminar, or Project, or Mini-Project, Minor Course etc., based on the % marks obtained in CIE + SEE (Continuous Internal Evaluation + Semester End Examination, both taken together) as specified in Item 9 above, and a corresponding Letter Grade shall be given.

11.2 As a measure of the student’s performance, a 10-point Absolute Grading System using the following Letter Grades (UGC Guidelines) and corresponding percentage of marks shall be followed ...
(a) For UG

<table>
<thead>
<tr>
<th>% of Marks Secured in a Subject / Course</th>
<th>Letter Grade As per UGC Guidelines</th>
<th>Grade Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>More than or equal to 90%</td>
<td>O (Outstanding)</td>
<td>10</td>
</tr>
<tr>
<td>80 and less than 90%</td>
<td>A+ (Excellent)</td>
<td>9</td>
</tr>
<tr>
<td>70 and less than 80%</td>
<td>A (Very Good)</td>
<td>8</td>
</tr>
<tr>
<td>60 and less than 70%</td>
<td>B+ (Good)</td>
<td>7</td>
</tr>
<tr>
<td>50 and not less than 60%</td>
<td>B (Average)</td>
<td>6</td>
</tr>
<tr>
<td>40 and not less than 50%</td>
<td>C (Pass)</td>
<td>5</td>
</tr>
<tr>
<td>Below 40%</td>
<td>F (Fail)</td>
<td>0</td>
</tr>
<tr>
<td>Absent</td>
<td>Ab</td>
<td>0</td>
</tr>
</tbody>
</table>

(b) For PG

<table>
<thead>
<tr>
<th>% of Marks Secured in a Subject / Course</th>
<th>Letter Grade As per UGC Guidelines</th>
<th>Grade Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>80% and above</td>
<td>O (Outstanding)</td>
<td>10</td>
</tr>
<tr>
<td>Below 80% but not less than 70%</td>
<td>A+ (Excellent)</td>
<td>9</td>
</tr>
<tr>
<td>Below 70% but not less than 60%</td>
<td>A (Very Good)</td>
<td>8</td>
</tr>
<tr>
<td>Below 60% but not less than 55%</td>
<td>B (Good)</td>
<td>7</td>
</tr>
<tr>
<td>Below 55% but not less than 50%</td>
<td>B (above Average)</td>
<td>6</td>
</tr>
<tr>
<td>Below 50%</td>
<td>F (FAIL)</td>
<td>0</td>
</tr>
<tr>
<td>Absent</td>
<td>Ab</td>
<td>0</td>
</tr>
</tbody>
</table>

11.3 A student obtaining F Grade in any Subject shall be considered ‘failed’ and will be required to reappear as ‘Supplementary Candidate’ in the End Semester Examination (SEE), as and when offered. In such cases, his Internal Marks (CIE Marks) in those Subject(s) will remain same as those he obtained earlier.

11.4 A Letter Grade does not imply any specific % of Marks.

11.5 In general, a student shall not be permitted to repeat any Subject/ Course(s) only for the sake of ‘Grade Improvement’ or ‘SGPA/ CGPA Improvement’. However, he has to repeat all the Subjects/ Courses pertaining to that Semester, when he is detained (as listed in Items 8.8- 8.9).

11.6 A student earns Grade Point (GP) in each Subject/ Course, on the basis of the Letter Grade obtained by him in that Subject/ Course (excluding Mandatory non-credit Courses). Then the corresponding ‘Credit Points’ (CP) are computed by multiplying the Grade Point with Credits for that particular Subject/ Course.

\[
\text{Credit Points (CP) = Grade Point (GP) x Credits} \quad \text{.... For a Course}
\]

11.7 The Student passes the Subject/ Course only when he gets GP \( \geq 5 \) (for UG) / 6 (for PG)
11.8 The Semester Grade Point Average (SGPA) is calculated by dividing the Sum of Credit Points (ΣCP) secured from ALL Subjects/Courses registered in a Semester, by the Total Number of Credits registered during that Semester. SGPA is rounded off to TWO Decimal Places. SGPA is thus computed as

\[
SGPA = \frac{\sum_{i=1}^{N} C_i \cdot G_i}{\sum_{i=1}^{N} C_i} \quad \text{... For each Semester,}
\]

where ‘i’ is the Subject indicator index (takes into account all Subjects in a Semester), ‘N’ is the no. of Subjects ‘REGISTERED’ for the Semester (as specifically required and listed under the Course Structure of the parent Department), is the no. of Credits allotted to the ith Subject, and represents the Grade Points (GP) corresponding to the Letter Grade awarded for that ith Subject.

11.9 The Cumulative Grade Point Average (CGPA) is a measure of the overall cumulative performance of a student over all Semesters considered for registration. The CGPA is the ratio of the Total Credit Points secured by a student in ALL registered Courses in ALL Semesters, and the Total Number of Credits registered in ALL the Semesters. CGPA is rounded off to TWO Decimal Places. CGPA is thus computed from the I Year Second Semester onwards, at the end of each Semester, as per the formula

\[
CGPA = \frac{\sum_{j=1}^{M} C_j \cdot G_j}{\sum_{j=1}^{M} C_j} \quad \text{... for all S Semesters registered (i.e., upto and inclusive of S Semesters, S ≥ 2),}
\]

where ‘M’ is the TOTAL no. of Subjects (as specifically required and listed under the Course Structure of the parent Department) the Student has ‘REGISTERED’ from the 1st Semester onwards up to and inclusive of the Semester S (obviously M > N), ‘j’ is the Subject indicator index (takes into account all Subjects from 1 to S Semesters), is the no. of Credits allotted to the jth Subject, and represents the Grade Points (GP) corresponding to the Letter Grade awarded for that jth Subject. After registration and completion of I Year I Semester however, the SGPA of that Semester itself may be taken as the CGPA, as there are no cumulative effects.

11.10 For Merit Ranking or Comparison Purposes or any other listing, ONLY the ‘ROUNDED OFF’ values of the CGPAs will be used.

11.11 For Calculations listed in Item 11.6 – 11.10, performance in failed Subjects/Courses (securing F Grade) will also be taken into account, and the Credits of such Subjects/Courses will also be included in the multiplications and summations. However, Mandatory Courses will not be taken into consideration.

11.12 Passing Standards:

i) A student shall be declared successful or ‘passed’ in a Semester, only when he gets a SGPA ≥ 5.00/6.00 (at the end of that particular Semester); and a student shall be declared successful or ‘passed’ in the entire UGP, only when he gets a CGPA ≥ 5.00/6.00; subject to the condition that he secures a GP ≥ 5 (for UG) / 6 (for PG) in every registered Subject/Course in each Semester (during the entire UGP/PGP) for the Degree Award, as required.

ii) In spite of securing P Grade or above in some (or all) Subjects/Courses in any Semester, if a Student receives a SGPA < 5.00/6.00 and/or CGPA < 5.00/6.00 at the end of such a Semester, then he ‘may be allowed’ (on the ‘specific recommendations’ of the Head of the Department and subsequent approval from the Principal) -

(a) to go into the next subsequent Semester (subject to fulfilling all other attendance and academic requirements as listed under Items 7-8);
(b) to ‘improve his SGPA of such a Semester (and hence CGPA) to 5.00/ 6.00 or above’, by reappearing for ONE or MORE (as per Student’s choice) of the same Subject(s) / Course(s) in which he has secured P Grade(s) in that Semester, at the Supplementary Examinations to be held in the next subsequent Semester(s). In such cases, his Internal Marks (CIE Marks) in those Subject(s) will remain same as those he obtained earlier.

In these considerations, the newly secured Letter Grades will be recorded and taken into account for calculation of SGPA and CGPA, only if there is an improvement.

(iii) A Student shall be declared successful or ‘passed’ in any Non-Credit Subject/ Course, if he secures a ‘Satisfactory Participation Certificate’ for that Mandatory Course.

11.13 After the completion of each Semester, a Grade Card or Grade Sheet (or Transcript) shall be issued to all the Registered Students of that Semester, indicating the Letter Grades and Credits earned. It will show the details of the Courses Registered (Course Code, Title, No. of Credits, Grade Earned etc.), Credits earned, SGPA, and CGPA.

12.0 Declaration of Results

12.1 Computation of SGPA and CGPA are done using the procedure listed in 11.6 – 11.10.

12.2 For Final % of Marks equivalent to the computed final CGPA, the following formula may be used …

\[
\text{\% of Marks} = (\text{final CGPA} - 0.5) \times 10
\]

13.0 Award of Degree

13.1 A Student who registers for all the specified Subjects/ Courses as listed in the Course Structure, satisfies all the Course Requirements, and passes all the examinations prescribed in the entire IDP E&T Programme and secures the required number of 174 for UGP and 80 Credits for PGP (with CGPA \(\geq 5.0/ 6.0\)), within 10 Academic Years from the Date of Commencement of the First Academic Year, shall be declared to have ‘QUALIFIED’ for the Award of the B.Tech.+M.Tech /MBA Degree(UGP and PGP) in the chosen Branch of Engineering as selected at the time of Admission.

13.2 A Student who qualifies for the Award of UG + PG Degree as listed in Item 13.1 shall be placed in the following Classes ...  

13.3 Students with final CGPA (at the end of the IDP) for both UGP/ PGP \(\geq 8.00/ 7.75\), and fulfilling the following conditions -

(i) should have passed all the Subjects/Courses in ‘FIRST APPEARANCE’ within the first 5 Academic Years (or 10 Sequential Semesters) from the Date of Commencement of his First Academic Year,

(ii) should have secured a CGPA \(\geq 8.00/ 7.75\), at the end of each of the 10 Sequential Semesters, starting from the I Year I Semester onwards,

(iii) should not have been detained or prevented from writing the End Semester Examinations in any Semester due to shortage of attendance or any other reason, shall be placed in ‘FIRST CLASS with DISTINCTION’.

Students having final CGPA (at the end of IDP) for both UGP/ PGP \(\geq 8.00/ 7.75\), but not fulfilling the above conditions shall be placed in ‘FIRST CLASS’.

13.4 Students with final CGPA (at the end of the IDP) for UGP/ PGP \(\geq 6.50/ 6.75\) but \(< 8.00/ 7.75\), shall be placed in ‘FIRST CLASS’.
13.5 Students with final CGPA (at the end of the IDP) for both UGP/PGP $\geq 5.50/6.00$ but $< 6.50/6.75$, shall be placed in ‘SECOND CLASS’.

13.6 All other Students who qualify for the Award of the Degree (as per Item 13.1), with final CGPA (at the end of the IDP) for UGP $\geq 5.00$ but $< 5.50$, shall be placed in ‘PASS CLASS’.

13.7 A student with final CGPA (at the end of the IDP) for UGP $< 5.00$ will not be eligible for the Award of the B. Tech Degree.

13.8 A student with final CGPA (at the end of the IDP) for PGP $< 6.00$ will not be eligible for the Award of the M. Tech / MBA Degree.

13.9 Students fulfilling the conditions listed under Item 13.1 alone will be eligible candidates for - ‘University Rank’ and ‘Gold Medal’ considerations.

14.0 Withholding of Results

14.1 If the student has not paid fees to University/College at any stage, or has pending dues against his name due to any reason whatsoever, or if any case of indiscipline is pending against him, the result of the student may be withheld, and he will not be allowed to go into the next higher Semester. The Award or issue of the Degree may also be withheld in such cases.

15.0 Transitory Regulations

15.1 Student who has discontinued for any reason, or has been detained for want of attendance or lack of required credits as specified, or who has failed after having undergone the Degree Programme, may be considered eligible for readmission to the same Subjects/Courses (or equivalent Subjects/Courses, as the case may be), and same Professional Electives/ Open Electives (or from set/category of Electives or equivalents suggested, as the case may be) as and when they are offered (within the time-frame of 10 years from the Date of Commencement of his I Year I Semester).

16.0 Student Transfers

16.1 There shall be no Branch transfers after the completion of Admission Process.

16.2 There shall be no transfer among the Constituent Colleges and Units of Jawaharlal Nehru Technological University Hyderabad.

17.0 Scope

i) Where the words “he”, “him”, “his”, occur in the write-up of regulations, they include “she”, “her”, “hers”.

ii) Where the words “Subject” or “Subjects”, occur in these regulations, they also imply “Course” or “Courses”.

iii) The Academic Regulations should be read as a whole, for the purpose of any interpretation.

iv) In case of any doubt or ambiguity in the interpretation of the above rules, the decision of the Vice-Chancellor/Principal is final.

v) The College may change or amend the Academic Regulations, Course Structure or Syllabi at any time, and the changes or amendments made shall be applicable to all Students with effect from the dates notified by the College Authorities.

MALPRACTICE RULES

The following Malpractice rules are applicable to both Internal Examinations/SEE/Supplementary Examinations:
<table>
<thead>
<tr>
<th>Nature of Malpractices</th>
<th>Punishment</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the candidate:</td>
<td></td>
</tr>
<tr>
<td>1 (a) Possesses or keeps accessible in examination hall, any paper, notebook, programmable calculators, Cell phones, pager, palm computers or any other form of material concerned with or related to the subject of the examination (theory or practical) in which he is appearing but has not made use of (material shall include any marks on the body of the candidate which can be used as an aid in the subject of the examination)</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject only.</td>
</tr>
<tr>
<td>1 (b) Gives assistance or guidance or receives it from any other candidate orally or by any other body language methods or communicates through cell phones with any candidate or persons in or outside the exam hall in respect of any matter.</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject only of all the candidates involved. In case of an outsider, he will be handed over to the police and a case is registered against him.</td>
</tr>
<tr>
<td>2 Has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the subject of the examination (theory or practical) in which the candidate is appearing.</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted to appear for the remaining examinations of the subjects of that Semester/year. The Hall Ticket of the candidate is to be cancelled.</td>
</tr>
<tr>
<td>3 Impersonates any other candidate in connection with the examination.</td>
<td>The candidate who has impersonated shall be expelled from examination hall. The candidate is also debarred and forfeits the seat. The performance of the original candidate who has been impersonated, shall be cancelled in all the subjects of the examination (including practicals and project work) already appeared and shall not be allowed to appear for examinations of the remaining subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat. If the imposter is an outsider, he will be handed over to the police and a case is registered against him.</td>
</tr>
<tr>
<td>4 Smuggles in the Answer book or additional sheet or takes out or arranges to send out the question paper during the examination or answer book or additional sheet, during or after the examination.</td>
<td>Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.</td>
</tr>
<tr>
<td></td>
<td>Uses objectionable, abusive or offensive language in the answer paper or in letters to the examiners or writes to the examiner requesting him to award pass marks.</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>6</td>
<td>Refuses to obey the orders of the Chief Superintendent / Assistant – Superintendent / any officer on duty or misbehaves or creates disturbance of any kind in and around the examination hall or organizes a walk out or instigates others to walk out, or threatens the officer-in-charge or any person on duty in or outside the examination hall of any injury to his person or to any of his relations whether by words, either spoken or written or by signs or by visible representation, assaults the officer-in-charge, or any person on duty in or outside the examination hall or any of his relations, or indulges in any other act of misconduct or mischief which result in damage to or destruction of property in the examination hall or any part of the College campus or engages in any other act which in the opinion of the officer on duty amounts to use of unfair means or misconduct or has the tendency to disrupt the orderly conduct of the examination.</td>
</tr>
<tr>
<td>7</td>
<td>Leaves the exam hall taking away answer script or intentionally tears of the script or any part thereof inside or outside the examination hall.</td>
</tr>
<tr>
<td>8</td>
<td>Possess any lethal weapon or firearm in the examination hall.</td>
</tr>
<tr>
<td>9</td>
<td>If student of the college, who is not a candidate for the particular examination or any person not connected with the college indulges in any malpractice or improper conduct mentioned in clause 6 to 8.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>is also debarred and forfeits the seat. Person(s) who do not belong to the College will be handed over to police and, a police case will be registered against them.</td>
</tr>
<tr>
<td>10</td>
<td>Comes in a drunken condition to the examination hall.</td>
</tr>
<tr>
<td>11</td>
<td>Copying detected on the basis of internal evidence, such as, during valuation or during special scrutiny.</td>
</tr>
<tr>
<td>12</td>
<td>If any malpractice is detected which is not covered in the above clauses 1 to 11 shall be reported to the College / University for further action to award suitable punishment.</td>
</tr>
</tbody>
</table>
JNTUH COLLEGE OF ENGINEERING HYDERABAD 
(AUTONOMOUS)
5 Year Integrated Dual Degree Program (IDP) 
(B.Tech. + M.Tech. / MBA)

COMPUTER SCIENCE & ENGINEERING

COURSE STRUCTURE
(Applicable from the batch admitted from the Academic Year 2017-18 and onwards)

I YEAR          I SEMESTER

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Group</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BS</td>
<td>Mathematics - I</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>HS</td>
<td>English</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>ES</td>
<td>Computer Programming &amp; Data Structures</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>ES</td>
<td>Engineering Graphics</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>ES</td>
<td>Environmental Science</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>ES</td>
<td>Computer Programming &amp; Data Structures Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>HS</td>
<td>English Language Communication Skills Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>ES</td>
<td>Engineering Workshop</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NSS/NCC/NSO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Total Credits</strong></td>
<td></td>
<td></td>
<td></td>
<td><strong>24</strong></td>
</tr>
</tbody>
</table>

I YEAR          II SEMESTER

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Group</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BS</td>
<td>Mathematics–II</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>ES</td>
<td>Basic Electrical &amp; Electronics Engineering</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>BS</td>
<td>Applied Physics</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>BS</td>
<td>Engineering Chemistry</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>ES</td>
<td>Engineering Mechanics</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>BS</td>
<td>Computational Mathematics</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>ES</td>
<td>Basic Electrical &amp; Electronics Engineering Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>HS</td>
<td>Applied Physics Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>BS</td>
<td>Computational Mathematics Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NSS/NCC/NSO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Total Credits</strong></td>
<td></td>
<td></td>
<td></td>
<td><strong>24</strong></td>
</tr>
</tbody>
</table>

II YEAR          I SEMESTER

<table>
<thead>
<tr>
<th>S.No</th>
<th>Group</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PC</td>
<td>Mathematical Foundations of Computer Science</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>ES</td>
<td>Digital Logic Design &amp; Microprocessors</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>PC</td>
<td>Advanced Data Structures</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>PC</td>
<td>Object Oriented Programming Through Java</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>PC</td>
<td>Computer Organization &amp; Architecture</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>HS</td>
<td>Gender Sensitization Lab</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>ES</td>
<td>Digital Logic Design &amp; Microprocessors Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>PC</td>
<td>Advanced Data Structures Through C Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>PC</td>
<td>Object Oriented Programming Through Java Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Total Credits</strong></td>
<td></td>
<td></td>
<td></td>
<td><strong>24</strong></td>
</tr>
</tbody>
</table>
### II YEAR

<table>
<thead>
<tr>
<th>S.No</th>
<th>Group</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BS</td>
<td>Computer Oriented Statistical Methods</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>PC</td>
<td>Design and Analysis of Algorithms</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>PC</td>
<td>Formal Languages and Automata Theory</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>PC</td>
<td>Software Engineering</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>PC</td>
<td>Operating Systems</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>PC</td>
<td>Scripting Languages Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>PC</td>
<td>Operating Systems Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>PC</td>
<td>Software Engineering Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>HS</td>
<td>Human Values and Professional Ethics</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Total Credits</strong></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

### III YEAR

#### I SEMESTER

<table>
<thead>
<tr>
<th>S.No</th>
<th>Group</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PC</td>
<td>Computer Networks</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>PC</td>
<td>Compiler Design</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>PC</td>
<td>Database Management Systems</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>OE</td>
<td>Open Elective – I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>HS</td>
<td>Managerial Economics and Financial Analysis</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>PC</td>
<td>Database Management Systems Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>PC</td>
<td>Compiler Design Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>PC</td>
<td>Computer Networks Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Total Credits</strong></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

#### II SEMESTER

<table>
<thead>
<tr>
<th>S.No</th>
<th>Group</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PC</td>
<td>Data warehousing and Data Mining</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>PC</td>
<td>Web Technologies</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>OE</td>
<td>Open Elective – II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>PE</td>
<td>Professional Elective – I</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>PE</td>
<td>Professional Elective – II</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>PC</td>
<td>Web Technologies Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>PC</td>
<td>Data warehousing and Data Mining Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>HS</td>
<td>Advanced English Language Communications Skills Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Total Credits</strong></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

During Summer Vacation between III and IV Years: Industry Oriented Mini Project
<table>
<thead>
<tr>
<th>S.No.</th>
<th>Group</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PC (UG)</td>
<td>Grid and Cloud Computing</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>PE-III (UG)</td>
<td>Professional Elective-III</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>PGC-I</td>
<td>Problem Solving with Algorithms and Data Structures</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>PGE-I</td>
<td>PG Elective-I</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>PGE-II</td>
<td>PG Elective-II</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>PGE-III</td>
<td>PG Elective-III</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>PC (UG)</td>
<td>Grid and Cloud Computing Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>PGC Lab</td>
<td>Problem solving with algorithms and Data Structures Lab</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>EAC (UG)</td>
<td>Industrial Training / Mini Project Evaluation (Summer Program)</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Total Credits</strong></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

**IV YEAR II SEMESTER**

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Group</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HSS (UG)</td>
<td>Management Science</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>PGC-II</td>
<td>Advanced Database Engineering</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>PGE-IV</td>
<td>PG Elective-IV</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>PGC Lab</td>
<td>Advanced Database Engineering Lab</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>DC (UG)</td>
<td>Major Project</td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Total Credits</strong></td>
<td></td>
<td></td>
<td></td>
<td>28</td>
</tr>
</tbody>
</table>

**V YEAR I SEMESTER**

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Group</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PGC-III</td>
<td>Soft Computing</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>PGE-V</td>
<td>PG Elective-V</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>PGE-VI</td>
<td>PG Elective-VI</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>PGE-VII</td>
<td>PG Elective-VII</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>PG</td>
<td>PG Project Stage – I</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>PG</td>
<td>Seminar</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Total Credits</strong></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

**V YEAR II SEMESTER**

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Group</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PG</td>
<td>PG Project Stage-II</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>PG</td>
<td>Comprehensive Viva</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Total Credits</strong></td>
<td></td>
<td></td>
<td></td>
<td>22</td>
</tr>
</tbody>
</table>
## OPEN ELECTIVE- I

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Subject</th>
<th>Offering Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Disaster Management</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>2</td>
<td>Non – Conventional Power Generation</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Electrical Engineering Materials</td>
<td>Electrical &amp; Electronics Engineering</td>
</tr>
<tr>
<td>4</td>
<td>Nano-Technology</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Operations Research</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Basics of Thermodynamics</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>7</td>
<td>Fabrication Processes</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Electronic Measuring Instruments</td>
<td>Electronics &amp; Communication Engineering</td>
</tr>
<tr>
<td>9</td>
<td>OOPS through JAVA</td>
<td>Computer Science &amp; Engineering</td>
</tr>
<tr>
<td>10</td>
<td>Computer Graphics</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Engineering Materials</td>
<td>Metallurgical Engineering</td>
</tr>
<tr>
<td>12</td>
<td>Metallurgy for Non Metallurgists</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Industrial Pollution Control Engineering</td>
<td>Chemical Engineering</td>
</tr>
</tbody>
</table>

## OPEN ELECTIVE- II

<table>
<thead>
<tr>
<th>S.No</th>
<th>Subject</th>
<th>Offering Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Estimation, Quantity Survey &amp; Valuation</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>2</td>
<td>Design Estimation and Costing of Electrical Systems</td>
<td>Electrical &amp; Electronics Engineering</td>
</tr>
<tr>
<td>3</td>
<td>Energy Storage Systems</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Mechatronics</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>5</td>
<td>Jet propulsion and Rocket Engineering</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Ergonomics</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Mechatronics</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Principles of Electronic Communications</td>
<td>Electronics &amp; Communication Engineering</td>
</tr>
<tr>
<td>9</td>
<td>Cyber Security</td>
<td>Computer Science &amp; Engineering</td>
</tr>
<tr>
<td>10</td>
<td>Database Management Systems</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Corrosion Engineering</td>
<td>Metallurgical Engineering</td>
</tr>
<tr>
<td>12</td>
<td>Testing of Materials</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Solid Waste Management</td>
<td>Chemical Engineering</td>
</tr>
</tbody>
</table>
Professional Elective -I
1) Artificial Intelligence
2) Computer Graphics
3) Software Project Management
4) Speech Processing
5) Principle of Programming Languages

Professional Elective -II
1) Machine Learning and Pattern Recognition
2) Software Testing Methodologies
3) Social Network Analysis
4) Digital Image Processing

Professional Elective -III
1) Design Patterns
2) Advance Databases
3) Mobile Computing
4) Business Intelligence & Big data

P.G Elective -I
1) Information Retrieval Systems
2) Ad hoc and sensor Networks
3) Embedded Systems
4) Natural Language Processing

P.G Elective -II
1) Ethical Hacking
2) Web Mining
3) Bioinformatics
4) Simulation and Modeling

P.G Elective –III
1) Robotics
2) Linux Internals
3) Computer Forensics
4) Mobile Application Development

P.G Elective –IV
1) Web Services & Service Oriented Architecture
2) Information Security
3) Research Methodologies
4) Software Design & Engineering

P.G Elective –V
1) Information Systems Control & Audit
2) Internet of Things
3) Advanced Computer Architecture
4) User Interface Technologies

P.G Elective –VI
1) Information Storage and Management,
2) Professional Ethics
3) Security in Computing
4) High Performance Computing

P.G Elective –VII
1) Cryptanalysis
2) Data Analytics
3) Real Time Operating System
4) Digital Image Processing
# COURSE STRUCTURE FOR MBA

(Applicable from the batch admitted from the Academic Year 2017-18 and onwards)

<table>
<thead>
<tr>
<th>IV YEAR</th>
<th>I SEMESTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.No.</td>
<td>Group</td>
</tr>
<tr>
<td>1</td>
<td>PC</td>
</tr>
<tr>
<td>2</td>
<td>PE-III (UG)</td>
</tr>
<tr>
<td>3</td>
<td>HS (UG)</td>
</tr>
<tr>
<td>4</td>
<td>PGC-I</td>
</tr>
<tr>
<td>5</td>
<td>PGC-II</td>
</tr>
<tr>
<td>6</td>
<td>PGE-I</td>
</tr>
<tr>
<td>7</td>
<td>PC (UG) Lab</td>
</tr>
<tr>
<td>8</td>
<td>PGC Lab</td>
</tr>
<tr>
<td>9</td>
<td>EAC (UG)</td>
</tr>
</tbody>
</table>

Total Credits: 30

<table>
<thead>
<tr>
<th>IV YEAR</th>
<th>II SEMESTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.No.</td>
<td>Group</td>
</tr>
<tr>
<td>1</td>
<td>PGC-III</td>
</tr>
<tr>
<td>2</td>
<td>PGC-IV</td>
</tr>
<tr>
<td>3</td>
<td>PGE-II</td>
</tr>
<tr>
<td>4</td>
<td>PGC Lab</td>
</tr>
<tr>
<td>5</td>
<td>PC (UG)</td>
</tr>
</tbody>
</table>

Total Credits: 28

<table>
<thead>
<tr>
<th>V YEAR</th>
<th>I SEMESTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.No.</td>
<td>Group</td>
</tr>
<tr>
<td>1</td>
<td>PGC-V</td>
</tr>
<tr>
<td>2</td>
<td>PGE-III</td>
</tr>
<tr>
<td>3</td>
<td>PGE-IV</td>
</tr>
<tr>
<td>4</td>
<td>PGE-V</td>
</tr>
<tr>
<td>5</td>
<td>PG</td>
</tr>
<tr>
<td>6</td>
<td>PG</td>
</tr>
</tbody>
</table>

Total Credits: 30

<table>
<thead>
<tr>
<th>V YEAR</th>
<th>II SEMESTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.No.</td>
<td>Group</td>
</tr>
<tr>
<td>1</td>
<td>PG</td>
</tr>
<tr>
<td>2</td>
<td>PG</td>
</tr>
</tbody>
</table>

Total Credits: 22
## Core & Electives:

<table>
<thead>
<tr>
<th>Group</th>
<th>Marketing/HR/Finance/Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGC-I</td>
<td>Marketing Management</td>
</tr>
<tr>
<td>PGC-II</td>
<td>Human Resource Management</td>
</tr>
<tr>
<td>PGE-I</td>
<td>Sales and Distribution / Training and Development / Financial Management / Management Information System</td>
</tr>
<tr>
<td>PGC Lab</td>
<td>Soft Skills Lab</td>
</tr>
<tr>
<td>PGC-III</td>
<td>Research Methodology &amp; Statistical Analysis</td>
</tr>
<tr>
<td>PGC-IV</td>
<td>Business Law &amp; Regulation</td>
</tr>
<tr>
<td>PGE-II</td>
<td>Integrated Marketing Communications / Management of Industrial Relations / Security Analysis and Portfolio Management / Enterprise Resource Planning</td>
</tr>
<tr>
<td>PGC Lab</td>
<td>Statistical Analysis Lab using SPSS / Excel</td>
</tr>
<tr>
<td>PGC-V</td>
<td>Strategic Management</td>
</tr>
<tr>
<td>PGE-III</td>
<td>Retailing Management / Compensation &amp; Reward Management / Strategic Investment and Financing Decisions/E-Business</td>
</tr>
<tr>
<td>PGE-IV</td>
<td>Services Marketing / Management of Change / International Financial Management/Cyber Security</td>
</tr>
<tr>
<td>PGE-V</td>
<td>International Marketing / Performance Management / Derivatives / Information System Control and Audit</td>
</tr>
</tbody>
</table>

Students are advised to take prior approval from the Mentor of the Department of H&SS before selecting and finalizing the Electives.
MATHEMATICS – I  
(Common to all Branches)

Pre Requisites: NIL

Objectives:
- To train the students thoroughly in mathematical concepts of ordinary differential equations and their applications.
- To prepare students for lifelong learning and successful careers using mathematical Concepts of differential and integral calculus, ordinary differential equations and vector calculus.
- To develop the skill pertinent to the practice of the mathematical concepts including the students abilities to formulate and modeling the problems, to think creatively and to synthesize information.

Outcomes:
At the end of the course, the student will be able to:
- become familiar with the application of differential and integral calculus, ordinary differential equations and vector calculus to engineering problems.
- attain the abilities to use mathematical knowledge to analyze, formulate and solve problems in engineering applications.

UNIT–I: Differential calculus

<table>
<thead>
<tr>
<th>Rolle’s Mean value Theorem – Lagrange’s Mean Value Theorem – Cauchy’s mean value Theorem – (all theorems without proof but with geometrical interpretations), verification of the Theorems and testing the applicability of these theorem to the given function. Curve tracing – Equations given in Cartesian, polar and parametric forms. Functions of several variables – Functional dependence- Jacobian- Maxima and Minima of functions of two variables with constraints and without constraints-Method of Lagrange multipliers.</th>
</tr>
</thead>
</table>

UNIT–II: Improper Integrals, Multiple Integration

<table>
<thead>
<tr>
<th>Gamma and Beta Functions –Relation between them, their properties – evaluation of improper integrals using Gamma / Beta functions. Multiple integrals – double and triple integrals – change of order of integration- change of variables (polar, cylindrical and spherical) . Finding the area of a region using Double integration and volume of a region in space using triple integration.</th>
</tr>
</thead>
</table>

UNIT–III: Vector Calculus

|---|

UNIT–IV: First Order Ordinary Differential Equations

<table>
<thead>
<tr>
<th>Linear and exact differential equations Applications of first order differential equations – Newton’s Law of cooling, Law of natural growth and decay, orthogonal trajectories and electrical circuits</th>
</tr>
</thead>
</table>

UNIT–V: Higher Order Ordinary Differential Equations

<table>
<thead>
<tr>
<th>Linear, homogeneous and non- homogeneous differential equations of second and higher order with constant coefficients. Non-homogeneous term of the type e^{ax}, Sin ax, Cos ax, and x^n, e^{ax}V(x), x^n V(x). Method of variation of parameters. Applications: Bending of beams, Electrical circuits and simple harmonic motion.</th>
</tr>
</thead>
</table>
Text books:
1) HIGHER ENGINEERING MATHEMATICS BY B S GREWAL, KHANNA PUBLICATIONS.
2) ENGINEERING MATHEMATICS BY ERWIN KREYSZIG, WIELY PUBLICATIONS.
3) VECTER ANALYSIS BY GHOSG & MAITY, NEW CENTRAL BOOK AGENCY.

References:
1) ENGINEERING MATHEMATICS BY SRIMANTAPAL & SUBODH C. BHUNIA, OXFORD UNIVERSITY PRESS.
2) ADVANCED ENGINEERING MATHEMATICS BY PETER V O'NEIL, CENGAGE LEARNING.
1. INTRODUCTION:
In view of the growing importance of English as a tool for global communication and the consequent emphasis on training students to acquire communicative competence, the syllabus has been designed to develop linguistic and communicative competencies of Engineering students. The prescribed books and the exercises are meant to serve broadly as students’ handbooks.

In the English classes, the focus should be on the skills of reading, writing, listening and speaking and for this the teachers should use the text prescribed for detailed study. For example, the students should be encouraged to read the texts/selected paragraphs silently. The teachers can ask comprehension questions to stimulate discussion and based on the discussions students can be made to write short paragraphs/essays etc.

The text for non-detailed study is for extensive reading/reading for pleasure. Hence, it is suggested that they read the topics selected for discussion on their own in the class. The time should be utilized for working out the exercises given after each section, as also for supplementing the exercises with authentic materials of a similar kind for example, from newspaper articles, advertisements, promotional material, etc. However, the stress in this syllabus is on skill development, fostering ideas and practice of language skills.

2. OBJECTIVES:
   a. To improve the language proficiency of the students in English with emphasis on LSRW skills.
   b. To equip the students to study academic subjects more effectively using the theoretical and practical components of the English syllabus.
   c. To develop the study skills and communication skills in formal and informal situations.

LEARNING OUTCOMES:
1. Use of English Language - written and spoken.
2. Enrichment of comprehension and fluency

SYLLABUS:

Listening Skills:

Objectives
1. To enable students develop their listening skills so that they may appreciate the role in the LSRW skills approach to language and improve their pronunciation
2. To equip students with necessary training in listening, so that they can comprehend the speech of people of different backgrounds and regions

Students should be given practice in listening to the sounds of the language, to be able to recognize them, to distinguish between them, to mark stress and recognize and use the right intonation in sentences.

- Listening for general content
- Listening to fill up information
- Intensive listening
- Listening for specific information
Speaking Skills:

Objectives
1. To make students aware of the role of speaking in English and its contribution to their success.
2. To enable students express themselves fluently and appropriately in social and professional contexts.
   - Oral practice
   - Describing objects/situations/people
   - Role play – Individual/Group activities (Using exercises from the five units of the prescribed text: *Skills Annexe–Functional English for Success*)
   - Just A Minute (JAM) Sessions.

Reading Skills:

Objectives
1. To develop an awareness in the students about the significance of silent reading and comprehension.
2. To develop the ability of students to guess the meanings of words from context and grasp the overall message of the text, draw inferences, etc.
   - Skimming the text
   - Understanding the gist of an argument
   - Identifying the topic sentence
   - Scanning
   - Inferring lexical and contextual meaning
   - Understanding discourse features
   - Recognizing coherence/sequencing of sentences

NOTE: The students will be trained in reading skills using the prescribed text for detailed study. They will be examined in reading and answering questions using ‘unseen’ passages which may be taken from authentic texts, such as magazines/newspaper articles.

Writing Skills:

Objectives
1. To develop an awareness in the students about writing as an exact and formal skill
2. To equip them with the components of different forms of writing, beginning with the lower order ones.
   - Writing sentences
   - Use of appropriate vocabulary
   - Paragraph writing
   - Coherence and cohesiveness
   - Narration / description
   - Note Making
   - Formal and informal letter writing
   - Describing graphs using expressions of comparison

TEXTBOOKS PRESCRIBED:

In order to improve the proficiency of the student in the acquisition of the four skills mentioned above, the following texts and course content, divided into Five Units, are prescribed:

*For Detailed study*:
First Textbook: “*Skills Annexe -Functional English for Success*”, Published by Orient Black Swan, Hyderabad

*For Non-detailed study*:
Second Textbook “*Epitome of Wisdom*”, Published by Maruthi Publications, Hyderabad.
   - The course content and study material is divided into Five Units.
Unit –I

1. Chapter entitled ‘*Wit and Humour*’ from ‘Skills Annexe - Functional English for Success’, Published by Orient Black Swan, Hyderabad.

2. Chapter entitled ‘*Mokshagundam Visvesvaraya*’ from “Epitome of Wisdom”, Published by Maruthi Publications, Hyderabad.

L - Listening for Sounds, Stress and Intonation
S - Greeting and Taking Leave, Introducing Oneself and Others (Formal and Informal Situations)
R - Reading for Subject/Theme- *The Palm Islands* from Epitome of Wisdom is for **Reading Comprehension**
W - Writing Paragraphs
G - Types of Nouns and Pronouns
V - Homonyms, Homophones & Homographs

Unit –II

1. Chapter entitled “*Cyber Age*” from “Skills Annexe - Functional English for Success” Published by Orient Black Swan, Hyderabad.

2. **Report Writing (First & Second Textbooks)**

L - Listening for themes and facts
S - Apologizing, interrupting, requesting and making polite conversation
R - Reading for theme and gist- The 1 Thing Every Business Executive Must Understand about Social Media by Dave Kerpen from Skills Annexe is for **Reading Comprehension**
W - Describing people, places, objects, events
G - Verb forms
V - Noun, Verb, Adjective and Adverb

Unit –III

1. Chapter entitled ‘*Risk Management*’ from “Skills Annexe - Functional English for Success” Published by Orient Black Swan, Hyderabad.


L - Listening for main points and sub-points for note taking
S - Giving instructions and directions; Speaking of hypothetical situations
R - Reading for details- Sivakasi: Who to Blame for the Frequent Fire Accidents in India’s Largest Fireworks Industry Hub? by Amrutha Gayathri from Skills Annexe & Forensic Science from Epitome of Wisdom are for **Reading Comprehension**
W - Note-making, Information transfer, Punctuation
G - Present tense
V - Synonyms and Antonyms

Unit –IV

1. Letter Writing – Writing formal letters, letter of application along with curriculum vitae (First & Second Textbooks)

2. Chapter entitled ‘*The Last Leaf*’ from “Epitome of Wisdom”, Published by Maruthi Publications, Hyderabad.

L - Listening for specific details and information
S - Narrating, expressing opinions and telephone interactions
R - Reading for specific details and information- What I Cherish Most by V. S. Srinivasa Sastri from Skills Annexe & Choose How to Start Your Day from Epitome of Wisdom are for **Reading Comprehension**
W - Writing e-mails
G - Past and Future tenses
V - Vocabulary - Idioms and Phrasal verbs

Unit –V

1. Chapter entitled ‘*Sports and Health*’ from “Skills Annexe - Functional English for Success” Published by Orient Black Swan, Hyderabad.
2. Chapter entitled ‘The Convocation Speech’ by N.R. Narayanmurthy’ from “Epitome of Wisdom”, Published by Maruthi Publications, Hyderabad
L - Critical Listening and Listening for speaker’s tone/ attitude
S - Group discussion and Making presentations
R - Critical reading, reading for reference - Benefits of Physical Activity from Skills Annexe & What is meant by Entrepreneurship? from Epitome of Wisdom are for Reading Comprehension
W - Project proposals; Project Reports and Research Papers
G - Adjectives, Prepositions and Concord
V - Collocations and Technical vocabulary, Using words appropriately
Exercises from the texts not prescribed shall be used for classroom tasks.

REFERENCES:

2. Murphy’s English Grammar with CD, Murphy, Cambridge University Press.
4. Technical Communication, Meenakshi Raman, Oxford University Press
5. Practical English Usage, Michael Swan, Oxford University Press
12. Everyday Dialogues in English, Robert J. Dixson, Prentice Hall India Pvt Ltd.,
14. Basic Vocabulary Edgar Thorpe & Showick Thorpe, Pearson Education
15. An Interactive Grammar of Modern English, Shivendra K. Verma and Hemlatha Nagarajan , Frank Bros & CO

******
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) I Year I-Sem

COMPUTER PROGRAMMING & DATA STRUCTURES

Prerequisites:
There are no prerequisites for this course, except that anyone who wants to learn C should have analytical skills and logical reasoning.

Objectives:
1. This course starts from the basics of computers and program development.
2. It covers various concepts of C programming language
3. It introduces searching and sorting algorithms
4. It provides an understanding of data structures such as stacks and queues.

Outcomes:
At the end of the course, the student will be able to:
1. Develop C programs for computing and real life applications using basic elements like control statements, arrays, functions, pointers and strings; and data structures like stacks, queues and linked lists.
2. Implement searching and sorting algorithms

UNIT - I

Introduction to C Language – Background, Simple C programs, Identifiers, Basic data types, Variables, Constants, Input / Output, Operators. Expressions, Precedence and Associatively, Expression Evaluation, Type conversions, Bit wise operators, Statements, Simple C Programming examples.

UNIT - II
Statements – if and switch statements, Repetition statements – while, for, do-while statements, Loop examples, other statements related to looping – break, continue, go to, Simple C Programming examples.

Designing Structured Programs- Functions, basics, user defined functions, inter function communication, Scope, Storage classes-auto, register, static, extern, scope rules, type qualifiers, recursion- recursive functions, Preprocessor commands, example C programs

UNIT - III
Arrays and Strings – Concepts, using arrays in C, inter function communication, array applications, two – dimensional arrays, multidimensional arrays, C program examples. Concepts, C Strings, String Input / Output functions, arrays of strings, string manipulation functions, string / data conversion, C program examples.

Pointers – Introduction (Basic Concepts), Pointers for inter function communication, pointers to pointers, compatibility, memory allocation functions, array of pointers, programming applications, pointers to void, pointers to functions, command –line arguments.

UNIT - IV
Derived types – Structures – Declaration, definition and initialization of structures, accessing structures, nested structures, arrays of structures, structures and functions, pointers to structures, self referential structures, unions, typedef, bit fields, enumerated types, C programming examples.

Input and Output – Concept of a file, streams, standard input / output functions, formatted input / output functions, text files and binary files, file input / output operations, file status functions (error handling), C program examples.
UNIT – V

**Sorting and Searching** selection sort, bubble sort, insertion sort, linear and binary search methods.

**Data Structures** – Introduction to Data Structures, abstract data types, Linear list – singly linked list implementation, insertion, deletion and searching operations on linear list, Stacks-Operations, array and linked representations of stacks, stack applications, Queues-operations, array and linked representations.

**TEXT BOOKS:**
2. The C Programming Language, B.W. Kernighan and Dennis M.Ritchie, PHI/Pearson Education.

**REFERENCES:**
6. C Programming & Data Structures,E.Balagurusamy,TMH.
7. C Programming & Data Structures, P. Dey, M Ghosh R Thereja, Oxford University Press
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) I Year I-Sem

ENGINEERING GRAPHICS

Pre-requisites: Nil

Course objectives:
• To provide basic concepts in engineering drawing.
• To impart knowledge about standard principles of orthographic projection of objects.
• To draw sectional views and pictorial views of solids.

Outcomes:
At the end of the course, the student will be able to:
• Preparing working drawings to communicate the ideas and information.
• Read, understand and interpret engineering drawings.

UNIT – I
INTRODUCTION TO ENGINEERING DRAWING:

UNIT- II
ORTHOGRAPHIC PROJECTIONS:

UNIT – III
Projections of Regular Solids – Auxiliary Views.

UNIT – IV
Sections or Sectional views of Right Regular Solids – Prism, Cylinder, Pyramid, Cone – Auxiliary views – Sections of Sphere.
Development of Surfaces of Right Regular Solids – Prism, Cylinder, Pyramid and Cone

UNIT – V
ISOMETRIC PROJECTIONS:
Conversion of Isometric Views to Orthographic Views and Vice-versa – Conventions
Auto CAD: Basic principles only

TEXT BOOKS:
1. Engineering Drawing N.D. Bhatt / Charotar

REFERENCE BOOKS:
1. A Text Book of Engineering Drawing / Dhawan R K / S. Chand
Scitech
ENGLISH SCIENCE

Prerequisites: NIL

Objectives:
- Creating the awareness about environmental problems among students.
- Imparting basic knowledge about the environment and its allied problems.
- Developing an attitude of concern for the environment.
- Motivating students to participate in environment protection and environment improvement.

Outcomes:
At the end of the course, it is expected that students will be able to:
- Identify and analyze environmental problems as well as the risks associated with these problems
- Understand what it is to be a steward in the environment
- Studying how to live their lives in a more sustainable manner

UNIT - I
MULTIDISCIPLINARY NATURE OF ENVIRONMENTAL STUDIES:
Definition, Scope and Importance – Need for Public Awareness.

NATURAL RESOURCES: Renewable and non-renewable resources – Natural resources and associated problems – Forest resources – Use and over – exploitation, deforestation, case studies – Timber extraction – Mining, dams and other effects on forest and tribal people – Water resources – Use and over utilization of surface and ground water – Floods, drought, conflicts over water, dams – benefits and problems - Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies. - Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies. - Energy resources: Growing energy needs, renewable and non-renewable energy sources use of alternate energy sources. Case studies. Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification. Role of an individual in conservation of natural resources. Equitable use of resources for sustainable lifestyles.

UNIT - II
ECOSYSTEMS: Concept of an ecosystem. - Structure and function of an ecosystem. - Producers, consumers and decomposers. - Energy flow in the ecosystem - Ecological succession. - Food chains, food webs and ecological pyramids. - Introduction, types, characteristic features, structure and function of the following ecosystem:
- Forest ecosystem
- Grassland ecosystem
- Desert ecosystem
- Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

UNIT - III

UNIT - IV
ENVIRONMENTAL POLLUTION: Definition, Cause, effects and control measures of:
- Air pollution
- Water pollution
- Soil pollution
- Marine pollution
e. Noise pollution
f. Thermal pollution
g. Nuclear hazards

**SOLID WASTE MANAGEMENT:** Causes, effects and control measures of urban and industrial wastes. - Role of an individual in prevention of pollution. - Pollution case studies. - Disaster management: floods, earthquake, cyclone and landslides.

**UNIT - V**


**FIELD WORK:** Visit to a local area to document environmental assets River /forest grassland/hill/mountain -Visit to a local polluted site-Urban/Rural/industrial/ Agricultural Study of common plants, insects, birds. -Study of simple cosystemspond, river, hill slopes, etc.

**TEXT BOOK:**
1. Textbook of Environmental Studies for Undergraduate Courses by Erach Bharucha for University Grants Commission.,UniversitiesPress
2. Environmental Studies by R. Rajagopalan, Oxford University Press.

**REFERENCE:**
1. Textbook of Environmental Sciences and Technology by M. Anji Reddy, BS Publication.
Week 1:
1. Write a C program to find the sum of individual digits of a positive integer.
2. Fibonacci sequence is defined as follows: the first and second terms in the sequence are 0 and 1. Subsequent terms are found by adding the preceding two terms in the sequence. Write a C program to generate the first n terms of the sequence.
3. Write a C program to generate all the prime numbers between 1 and n, where n is a value supplied by the user.
4. Write a C program to find the roots of a quadratic equation.

Week 2:
5. Write a C program to find the factorial of a given integer.
6. Write a C program to find the GCD (greatest common divisor) of two given integers.
7. Write a C program to solve Tower of Hanoi problem.
8. Write a C program, which takes two integer operands and one operator from the user, performs the operation and then prints the result. (Consider the operators +, -, *, /, % and use Switch Statement)

Week 3:
9. Write a C program to find both the largest and smallest number in a list of integers.
10. Write a C program that uses functions to perform the following:
   i) Addition of Two Matrices
   ii) Multiplication of Two Matrices

Week 4:
11. Write a C program that uses functions to perform the following operations:
   i) To insert a sub-string into a given main string from a given position.
   ii) To delete n Characters from a given position in a given string.
12. Write a C program to determine if the given string is a palindrome or not
13. Write a C program that displays the position or index in the string S where the string T begins, or –1 if S doesn’t contain T.
14. Write a C program to count the lines, words and characters in a given text.

Week 5:
15. Write a C program to generate Pascal’s triangle.
16. Write a C program to construct a pyramid of numbers.
17. Write a C program to read in two numbers, x and n, and then compute the sum of this geometric progression:
   \[1+x+x^2+x^3+\ldots+x^n\]
   For example: if n is 3 and x is 5, then the program computes 1+5+25+125.
   Print x, n, the sum
   Perform error checking. For example, the formula does not make sense for negative exponents – if n is less than 0. Have your program print an error message if n<0, then go back and read in the next pair of numbers of without computing the sum. Are any values of x also illegal? If so, test for them too.

Week 6:
18. 2’s complement of a number is obtained by scanning it from right to left and complementing all the bits after the first appearance of a 1. Thus 2’s complement of 11100 is 00100. Write a C program to find the 2’s complement of a binary number.
19. Write a C program to convert a Roman numeral to its decimal equivalent.
Week 7:
20. Write a C program that uses functions to perform the following operations:
   i) Reading a complex number
   ii) Writing a complex number
   iii) Addition of two complex numbers
   iv) Multiplication of two complex numbers
   (Note: represent complex number using a structure.)

Week 8:
21. i) Write a C program which copies one file to another.
   ii) Write a C program to reverse the first n characters in a file.
   (Note: The file name and n are specified on the command line.)
22. i) Write a C program to display the contents of a file.
   ii) Write a C program to merge two files into a third file (i.e., the contents of the first file followed
   by those of the second are put in the third file)

Week 9:
23. Write a C program that uses functions to perform the following operations on singly linked list.: 
   i) Creation    ii) Insertion     iii) Deletion     iv) Traversal

Week 10:
24. Write C programs that implement stack (its operations) using
   i) Arrays     ii) Pointers
25. Write C programs that implement Queue (its operations) using
   i) Arrays     ii) Pointers

Week 11:
26. Write a C program that implements the following sorting methods to sort a given list of integers in
   ascending order
   i) Bubble sort   ii) Selection sort

Week 12:
27. Write C programs that use both recursive and non recursive functions to perform the following
searching operations for a Key value in a given list of integers:
   i) Linear search    ii) Binary search
The Language Lab focuses on the production and practice of sounds of language and familiarises the students with the use of English in everyday situations and contexts.

Objectives
- To facilitate computer-aided multi-media instruction enabling individualized and independent language learning
- To sensitise the students to the nuances of English speech sounds, word accent, intonation and rhythm
- To bring about a consistent accent and intelligibility in their pronunciation of English by providing an opportunity for practice in speaking
- To improve the fluency in spoken English and neutralize mother tongue influence
- To train students to use language appropriately for interviews, group discussion and public speaking

Learning Outcomes
- Better understanding of nuances of language through audio-visual experience and group activities
- Neutralization of accent for intelligibility
- Speaking with clarity and confidence thereby enhancing employability skills of the students

SYLLABUS

English Language Communication Skills Lab shall have two parts:
- a. Computer Assisted Language Learning (CALL) Lab
- b. Interactive Communication Skills (ICS) Lab

The following course content is prescribed for the English Language Communication Skills Lab

Exercise – I
CALL Lab: Introduction to Phonetics – Speech Sounds – Vowels and Consonants
ICS Lab: Ice-Breaking activity and JAM session
Articles, Prepositions, Word formation - Prefixes & Suffixes, Synonyms & Antonyms

Exercise – II
CALL Lab: Structure of Syllables - Past Tense Marker and Plural Marker – Weak Forms and Strong Forms - Consonant Clusters.
Concord (Subject in agreement with verb) and Words often misspelt - confused/misused

Exercise - III
CALL Lab: Minimal Pairs- Word accent and Stress Shifts - Listening Comprehension.
ICS Lab: Descriptions - Narrations - Giving Directions and guidelines.
Sequence of Tenses, Question Tags and One word substitutes.

Exercise – IV
CALL Lab: Intonation and Common errors in Pronunciation.
ICS Lab: Extempore - Public Speaking
Active and Passive Voice, –Common Errors in English, Idioms and Phrases

Exercise – V
CALL Lab: Neutralization of Mother Tongue Influence and Conversation Practice
ICS Lab: Information Transfer- Oral Presentation Skills
Reading Comprehension and Job Application with Resume preparation.

Minimum Requirement of infrastructural facilities for ELCS Lab:

1. Computer Assisted Language Learning (CALL) Lab:
   The Computer aided Language Lab for 40 students with 40 systems, one master console, LAN facility and English language software for self-study by learners.
   System Requirement (Hardware component):
   Computer network with LAN with minimum 60 multimedia systems with the following specifications:
   i) P – IV Processor
      a) Speed – 2.8 GHZ
      b) RAM – 512 MB Minimum
      c) Hard Disk – 80 GB
   ii) Headphones of High quality

2. Interactive Communication Skills (ICS) Lab:
   The Interactive Communication Skills Lab: A Spacious room with movable chairs and audio-visual aids with a Public Address System, a T. V., a digital stereo –audio & video system and camcorder etc.

Suggested Software:

- Cambridge Advanced Learners’ English Dictionary with CD.
- Grammar Made Easy by Darling Kindersley
- Punctuation Made Easy by Darling Kindersley
- Clarity Pronunciation Power – Part I
- Clarity Pronunciation Power – Part II
- Oxford Advanced Learner’s Compass, 8th Edition
- DELTA’s key to the Next Generation TOEFL Test: Advanced Skill Practice.
- Lingua TOEFL CBT Insider, by Dreamtech
- TOEFL & GRE (KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS)
- English in Mind (Series 1-4), Herbert Puchta and Jeff Stranks with Meredith Levy, Cambridge
- Raman, M & Sharma, S. 2011. Technical Communication, OUP

SUGGESTED READING:

4. Sasi Kumar, V & Dhamija, P.V. How to Prepare for Group Discussion and Interviews. Tata McGraw Hill
10. A textbook of English Phonetics for Indian Students by T. Balasubramanian (Macmillan)
DISTRIBUTION AND WEIGHTAGE OF MARKS

*English Language Laboratory Practical Examination:*

1. The practical examinations for the English Language Laboratory shall be conducted as per the University norms prescribed for the core engineering practical sessions.
2. For the Language lab sessions, there shall be a continuous evaluation during the year for 30 sessional marks and 70 semester-end Examination marks. Of the 30 marks, 20 marks shall be awarded for day-to-day work and 10 marks to be awarded by conducting Internal Lab Test(s). The year-end Examination shall be conducted by the teacher concerned with the help of another member of the staff of the same department of the same institution.

* * * * *
### JNTUH COLLEGE OF ENGINEERING HYDERABAD

**IDP (B.Tech. CSE & M.Tech. /MBA) I Year I-Sem**

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

**ENGINEERING WORKSHOP**

**Pre-requisites:** Practical skill

**Objectives:**

- To Study of different hand operated power tools, uses and their demonstration.
- To gain a good basic working knowledge required for the production of various engineering products.
- To provide hands on experience about use of different engineering materials, tools, equipments and processes those are common in the engineering field.
- To develop a right attitude, team working, precision and safety at work place.
- It explains the construction, function, use and application of different working tools, equipment and machines.
- To study commonly used carpentry joints.
- To have practical exposure to various welding and joining processes.
- Identify and use marking out tools, hand tools, measuring equipment and to work to prescribed tolerances.
- To understanding the computer hardware and practice the Assembly of computer parts.
- To practice the process of Installation of operating system windows.

**Outcomes:**

At the end of the course, the student will be able to:

- Better understanding the process of assembly of computer parts and installation of different software’s.
- Study and practice on machine tools and their operations
- Practice on manufacturing of components using workshop trades including pluming, fitting, carpentry, foundry, house wiring and welding.
- Identify and apply suitable tools for different trades of Engineering processes including drilling, material removing, measuring, chiseling.
- Apply basic electrical engineering knowledge for house wiring practice.

**I. TRADES FOR EXERCISES :**

(Any six trades from the following with minimum of two exercises in each trade)

1. Carpentry
2. Fitting
3. Tin-Smithy
4. Black Smithy
5. House-wiring
6. Foundry
7. Plumbing

**II. Trades for Demonstration & Exposure**

1. Demonstration of power tools & wiring
2. Welding
3. Machine Shop

**III. IT Workshop I:** Computer hardware, identification of parts, Disassembly, Assembly of computer to working condition, simple diagnostic exercises.

**IT Workshop II:** Installation of operating system windows and linux simple diagnostic exercises.
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) I Year II-Sem

MATHEMATICS – II
(Common to all Branches)

Pre Requisites: NIL

Objectives:
• Our emphasis will be more on conceptual understanding and application of Fourier series, Fourier, Z and Laplace transforms and solution of partial differential equations.

Outcomes:
At the end of the course, the student will be able to:
• gains the knowledge to tackle the engineering problems using the concepts of Fourier series, various transforms and partial differential equations.

UNIT–I: Linear ODE with variable coefficients and series solutions (8 lectures)
Equations reducible to constant coefficients-Cauchy’s and Legendre’s differential equations. Motivation for series solutions, Ordinary point and Regular singular point of a differential equation, Transformation of non-zero singular point to zero singular point. Series solutions to differential equations around zero, Frobenius Method about zero.

Unit-II: Special Functions (8 lectures)
Bessel’s Differential equation, Bessel functions properties: – Recurrence relations, Orthogonality, Generating function, Trigonometric expansions involving Bessel functions.

UNIT–III: Laplace Transform (8 lectures)
Definition of Integral transform. Domain of the function and Kernel for the Laplace transforms, Laplace transform of standard functions, first shifting Theorem, Laplace transform of functions when they are multiplied or divided by “t”. Laplace transforms of derivatives and integrals of functions. – Unit step function – second shifting theorem – Dirac’s delta function, Periodic function – Inverse Laplace transform by Partial fractions( Heaviside method) Inverse Laplace transforms of functions when they are multiplied or divided by “s”, Inverse Laplace Transforms of derivatives and integrals of functions, Convolution theorem-solving differential equations by Laplace transforms

UNIT – IV: Fourier series and Fourier Transforms (8 lectures)

UNIT-V: Partial Differential Equations (10 lectures)

Text books:
1) HIGHER ENGINEERING MATHEMATICS BY B S GREWAL, KHANNA PUBLICATIONS.
2) ENGINEERING MATHEMATICS BY ERWIN KREYSZIG, WIELY PUBLICATIONS

References:
1) ENGINEERING MATHEMATICS BY SRIMANTAPAL & SUBODH C. BHUNIA, OXFORD UNIVERSITY PRESS.
2) ADVANCED ENGINEERING MATHEMATICS BY PETER V O’NEIL, CENGAGE LEARNING
BASIC ELECTRICAL AND ELECTRONICS ENGINEERING

Pre-requisite: Nil

Objectives:
• To introduce the concept of electrical circuits and its components.
• To introduce the characteristics of various electronic devices.
• To impart the knowledge of various configurations, characteristics and applications of electrical & electronic components.

Outcomes:
At the end of the course, the student will be able to:
• To analyze and solve electrical circuits using network laws and theorems.
• To design & analyse various circuits using electronic components viz. diodes, transistors & other special purpose devices.

UNIT- I ELECTRICAL and SINGLE PHASE AC CIRCUITS

UNIT- II RESONANCE and NETWORK THEOREMS
Resonance: Series resonance and Parallel resonance circuits, concept of bandwidth and Q factor, Locus Diagrams for RL, RC and RLC Combinations for Various Parameters. Network Theorems: Thevenin’s, Norton’s, Maximum Power Transfer, Superposition, Reciprocity, Tellegen’s, Millman’s and Compensation theorems for DC and AC excitations.

UNIT- III P-N JUNCTION DIODE & DIODE CIRCUITS
P-N Junction Diode: Diode equation, Energy Band diagram, Volt-Ampere characteristics, Temperature dependence, Ideal versus practical, Static and dynamic resistances, Equivalent circuit, Load line analysis, Diffusion and Transition Capacitances. Rectifiers and Filters: P-N junction as a rectifier - Half Wave Rectifier, Ripple Factor - Full Wave Rectifier, Bridge Rectifier, Harmonic components in Rectifier Circuits, Filters – Inductor Filters, Capacitor Filters, L-section Filters, π-section Filters.

UNIT- IV BIPOLAR JUNCTION TRANSISTOR

UNIT- V JUNCTION FIELD EFFECT TRANSISTOR & SPECIAL PURPOSE DEVICES
**Special Purpose Devices:** Breakdown Mechanisms in Semi-Conductor Diodes, Zener diode characteristics, Use of Zener diode as simple regulator, Principle of operation and Characteristics of Tunnel Diode (With help of Energy band diagram) and Varactor Diode, Principle of Operation of SCR.

**TEXT BOOKS:**

**REFERENCES:**
1. Introduction to Electronic Devices and Circuits-Rober T. Paynter, Pearson Education.
6. Network Theory by Sudhakar, Shyam Mohan Palli, TMH.
JNTUH COLLEGE OF ENGINEERING HYDERABAD

APPLIED PHYSICS

Prerequisites: Nil

Course Objectives:
The course primarily aims at understanding the behavior of matter in the condensed state and tries to explore the causes with reference to micro level mechanism of the solid matter. The objective of the first chapter is to study the micro level behavior of the quantum particles of the matter and their nature as wave and particle and hence to estimate the statistics of the phenomenon arising out of their nature of existence. The second chapter aims at to assess the draw backs of the free electron theory leading to the introduction of the Band Theory of Solids. In the third, fourth, fifth, sixth, seventh and tenth chapters the different natures of the solid matter are taken as the main task discuss. In the eighth chapter, it is expected to understand the basic principles behind the coherent artificial light source (LASER) with reference to their construction, mechanism, operation and classification etc. The nineth chapter is explicitly aimed at to study an advanced communication system presently ruling the world throughout i.e. Fiber Optic communication system.

Outcomes:
The understanding of properties of matter is an essential part to utilize them in various applications in different walks of life. In most of the cases, the behavior of matter as solid material body purely depends upon the internal micro level nature, structure and characters. By studying first few chapters the students as graduates can acquire the knowledge of the connection between the micro level behavior of the matter as fundamental particles and the macro level real time characters of the material bodies. The quantum mechanism in phenomena can best be understood and analyzed by estimating the statistics of the phenomena. The study of chapters on Laser and fiber optics forms basis for understanding an advanced communication system. Other chapters establish a strong foundation on the different kinds of characters of several materials and pave a way for them to use in at various technical and engineering applications.

UNIT-I


UNIT-II


UNIT-III
5. Dielectric Properties: Basic definitions, Electronic, Ionic (Quantitative) and Orientation Polarizations(Qualitative) and Calculation of Polarizabilities - Internal Fields in Solids, Clausius - Mossotti Equation, Piezo-electricity, Pyro- electricity and Ferro - electricity.

7. **Superconductivity:** Introduction to Superconductivity, Properties of Superconductors, Meissner Effect, BCS theory, Type-I and Type –II Superconductors, Magnetic Levitation and Applications of Superconductors.

UNIT-IV


UNIT-V

10. **Nanotechnology:** Origin of Nanotechnology, Nano Scale, Surface to Volume Ratio, Quantum Confinement, Bottom-up Fabrication: Sol-Gel, Precipitation, Combustion Methods; Top-Down Fabrication: Chemical Vapor Deposition, Physical Vapor Deposition, Characterization Techniques(XRD, SEM &TEM) and Applications of Nanotechnology.

**Text books:**
2. Introduction to Solid State Physics by Charles Kittel, Wiley India Pvt Ltd, 7th Edition
4. Solid State Physics by A J Dekker, MACMILLAN INDIA LTD.

**References:**
1. Modern Engineering Physics by Dr.K.Vijaya Kumar, Dr. S. Chandralingam, S.CHAND & COMPANY LTD
4. Introduction to Nanotechnology by Charles P.Poole, Jr.Frank J ownes, John Wiley & sons
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) I Year II-Sem

ENGINEERING CHEMISTRY

Prerequisites: Nil

Course objectives:
To inculcate the basic concepts of Chemistry required to make the student to develop the innovative materials for the development of technological arena. The latest techniques and skills for the treatment of raw water, facing the endanger of corrosion of structures and producing the polymers in varied applications.

Outcomes:
At the end of the course, the student will be able to:
• gain knowledge of various skills to control the corrosion of huge structures. The analysis of raw water and its treatment to provide soft water. The technologies to result polymers with multiple applications are understood. The principles of electrochemistry and batteries are clearly understood by the students.

Unit-I: Water and its treatment

Unit-II: Electrochemistry and corrosion
Electrochemistry:

Corrosion:

Unit-III: High Polymers
Definition – Classification of polymers with examples – Types of polymerisation – Chain growth (free radical addition mechanism), step growth polymerization, Plastics, fibres and elastomers - definition and characteristics. Plastics – thermoplastic and thermosetting plastics, compounding of plastics. Fibre reinforced plastics. Preparation, properties and Engineering applications of PVC, Teflon, Bakelite, Nylon 6:6 and terylene (Dacron); Rubber – Natural rubber , its processing and vulcanization. Elastomers: Preparation, properties and applications of Styrene butadiene, butyl and thiokol rubbers. Conducting polymers – Classification with examples; mechanism of conduction in trans-polyacetylene and applications of conducting polymers. Biodegradable polymers – concept and advantages - Polylactic acid and its applications.

Unit-IV: Chemistry of Energy sources
Fuels:
Classification of fuels - characteristics of a good fuel. Solid fuels: Coal – Analysis of coal by proximate and ultimate methods. Liquid fuels- Petroleum and its refining. Characteristics and uses of...

**Combustion** – Definition, calorific value, HCV and LCV. Calculation of air quantity required for combustion of a fuel - Numerical problems.

**Alternate Energy sources** : Biodiesel - trans-esterification - advantages of biodiesel, fuel cells (H$_2$-O$_2$ and Methanol –O$_2$ fuel cell).

**Unit-V : Batteries and Materials**

**Batteries** : Cell and battery - Primary battery (dry cell, alkaline cell and Lithium cell). Secondary battery (lead acid, Ni-Cd and lithium ion cell)

**Liquid crystal polymers** : classification, characteristics and applications.

**Insulators** - Characteristics and applications of thermal and electrical insulators.

**Nanomaterials** : Introduction. Preparation of nanomaterials by top down and bottom up approaches. Carbon nano fibres, and fullerenes - Applications of nanomaterials.

**Text Books:**

**Reference Books:**
ENGINEERING MECHANICS

Prerequisites: Nil

Objectives:
During this course, students should develop the ability to:
• Work comfortably with basic engineering mechanics concepts required for analyzing static structures
• Identify an appropriate structural system to studying a given problem and isolate it from its environment.
• Model the problem using good free-body diagrams and accurate equilibrium equations
• Identify and model various types of loading and support conditions that act on structural systems.
• Apply pertinent mathematical, physical and engineering mechanical principles to the system to solve and analyze the problem.
• Understand the meaning of centers of gravity (mass)/centroids and moments of inertia using integration methods.
• Communicate the solution to all problems in an organized and coherent manner and elucidate the meaning of the solution in the context of the problem.

Outcomes:
At the end of the course, the student will be able to:
• solve problems dealing with forces in a plane or in space and equivalent force systems.
• solve beam and cable problems and understand distributed force systems.
• solve friction problems and determine moments of inertia and centroid using integration methods.
• understand and know how to solve three-dimension force and moment problems.
• understand and know how to use vector terminology.

UNIT – I

UNIT – II

UNIT – III

MOMENT OF INERTIA: Moment of Inertia of Areas and Masses - Transfer Formula for Moments of Inertia - Moment of inertia of composite areas and masses.

UNIT – IV

UNIT – V
TEXT BOOKS:

REFERENCES:
1. Engineering Mechanics (Statics and Dynamics) by Hibbler; Pearson Education.
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) I Year II-Sem

COMPUTATIONAL MATHEMATICS
(Common to all Branches)

Pre Requisites: NIL

Objectives:
• This course aims at providing the student with the concepts of matrices, numerical techniques and curve fitting.

Outcomes:
At the end of the course, the student will be able to:
• analyze engineering problems using the concepts of Matrices and Numerical Methods.

UNIT-I: Matrices and Linear Transformations (8 lectures)

UNIT-II: Interpolation and Curve fitting (5 lectures)

UNIT-III: Numerical techniques (5 lectures)
Solution of Algebraic and Transcendental Equations and Linear system of equations.
Solving system of non-homogeneous equations by L-U Decomposition method(Crout’s Method)Jacobi’s and Gauss-Seidel Iteration method

UNIT- IV: Numerical Differentiation, Integration: (5 lectures)

UNIT – V: Numerical solutions of First order differential equations (5 lectures)

Text Books:
1) INTRODUCTORY METHODS OF NUMERICAL ANALYSIS BY SS SASTRY
2) NUMERICAL AND STATISTICAL METHODS WITH PROGRAMMING IN C BY SUJATHA SINHA AND SUBHABRADA DINDA, SCITEC PUBLISHERS.
3) NUMERICAL METHODS, PRINCIPLES, ANALYSIS AND ALGORITHMS BY SRIMANTAPAL & SUBODH C. BHUNIA, OXFORD UNIVERSITY PRESS.
References:
1) ADVANCED ENGINEERING MATHEMATICS BY ALAN JEFFERY
2) APPLIED NUMERICAL METHODS USING MATLAB BY RAO.V.DUKKIPATI, NEW AGE PUBLISHERS
3) NUMERICAL METHODS IN SCIENCE AND ENGINEERING –APRACTICAL APPROACH BY S.RAJASEKHARAN, S.CHAND PUBLICATIONS
PART A: ELECTRONIC WORKSHOP PRACTICE (in 3 lab sessions):

1. Identification, Specifications, Testing of R, L, C Components (Color Codes), Potentiometers, Switches (SPDT, DPDT, and DIP), Coils, Gang Condensers, Relays, Bread Boards, PCB’s

2. Identification, Specifications and Testing of Active Devices, Diodes, BJT’s, Low power JFET’s, MOSFET’s, Power Transistors, LED’s, LCD’s, SCR, UJT.

3. Study and operation of
   • Multimeters (Analog and Digital)
   • Function Generator
   • Regulated Power Supplies
   • CRO.

PART B: (For Laboratory examination – Minimum of 09 experiments to be conducted)

1. PN Junction diode characteristics A) Forward bias B) Reverse bias.
2. Zener diode characteristics and Zener as voltage Regulator
3. Input & Output characteristics of Transistor in CB / CE configuration
4. Full Wave Rectifier with & without filters
5. Input and Output characteristics of FET in CS configuration
6. Measurement of h-parameters of transistor in CB, CE, CC configurations
7. SCR Characteristics.
8. Verification of KVL and KCL.
10. Verification of Superposition and Reciprocity theorems.
11. Verification of maximum power transfer theorem. Verification on DC, verification on AC with Resistive and Reactive loads.
12. Experimental determination of Thevenin’s and Norton’s equivalent circuits and verification by direct test.
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) I Year II-Sem

L T P C
0 0 3 2

APPLIED PHYSICS LAB

LIST OF EXPERIMENTS:

1. Study of characteristics of LED and LASER sources.
2. Magnetic field along the axis of current carrying coil-Stewart and Gee’s method.
3. Study of characteristics of p-i-n diode detectors.
4. Determination of frequency of A.C Mains-Sonometer.
5. Torsional pendulum.
8. L-C-R circuit.
9. Time constant of an R-C Circuit.
10. Characteristics of solar cell
COMPUTATIONAL MATHEMATICS LAB
(Common to all Branches)

UNIT- I: Interpolation
Programming Tasks:
A) Write a program to determine y for a given x, if two arrays of x and y of same size are given (using Newton’s interpolation both forward and backward).
B) Write a program to determine y for a given x, if two arrays of x and y of same size are given. (using Lagrange’s interpolation).
C) Write a program to determine y for a given x, if two arrays of x and y of same size are given. (using Gauss interpolation).

(Selection criteria of the interpolation formula are important.)

UNIT- II: Curve fitting
Programming Tasks:
A) Write a program to find a line of best fit from the given two arrays of x and y of same size.
B) Write a program to find a curve of the form $y = Ae^{Bx}$ from the given two arrays of x and y of same size.
C) Write a program to find a curve of the form $y = Ax^B$ from the given two arrays of x and y of same size.
D) Write a program to find a curve of the form $y = Ax^2 + Bx + C$ from the given two arrays of x and y of same size.

UNIT- III: Solution of Algebraic and Transcendental Equations
Programming Tasks:
A) Write a program to find the root of a given equation using bisection method.
   (Write this program such that the initial values given to the system are not usable, then the system should ask us to give new set of initial values).
B) Write a program to find the root of a given equation using method of false position (regula false position).
C) Write a program to find the root of a given equation using iteration method.
D) Write a program to find the root of a given equation using Newton Raphson method.

UNIT- IV: Linear system of equations
Programming Tasks:
A) Write a program to find the solution of given system of linear equations using L- U decomposition method.
B) Write a program to find the solution of given system of linear equations using Jacobi’s method.
C) Write a program to find the solution of given system of equations using Gauss Sidel iteration method.
D) Write a program to find the solution of given system of equations using Gauss Jordan elimination method.

UNIT-V: Numerical Differentiation, Integration and Numerical solutions of First order differential equations
Programming Tasks:
A) Write a program to evaluate definite integral using trapezoidal rule, Simpson’s 1/3rd rule and 3/8th rule.
B) Write a program to solve a given differential equation using Taylor’s series.
C) Write a program to solve a given differential equation Euler’s and modified Euler’s method.
D) Write a program to solve a given differential equation using Runge-Kutta method.
MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE

Prerequisites
1. No prerequisites
2. An understanding of Math in general is sufficient.

Objectives
1. Introduces the elementary discrete mathematics for computer science and engineering.
2. Topics include formal logic notation, methods of proof, induction, sets, relations, algebraic structures, elementary graph theory, permutations and combinations, counting principles; recurrence relations and generating functions.

Outcomes
1. Ability to understand and construct precise mathematical proofs
2. Ability to use logic and set theory to formulate precise statements
3. Ability to analyze and solve counting problems on finite and discrete structures
4. Ability to describe and manipulate sequences
5. Ability to apply graph theory in solving computing problems


UNIT-II: Set theory: Introduction, Basic Concepts of Set Theory, Representation of Discrete Structures, Relations and Ordering, Functions.


TEXT BOOKS:

REFERENCE:
Prerequisites
1. A course on “Computer Programming and Data Structures”

Objectives
1. The aim of the course is to introduce the operations of logic gates and flip-flops; combinational and sequential circuits; design of digital circuits and systems; microprocessors and assembly language programming.
2. The topics include Boolean Algebra, Logic Gates, Flip-Flops, 8086 Architecture, Assembly Language Programming

Outcomes
1. Understand how digital circuits are designed.
2. Able to interconnect digital circuits to a microprocessors
3. Able to interpret and write assembly language programs

UNIT 1
Introduction to number systems: Binary codes, code conversion, Basic of Boolean algebra, Basic theorems and properties of Boolean algebra Canonical and standard form of Boolean function, all digital logic gates-map method of minimization of 4 and 5 variable functions, Don’t-care map entries

UNIT II
NAND and nor implementation: Design of Binary adders Subtractors, comparator, decoder, encoder, multiplexers and De-multiplexers using gats/CS Introduction to sequential circuits, latches, Flip flops-SR,JK,JK master slave ,D and T type flip flops, Truth tables and excitation tables conversion of flip flops form

UNIT III
Concept of shift register, operation of shift register, its configuration, operation of asynchronous connotes, Design of Synchronous modulo N- connotes, Design and operation of Ring and twisted Ring connotes

UNIT IV
8086 Architecture: functional diagram, Register organization, memory segmentation, programming model, memory addressing, Physical memory organization, signal descriptions of 8086, interrupts of 8086

UNIT V
Instruction set and Assembly language programming of 8086: instruction formats, addressing models, Instruction set, simple programs involving logical, Branch all instructions, Solving, String manipulations

Text Books:
1. Switching theory and logic design –A. Anand Kumar PHI,2013

References:
Prerequisites
1. A course on “Computer Programming & Data Structures

Objectives
1. Introduces the basic concepts of Abstract Data Types.
2. Reviews basic data structures such as stacks and queues.
3. Introduces a variety of data structures such as hash tables, search trees, tries, heaps, graphs, and B-trees.
4. Introduces sorting and pattern matching algorithms

Outcomes
1. Ability to select the data structures that efficiently model the information in a problem.
2. Ability to assess efficiency trade-offs among different data structure implementations or combinations.
3. Implement and know the application of algorithms for sorting and pattern matching.
4. Design programs using a variety of data structures, including hash tables, binary and general tree structures, search trees, tries, heaps, graphs, and B-trees.

Unit I:
Review of basic data structures: The list, Stack, Queue, Implementation Using C.
Dictionaries: linear list representation, skip list representation, operations - insertion, deletion and searching.

Unit II:
Hash table representation: hash functions, collision resolution-separate chaining, open addressing-linear probing, quadratic probing, double hashing, rehashing, extendible hashing, and comparison of hashing and skip lists.
Priority Queues – Definition, Realizing a Priority Queue using Heaps, Definition, insertion, Deletion.

Unit III:
Search Trees: Binary Search Trees, Definition, Implementation, Operations- Searching, Insertion and Deletion, AVL Trees, Definition, Height of an AVL Tree, Operations – Insertion, Deletion and Searching, Red –Black, Splay Trees, B-Tree of order m, height of a B-Tree, insertion, deletion and searching, Comparison of Search Trees.

UNIT-IV:
Graphs: Graph Implementation Methods. Graph Traversal Methods.
Sorting: Quick sort, Heap Sort, External Sorting- Model for external sorting, Merge Sort, Multiway merge, Polyphase merge.

Unit V:
Pattern matching and Tries: Pattern matching algorithms-Brute force, the Boyer –Moore algorithm, the Knuth-Morris-Pratt algorithm, Standard Tries, Compressed Tries, Suffix tries.

TEXTBOOKS:

REFERENCES:
1. The C Programming Language, B.W. Kernighan, Dennis M.Ritchie, PHI/Pearson Education
4. Introduction to data structures in C, 1/e Ashok Kamthane
Prerequisites
1. A course on “Computer Programming & Data Structures”

Objectives
1. Introduces object oriented programming concepts using the Java language.
2. Introduces the principles of inheritance and polymorphism; and demonstrates how they relate to the design of abstract classes
3. Introduces the implementation of packages and interfaces
4. Introduces exception handling, event handling and multithreading
5. Introduces the design of Graphical User Interface using applets and swings

Outcomes
1. Develop applications for a range of problems using object-oriented programming techniques
2. Design simple Graphical User Interface applications

UNIT I:
Object oriented thinking and Java Basics- Need for oop paradigm, summary of oop concepts, coping with complexity, abstraction mechanisms. A way of viewing world – Agents, responsibility, messages, methods, History of Java, Java buzzwords, data types, variables, scope and life time of variables, arrays, operators, expressions, control statements, type conversion and casting, simple java program, concepts of classes, objects, constructors, methods, access control, this keyword, garbage collection, overloading methods and constructors, method binding, inheritance, overriding and exceptions, parameter passing, recursion, nested and inner classes, exploring string class.

UNIT II:
Inheritance, Packages and Interfaces – Hierarchical abstractions, Base class object, subclass, subtype, substitutability, forms of inheritance- specialization, specification, construction, extension, limitation, combination, benefits of inheritance, costs of inheritance. Member access rules, super uses, using final with inheritance, polymorphism- method overriding, abstract classes, the Object class. Defining, Creating and Accessing a Package, Understanding CLASSPATH, importing packages, differences between classes and interfaces, defining an interface, implementing interface, applying interfaces, variables in interface and extending interfaces, Exploring java.io.

UNIT III:
Exception handling and Multithreading-- Concepts of exception handling, benefits of exception handling, Termination or resumptive models, exception hierarchy, usage of try, catch, throw, throws and finally, built in exceptions, creating own exception sub classes. String handling,Exploring java.util.Differences between multi threading and multitasking, thread life cycle, creating threads, thread priorities, synchronizing threads, inter thread communication, thread groups, daemon threads. Enumerations, auto boxing, annotations, generics.

UNIT IV:
Event Handling: Events, Event sources, Event classes, Event Listeners, Delegation event model, handling mouse and keyboard events, Adapter classes. The AWT class hierarchy, user interface components- labels, button, canvas, scrollbars, text components, check box, check box groups, choices, lists panels – scrollpane, dialogs, menubar, graphics, layout manager – layout manager types – border, grid, flow, card and grid bag.

UNIT V:
Applets – Concepts of Applets, differences between applets and applications, life cycle of an applet, types of applets, creating applets, passing parameters to applets.

TEXT BOOKS:
1. Java the complete reference, 7th edition, Herbert Schildt, TMH.
2. Understanding OOP with Java, updated edition, T. Budd, Pearson Education.

REFERENCES:
1. An Introduction to programming and OO design using Java, J.Nino and F.A. Hosch,
3. Introduction to Java programming, Y. Daniel Liang, Pearson Education.
COMPUTER ORGANIZATION AND ARCHITECTURE

Prerequisites
No prerequisites

Co-requisite
A Course on "Digital Logic Design and Microprocessors"

Objectives
1. The purpose of the course is to introduce principles of computer organization and the basic architectural concepts.
2. It begins with basic organization, design, and programming of a simple digital computer and introduces simple register transfer language to specify various computer operations.
3. Topics include computer arithmetic, instruction set design, micro programmed control unit, pipelining and vector processing, memory organization and I/O systems, and multiprocessors

Outcomes
1. Understand the basics of instructions sets and their impact on processor design.
2. Demonstrate an understanding of the design of the functional units of a digital computer system.
3. Evaluate cost performance and design trade-offs in designing and constructing a computer processor including memory.
4. Design a pipeline for consistent execution of instructions with minimum hazards.
5. Recognize and manipulate representations of numbers stored in digital computers

UNIT I

Register Transfer Language and Micro operations: Register Transfer language, Register Transfer, Bus and memory transfers, Arithmetic Micro operations, logic micro operations, shift micro operations, Arithmetic logic shift unit.


UNIT II
Micro Programmed Control: Control memory, Address sequencing, micro program example, design of control unit.

Central Processing Unit: General Register Organization, STACK organization, Instruction Formats, Addressing modes, Data Transfer and Manipulation, Program Control.

UNIT III
Data Representation: Data types, Complements, Fixed Point Representation, Floating Point Representation.


UNIT IV

Memory Organization: Memory Hierarchy, Main Memory, Auxiliary memory, Associate Memory, Cache Memory.

UNIT V
Reduced Instruction Set Computer: CISC Characteristics, RISC Characteristics.

Pipeline and Vector Processing: Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction Pipeline, RISC Pipeline, Vector Processing.
Multi Processors: Characteristics of Multiprocessors, Interconnection Structures, Inter processor arbitration, Inter processor communication and synchronization, Cache Coherence.

Text Books:

Reference:
Objectives of the Course:
- To develop students' sensibility with regard to issues of gender in contemporary India.
- To provide a critical perspective on the socialization of men and women.
- To introduce students to information about some key biological aspects of genders.
- To expose the students to debates on the politics and economics of work.
- To help students reflect critically on gender violence.
- To expose students to more egalitarian interactions between men and women.

Learning Outcomes:
- Students will have developed a better understanding of important issues related to gender in contemporary India.
- Students will be sensitized to basic dimensions of the biological, sociological, psychological and legal aspects of gender. This will be achieved through discussion of materials derived from research, facts, everyday life, literature and film.
- Students will attain a finer grasp of how gender discrimination works in our society and how to counter it.
- Students will acquire insight into the gendered division of labour and its relation to politics and economics.
- Men and women students and professionals will be better equipped to work and live together as equals.
- Students will develop a sense of appreciation of women in all walks of life.
- Through providing accounts of studies and movements as well as the new laws that provide protection and relief to women, the textbook will empower students to understand and respond to gender violence.

Unit-I: UNDERSTANDING GENDER
Gender: Why Should We Study It? (Towards a World of Equals: Unit -1)
Socialization: Making Women, Making Men (Towards a World of Equals: Unit -2)

Unit-II: GENDER AND BIOLOGY
Missing Women: Sex Selection and Its Consequences (Towards a World of Equals: Unit -4)
Declining Sex Ratio. Demographic Consequences.
Gender Spectrum: Beyond the Binary (Towards a World of Equals: Unit -10)
Two or Many? Struggles with Discrimination.

Unit-III: GENDER AND LABOUR
Housework: the Invisible Labour (Towards a World of Equals: Unit -3)
“My Mother doesn’t Work.” “Share the Load.”
Women’s Work: Its Politics and Economics (Towards a World of Equals: Unit -7)

Unit – IV: ISSUES OF VIOLENCE
Sexual Harassment: Say No! (Towards a World of Equals: Unit -6)
Sexual Harassment, not Eve-teasing- Coping with Everyday Harassment- Further Reading: “Chupulu”.
Domestic Violence: Speaking Out (Towards a World of Equals: Unit -8)

Thinking about Sexual Violence (Towards a World of Equals: Unit -11)
Blaming the Victim-“I Fought for my Life....” - Additional Reading: The Caste Face of Violence.

Unit – V: GENDER : CO-EXISTENCE
Just Relationships: Being Together as Equals (Towards a World of Equals: Unit -12)

Essential Reading: All the Units in the Textbook, “Towards a World of Equals: A Bilingual Textbook on Gender” written by A.Suneetha, Uma Bhrugubanda, Duggirala Vasanta, Rama Melkote, Vasudha Nagaraj, Asma Rasheed, Gogu Shyamala, Deepa Sreenivas and Susie Tharu.

Note: Since it is Interdisciplinary Course, Resource Persons can be drawn from the fields of English Literature or Sociology or Political Science or any other qualified faculty who has expertise in this field from engineering departments.

Reference Books:
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) II Year I-Sem

DIGITAL LOGIC DESIGN AND MICRO PROCESSOR LAB

Prerequisites
1. A course on “Computer Programming and Data Structures”

Objectives
1. The aim of the course is to introduce the operations of logic gates and flip-flops; combinational and sequential circuits; design of digital circuits and systems; microprocessors and assembly language programming.
2. The topics include Boolean Algebra, Logic Gates, Flip-Flops, 8086 Architecture, Assembly Language Programming

Outcomes
1. Understand how digital circuits are designed.
2. Able to interconnect digital circuits to a microprocessors
3. Able to interpret and write assembly language programs

Digital Logic Design Lab:
1. Implement of Logic gates using NAND and NOR gates
2. Design Full adder using gates
3. Design and implement of 4:1 MUX, 8:1 MUX using gates /ics.
4. Design and Implement of 3 to 8 decoder using gates
5. Design of 4 bit comparator using gates/IC
6. Design of Implement of 4 bit shift register using Flip flops
7. Design and Implement of Decode counter
8. Design and Implement of Asynchronous counter.

Computer Organization & Micro Processor Lab
Write assembly language programs for the following using MASAM.
1. Write assembly language programs to evaluate the expressions:
   i) $a = b + c - d * e$
   ii) $z = x * y + w - v + u / k$
   a. Considering 8-bit, 16 bit and 32 bit binary numbers as b, c, d, e.
   b. Considering 2 digit, 4digit and 8 digit BCD numbers.
   Take the input in consecutive memory locations and results also Display the results by using “int xx” of 8086. Validate program for the boundary conditions.
2. Write an ALP of 8086 to take N numbers as input. And do the following operations on them.
   a. Arrange in ascending and descending order.
3. Find max and minimum
   a. Find average
   Considering 8-bit, 16 bit binary numbers and 2 digit, 4digit and 8 digit BCD numbers. Display the results by using “int xx” of 8086. Validate program for the boundary conditions.
4. Write an ALP of 8086 to take a string of as input (in ’C’ format)and do the following Operations on it.
   a. Find the length
   b. Find it is Palindrome or n
5. Find whether given string substring or not.
   a. Reverse a string
   b. Concatenate by taking another sting
   Display the results by using “int xx” of 8086.
6. Write the ALP to implement the above operations as procedures and call from the main procedure.
7. Write an ALP of 8086 to find the factorial of a given number as a Procedure and call from the main program which display the result.
Text Books:
1. Switching theory and logic design – A. Anand Kumar PHI, 2013

References:
Prerequisites
1. A course on Computer Programming & Data Structures

Objectives
1. Introduces the basic concepts of Abstract Data Types.
2. Reviews basic data structures such as stacks and queues.
3. Introduces a variety of data structures such as hash tables, search trees, tries, heaps, graphs, and B-trees.
4. Introduces sorting and pattern matching algorithms

Outcomes
1. Ability to select the data structures that efficiently model the information in a problem.
2. Ability to assess efficiency trade-offs among different data structure implementations or combinations.
3. Implement and know the application of algorithms for sorting and pattern matching.
4. Design programs using a variety of data structures, including hash tables, binary and general tree structures, search trees, tries, heaps, graphs, and B-trees.

1. Write C programs to implement the following using an array.
   a) Stack   b) Queue
2. Write C programs to implement the following using a singly linked list.
   a) Stack   b) Queue
3. Write C programs to implement the deque (double ended queue) using a doubly linked list and an array.
4. Write a C program to perform the following operations:
   a) Insert an element into a binary search tree.
   b) Delete an element from a binary search tree.
   c) Search for a key element in a binary search tree.
5. Write C programs that use non-recursive functions to traverse the given binary tree in
   a) Preorder   b) Inorder and   c) Postorder.
6. Write C programs for the implementation of BFS and DFS algorithms.
7. Write C programs for implementing the following sorting methods:
   a) Merge sort   b) Heap sort
8. Write a C program to perform the following operations
   a) Insertion into a B-tree   b) Deletion from a B-tree
9. Write a C program to perform the following operations
   a) Insertion into an AVL-tree   b) Deletion from an AVL-tree
10. Write a C program to implement all the functions of a dictionary using hashing.
11. Write a C program for implementing Knuth-Morris-Pratt pattern matching algorithm.
12. Write a C program for implementing Boyer–Moore Pattern matching algorithm.
TEXTBOOKS:

REFERENCES:
1. The C Programming Language, B.W. Kernighan, Dennis M.Ritchie, PHI/Pearson Education
4. Introduction to Data Structures in C, 1/e Ashok Kamthane
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) II Year I-Sem

OBJECT ORIENTED PROGRAMMING THROUGH JAVA LAB

Prerequisites
1. A course on “Computer Programming & Data Structures”

Co-requisite
1. A Course on “Object-Oriented Programming Through Java”

Objectives
1. Introduces object oriented programming concepts using the Java language.
2. Introduces the principles of inheritance and polymorphism; and demonstrates how they relate to the design of abstract classes
3. Introduces the implementation of packages and interfaces
4. Introduces exception handling, event handling and multithreading
5. Introduces the design of Graphical User Interface using applets and swings

Outcomes
1. Develop applications for a range of problems using object-oriented programming techniques
2. Design simple Graphical User Interface applications

Use Eclipse or Netbean platform and get acquainted with the various menus. Create a test project, add a test class and run it. See how you can use auto suggestions, auto fill. Try code formatter and code refactoring like renaming variables, methods and classes. Try debug step by step with a small program of about 10 to 15 lines which contains at least one if else condition and a for loop.

1) Write a Java program that creates a user interface to perform integer divisions. The user enters two numbers in the text fields, Num1 and Num2. The division of Num1 and Num2 is displayed in the Result field when the Divide button is clicked. If Num1 or Num2 were not an integer, the program would throw a Number Format Exception. If Num2 were Zero, the program would throw an Arithmetic Exception. Display the exception in a message dialog box. [Use JOptionPane – Input dialog, Message dialog]

2) Write a Java program to create an abstract class named Shape that contains two integers and an empty method named printArea(). Provide three classes named Rectangle, Triangle and Circle such that each one of the classes extends the class Shape. Each one of the classes contains only the method printArea() that prints the area of the given shape.

3) Write a Java program that implements a multi-thread application that has three threads. First thread generates random integer every 1 second and if the value is even, second thread computes the square of the number and prints. If the value is odd, the third thread will print the value of cube of the number.

4) Write a Java program that connects to a database using JDBC and does add, delete, modify and retrieve operations.

5) Write a Java program that simulates a traffic light. The program lets the user select one of three lights: red, yellow, or green with radio buttons. On selecting a button, an appropriate message with “Stop” or “Ready” or “Go” should appear above the buttons in selected color. Initially, there is no message shown.

6) Write a Java program that works as a simple calculator. Use a grid layout to arrange buttons for the digits and for the +, -, *, % operations. Add a text field to display the result. Handle any possible exceptions like divide by zero.
7)  a) Develop an applet in Java that displays a simple message.
   b) Develop an applet in Java that receives an integer in one text field, and computes its factorial value and returns it in another text field, when the button named “Compute” is clicked.

8) Suppose that a table named Table.txt is stored in a text file. The first line in the file is the header, and the remaining lines correspond to rows in the table. The elements are separated by commas. Write a Java program to display the table using Labels in Grid Layout.

9) Write a Java program that loads names and phone numbers from a text file where the data is organized as one line per record and each field in a record are separated by a tab (‘\t’). It takes a name or phone number as input and prints the corresponding other value from the hash table (hint: use hash tables).

10) Implement the above program with the database instead of a text file.

11) Write a Java program that prints the meta-data of a given table

Text Books:
1. Java Fundamentals – A comprehensive Introduction, Herbert Schildt and Dale Skrien, TMH.

References:
1. Java for Programmers, P.J.Deitel and H.M.Deitel, Pearson education (OR) Java: How to Program P.J.Deitel and H.M.Deitel, PHI.
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) II Year II-Sem

COMPUTER ORIENTED STATISTICAL METHODS

Prerequisites
No pre requisites, Foundation course

Objectives
The aim of the course is to understand
- The theory of Probability, and probability distributions of single and multiple random variables
- The sampling theory and testing of hypothesis and making inferences
- The regression and correlation

Outcomes
At the end of the course student is able to
- Apply the concepts of probability and distributions to some case studies
- Correlate the material of one unit to the material in other units
- Resolve the potential misconceptions and hazards in each topic of study.


UNIT-II: Mathematical Expectation: Mean of a Random Variable, Variance and Covariance of Random Variables, Means and Variances of Linear Combinations of Random Variables, Chebyshev’s Theorem.

UNIT-III: Continuous Probability Distributions: Continuous Uniform Distribution, Normal Distribution, Areas under the Normal Curve, Applications of the Normal Distribution, Normal Approximation to the Binomial, Gamma and Exponential Distributions, Chi-Squared Distribution, Beta Distribution, Lognormal Distribution.


UNIT-V: Linear Regression and Correlation
Introduction to Linear Regression, The Simple Linear Regression Model, Least Squares and the Fitted Model, Properties of the Least Squares Estimators, Inferences Concerning the Regression

TEXT BOOK:

REFERENCE:
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) II Year II-Sem

DESIGN AND ANALYSIS OF ALGORITHMS

Prerequisites
1. A course on “Computer Programming and Data Structures”
2. A course on “Advanced Data Structures”

Objectives
1. Introduces the notations for analysis of the performance of algorithms.
2. Introduces the data structure disjoint sets.
3. Describes major algorithmic techniques (divide-and-conquer, backtracking, dynamic programming, greedy, branch and bound methods) and mention problems for which each technique is appropriate;
4. Describes how to evaluate and compare different algorithms using worst-, average-, and best-case analysis.
5. Explains the difference between tractable and intractable problems, and introduces the problems that are P, NP and NP complete.

Outcomes
1. Ability to analyze the performance of algorithms
2. Ability to choose appropriate data structures and algorithm design methods for a specified application
3. Ability to understand how the choice of data structures and the algorithm design methods impact the performance of programs

UNIT I:
Introduction: Algorithm, Pseudo code for expressing algorithms, Performance Analysis-Space complexity, Time complexity, Asymptotic Notation- Big oh notation, Omega notation, Theta notation and Little oh notation, Probabilistic analysis, Amortized analysis. Divide and conquer: General method, applications-Binary search, Quick sort, Merge sort, Strassen’s matrix multiplication.

UNIT II:
Disjoint Sets: Disjoint set operations, union and find algorithms, spanning trees. Backtracking: General method, applications - n-queen problem, sum of subsets problem, graph coloring, Hamiltonian cycles, connected components and bi connected components.

UNIT III:
Dynamic Programming: General method, applications-Matrix chain multiplication, Optimal binary search trees, 0/1 knapsack problem, All pairs shortest path problem, Traveling sales person problem, Reliability design.

UNIT IV:
Greedy method: General method, applications-Job sequencing with deadlines, 0/1 knapsack problem, Minimum cost spanning trees, Single source shortest path problem.

UNIT V:
Branch and Bound: General method, applications - Travelling sales person problem, 0/1 knapsack problem - LC Branch and Bound solution, FIFO Branch and Bound solution. NP-Hard and NP-Complete problems: Basic concepts, non deterministic algorithms, NP - Hard and NP-Complete classes, Cook’s theorem.

Text Books:

References:
FORMAL LANGUAGES AND AUTOMATA THEORY

Prerequisites
1. A course on “Mathematical Foundations of Computer Science”

Objectives
1. Introduces the fundamental concepts of formal languages, grammars and automata theory.
2. Topics include finite automata, regular expressions, regular languages and their properties, context-free grammars, context-free languages and their properties, pushdown automata, Turing machines and un decidability.

Outcomes
1. Gain proficiency in classifying machines by their power in recognizing languages.
2. Learn to employ finite state machines for modeling and solving computing problems.
3. Comprehend the hierarchy of problems arising in computing

Unit I

UNIT II

UNIT III

UNIT IV

Introduction to Turing Machines.

UNIT V
Additional Classes of Problems: Complements of Languages in NP. The Class of Languages CoNP. NP-Complete Problems and NP. Problems Solvable in Polynomial Space. Polynomial-Space Turing Machines. Relationship of PS and NPS to Previously Defined Classes. Deterministic and Nondeterministic Polynomial Space. A Problem That Is Complete for PS.

Text Book:
1. Introduction to Automata Theory, Languages, and Computation, 2nd Edition, John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Pearson Education

References:
1. Introduction to Computer Theory, Daniel I.A. Cohen, John Wiley.
2. Introduction to Languages and The Theory of Computation, John C Martic, TMH
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) II Year II-Sem

SOFTWARE ENGINEERING

Prerequisites
1. A course on “Computer Programming and Data Structures”
2. A course on “Object Oriented Programming Through Java”

Objectives
1. The aim of the course is to provide an understanding of the working knowledge of the techniques for estimation, design, testing and quality management of large software development projects.
2. Topics include process models, software requirements, software design, software testing, software process/product metrics, risk management, quality management and UML diagrams

Outcomes
1. Ability to translate end-user requirements into system and software requirements, using e.g. UML, and structure the requirements in a Software Requirements Document (SRD).
2. Identify and apply appropriate software architectures and patterns to carry out high level design of a system and be able to critically compare alternative choices.
3. Will have experience and/or awareness of testing problems and will be able to develop a simple testing report

UNIT-I:
Introduction to Software Engineering: The evolving role of software, changing nature of software, software myths.
A Generic view of process: Software engineering- a layered technology, a process framework, the capability maturity model integration (CMMI), process patterns, process assessment, personal and team process models.
Process models: The waterfall model, incremental process models, evolutionary process models, the unified process.

UNIT-II:
Software Requirements: Functional and non-functional requirements, user requirements, system requirements, interface specification, the software requirements document.
Requirements engineering process: Feasibility studies, requirements elicitation and analysis, requirements validation, requirements management.
System models: Context models, behavioral models, data models, object models, structured methods.

UNIT-III:
Design Engineering: Design process and design quality, design concepts, the design model.
Creating an architectural design: software architecture, data design, architectural styles and patterns, architectural design, conceptual model of UML, basic structural modeling, class diagrams, sequence diagrams, collaboration diagrams, use case diagrams, component diagrams.

UNIT-IV:
Testing Strategies: A strategic approach to software testing, test strategies for conventional software, black-box and white-box testing, validation testing, system testing, the art of debugging.
Product metrics: Software quality, metrics for analysis model, metrics for design model, metrics for source code, metrics for testing, metrics for maintenance.

UNIT-V:
Metrics for Process and Products: Software measurement, metrics for software quality.
Risk management: Reactive Vs proactive risk strategies, software risks, risk identification, risk projection, risk refinement, RMMM, RMMM plan.
Quality Management: Quality concepts, software quality assurance, software reviews, formal technical reviews, statistical software quality assurance, software reliability, the ISO 9000 quality standards.

Text Books:
3. The unified modeling language user guide Grady Booch, James Rambaugh, Ivar Jacobson, Pearson Education.

References:
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) II Year II-Sem

OPERATING SYSTEMS

Prerequisites
1. A course on “Computer Programming and Data Structures”
2. A course on “Computer Organization and Architecture”

Objectives
1. Provide an introduction to operating system concepts (i.e., processes, threads, scheduling, synchronization, deadlocks, memory management, file and I/O subsystems and protection)
2. Introduce the issues to be considered in the design and development of operating system
3. Introduce basic Unix commands, system call interface for process management, inter process communication and I/O in Unix

Outcomes
1. Will be able to control access to a computer and the files that may be shared
2. Demonstrate the knowledge of the components of computer and their respective roles in computing.
3. Ability to recognize and resolve user problems with standard operating environments.
4. Gain practical knowledge of how programming languages, operating systems, and architectures interact and how to use each effectively.

UNIT I:

UNIX/LINUX Utilities - Introduction to Unix file system, vi editor, file handling utilities, security by file permissions, process utilities, disk utilities, networking commands, text processing utilities and backup utilities.

UNIT II:

System call interface for process management - fork, exit, wait, waitpid, exec

Deadlocks - System Model, Deadlocks Characterization, Methods for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, and Recovery from Deadlock.

UNIT III:

Inter process Communication Mechanisms: IPC between processes on a single computer system, IPC between processes on different systems, using pipes, FIFOs, message queues, shared memory, semaphores.

UNIT IV

UNIT V:
Unix/LINUX Files: File structure, directories, files and devices, System calls, library functions, low level file access, usage of open, create, read, write, close, lseek, stat, ioctl.

TEXT BOOKS:

REFERENCE BOOKS:
2. Operating System A Design Approach-Crowley, TMH.
4. Unix programming environment, Kernighan and Pike, PHI. / Pearson Education
SCRIPTING LANGUAGES LAB

Prerequisites
1. A course on “Computer Programming and Data Structures”
2. A course on “Object Oriented Programming through Java”

Objectives
1. This course provides an introduction to the script programming paradigm, and introduces scripting languages such as Perl, PHP and Python.

Outcomes
1. Comprehend the differences between typical scripting languages and typical system and application programming languages.
2. Gain knowledge of the strengths and weaknesses of Perl, PHP and Python; and select an appropriate language for a solving a giving problem

Practical Extraction Reporting Language (PERL)
1. a) Write a Perl script to find the largest number among three numbers.
   b) Write a Perl script to print the multiplication tables from 1-10 using subroutines.
2. Write a Perl program to implement the following list of manipulating functions
   a) Shift
   b) Unshift
   c) Push
3. a) Write a Perl script to substitute a word, with another word in a string.
   b) Write a Perl script to validate IP address and email address.
4. Write a Perl script to print the file in reverse order using command line arguments

Personal Home Page (PHP).
1. Write a PHP script to print prime numbers between 1-50.
2. PHP script to
   a. Find the length of a string.
   b. Count no of words in a string.
   c. Reverse a string.
   d. Search for a specific string.
3. Write a PHP script to merge two arrays and sort them as numbers, in descending order.
4. Write a PHP script that reads data from one file and write into another file.

Python.
1. Write a python program to solve a quadratic equation.
2. a) Write a python program to find the factorial of a number.
   b) Write a python program to generate Fibonacci series.
3. Write a python program to make a simple calculator.
4. a) Write a python program to sort words in alphabetical order.
   b) Write a python program to add two matrices.

Text Books:
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) II Year II-Sem

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

OPERATING SYSTEMS LAB
(Using UNIX/LINUX)

Prerequisites
1. A course on “Computer Programming and Data Structures”
2. A course on “Computer Organization and Architecture”

Co-requisite
1. A course on “Operating Systems”

Objectives
1. To provide an understanding of the design aspects of operating system concepts through simulation
2. Introduce basic Unix commands, system call interface for process management, inter process communication and I/O in Unix

Outcomes
1. Simulate and implement operating system concepts such as scheduling, deadlock management, file management and memory management.
2. Able to write C programs using Unix system calls

Week 1
1. Write C programs to simulate the following CPU Scheduling algorithms:
   a. FCFS  b. SJF  c. Round Robin  d. Priority

Week 2
1. Write C programs to illustrate the following system calls of UNIX/LINUX operating system:
   (fork, exec, getpid, exit, wait)

Week 3
1. Write a C program to simulate Bankers Algorithm for Deadlock Avoidance and Prevention.

Week 4
1. Write a C program to implement the Producer – Consumer problem using semaphores using UNIX/LINUX system calls.

Weeks 5 & 6
1. Write C programs to illustrate the following IPC mechanisms:
   a. Pipes  b. FIFOs  c. Message queues  d. Shared memory

Weeks 7 & 8
1. Write C programs to simulate the following memory management techniques:

Week 9
1. Write programs using the I/O system calls of UNIX/LINUX operating system:
   (open, read, write, close, fcntl, seek, stat, opendir, readdir)

Weeks 10 & 11
1. Write C programs to simulate the following file organization Techniques:
   a. Single level  b. Two level  c. Hierarchical  d. DAG

Week 12
1. Write C programs to simulate the following file allocation strategies:
   a. Sequential  b. Linked  c. Indexed
Week 13

1. Write C programs to simulate the following Page Replacement Techniques:
   a. FIFO  
   b. LRU  
   c. Optimal

TEXT BOOKS:

REFERENCE BOOKS:
2. Pearson Education/PHI
3. Operating System A Design Approach-Crowley,TMH.
5. Unix programming environment, Kernighan and Pike, PHI. / Pearson Education
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech./MBA) II Year II-Sem

SOFTWARE ENGINEERING LAB

Prerequisites
1. A course on “Computer Programming and Data Structures”
2. A course on “Object Oriented Programming Through Java”

Co-requisite
1. A Course on “Software Engineering”

Objectives
1. To have hands on experience in developing a software project by using various software engineering principles and methods in each of the phases of software development.

Outcomes
1. Ability to translate end-user requirements into system and software requirements
2. Ability to generate a high level design of the system from the software requirements
3. Will have experience and/or awareness of testing problems and will be able to develop a simple testing report

LIST OF EXPERIMENTS

Do the following 8 exercises for any two projects given in the list of sample projects or any other projects:

1) Development of problem statement.
4) Study and usage of any Design phase CASE tool
5) Performing the Design by using any Design phase CASE tools.
6) Develop test cases for unit testing and integration testing
7) Develop test cases for various white box and black box testing techniques.

Sample Projects:
1. Passport automation System
2. Book Bank
3. Online Exam Registration
4. Stock Maintenance System
5. Online course reservation system
6. E-ticketing
7. Software Personnel Management System
8. Credit Card Processing
10. Recruitment system

Text Books:
3. The unified modeling language user guide Grady Booch, James Rambaugh, Ivar Jacobson, Pearson Education.
HUMAN VALUES AND PROFESSIONAL ETHICS

Course Objectives
1. To introduce the basic concepts of universal human values
2. To familiarize the students with desirable business and professional ethics, rights and responsibilities
3. To prepare students against possible gaps and unethical practices in contemporary times
4. To sensitize the students so that they can protect themselves and the organization from the possible professional crime malpractices

Learning Outcomes
1. The students learn about diverse ethical issues rooted in society, trade, business, and environment on local as well as a global platform.
2. The students appreciate their role as a responsible citizen, professional, and as managers, advisors, experts and consultants.
3. The students will reflect and learn major values and ethics from their observations of a spiritual discourse and a visit to a business organization as a practical part of this course.


Unit IV Professional Rights: professional rights and employee rights communicating risk and public policy – Whistle blowing - Professionals / engineers as managers, advisors, experts, witnesses and consultants – moral leadership - Regulatory compliances, Monitoring and control - Mini-Cases


Mini-projects
Project 1: The student of this course should invariably attend (or watch on internet/any TV channel/ Youtube/ social media) two speeches of 30 minutes duration each dealing with spiritual discourse and submit a report on the contents of the lecture proceedings.

Project 2: Visit any organization (including shops/ hotels or shopping malls in your region) of your choice and observe how the professionals perform the given job with a focus on professional ethics and human values.

References
1. Aryasri, Human Values and Professional Ethics, Maruthi Publications.
2. S B George, Human Values and Professional Ethics, Vikas Publishing.
COMPUTER NETWORKS

Prerequisites
1. A course on “Computer Programming and Data Structures”
2. A course on “Design and Analysis of Algorithms”

Objectives
1. The objective of the course is to equip the students with a general overview of the concepts and fundamentals of computer networks.
2. Familiarize the students with the standard models for the layered approach to communication between machines in a network and the protocols of the various layers.
3. The following topics are included: Reference models, the physical layer (transmission media); the data link layer (error detection and correction, point-to-point protocols); the medium access layer protocols; the network layer (routing algorithms, congestion control); internetworking (addressing, internetwork routing and protocols, quality of service); the transport layer (connection-oriented transport layer services and protocols); application layer protocols

Outcomes
1. Gain the knowledge of the basic computer network technology.
2. Gain the knowledge of the functions of each layer in the OSI and TCP/IP reference model.
3. Obtain the skills of subnetting and routing mechanisms.
4. Familiarity with the essential protocols of computer networks, and how they can be applied in network design and implementation.

UNIT-I
Network hardware, Network software, OSI, TCP/IP Reference models, Example Networks: ARPANET, Internet.

UNIT-II
Data link layer: Design issues, framing, Error detection and correction.
Elementary data link protocols: simplex protocol, A simplex stop and wait protocol for an error-free channel, A simplex stop and wait protocol for noisy channel.
Sliding Window protocols: A one-bit sliding window protocol, A protocol using Go-Back-N, A protocol using Selective Repeat, Example data link protocols.
Medium Access sub layer: The channel allocation problem, Multiple access protocols: ALOHA, Carrier sense multiple access protocols, collision free protocols. Wireless LANs, Data link layer switching.

UNIT-III

UNIT –IV
Transport Layer: Transport Services, Elements of Transport protocols, Connection management, TCP and UDP protocols.

UNIT –V
Application Layer –Domain name system, SNMP, Electronic Mail; the World WEB, HTTP, Streaming audio and video.

TEXT BOOK:

REFERENCE BOOKS:
Prerequisites
1. A course on “Formal Languages and Automata Theory”
2. A course on “Computer Programming and Data Structures”

Objectives
1. Introduce the major concepts of language translation and compiler design and impart the knowledge of practical skills necessary for constructing a compiler.
2. Topics include phases of compiler, parsing, syntax directed translation, type checking use of symbol tables, code optimization techniques, intermediate code generation, code generation and data flow analysis.

Outcomes
1. Demonstrate the ability to design a compiler given a set of language features.
2. Demonstrate knowledge of patterns, tokens & regular expressions for lexical analysis.
3. Acquire skills in using lex tool & yacc tool for developing a scanner and parser.
4. Design and implement LL and LR parsers
5. Design algorithms to do code optimization in order to improve the performance of a program in terms of space and time complexity.
6. Design algorithms to generate machine code.

Unit 1
Introduction: The structure of a compiler, the science of building a compiler, programming language basics
Lexical Analysis: The Role of the Lexical Analyzer, Input Buffering, Recognition of Tokens, The Lexical-Analyzer Generator Lex, Finite Automata, From Regular Expressions to Automata, Design of a Lexical-Analyzer Generator, Optimization of DFA-Based Pattern Matchers.

Unit II

Unit III
Syntax-Directed Translation: Syntax-Directed Definitions, Evaluation Orders for SDD’s, Applications of Syntax-Directed Translation, Syntax-Directed Translation Schemes, and Implementing L-Attributed SDD’s.

Unit IV
Run-Time Environments: Stack Allocation of Space, Access to Nonlocal Data on the Stack, Heap Management, Introduction to Garbage Collection, Introduction to Trace-Based Collection.

Unit V
Text Book:

References:
1. lex & yacc – John R. Levine, Tony Mason, Doug Brown, O’reilly
2. Compiler Construction, Louden, Thomson..
**JNTUH COLLEGE OF ENGINEERING HYDERABAD**

**IDP (B.Tech. CSE & M.Tech. /MBA) III Year I-Sem**

**DATABASE MANAGEMENT SYSTEMS**

**Prerequisites**
1. A course on “Advanced Data Structures”

**Objectives**
1. To understand the basic concepts and the applications of database systems.
2. To master the basics of SQL and construct queries using SQL.
3. Topics include data models, database design, relational model, relational algebra, transaction control, concurrency control, storage structures and access techniques.

**Outcomes**
1. Gain knowledge of fundamentals of DBMS, database design and normal forms
2. Master the basics of SQL for retrieval and management of data.
3. Be acquainted with the basics of transaction processing and concurrency control.
4. Familiarity with database storage structures and access techniques

**UNIT I:**
**Database System Applications:** database system Vs. file system, view of data, data abstraction, instances and schemas, data models, the ER model, relational model, other models, database languages, DDL, DML, database access for application programs, database users and administrator, transaction management, database system structure, storage manager, the query processor, history of database systems, data base design and ER diagrams, beyond ER design entities, attributes and entity sets, relationships and relationship sets, additional features of ER model, concept design with the ER Model, conceptual design for large enterprises.

**UNIT II:**
**Introduction to the Relational Model:** integrity constraint over relations, enforcing integrity constraints, querying relational data, logical data base design, introduction to views, destroying/altering tables and views, form of basic SQL query, examples of basic SQL queries, introduction to nested queries, correlated nested queries, set comparison operators, NULL values, comparison using null values, logical connectivity’s, AND, OR and NOT, impact on SQL constructs, outer joins, disallowing NULL values, complex integrity constraints in SQL, triggers and active data bases, Oracle, SQL Server, DB2.

**UNIT III:**
**Relational Algebra:** Selection and projection, set operations, renaming, Joins, Division, Examples of Algebra overviews, Relational calculus, Tuple relational Calculus, Domain relational calculus, Expressive Power of Algebra and calculus.

**Schema refinement:** Problems caused by redundancy, decompositions, problems related to decomposition, reasoning about functional dependencies, FIRST, SECOND, THIRD normal forms, BCNF, lossless join decomposition, dependency preserving decomposition, schema refinement in database design, multi valued dependencies, FOURTH normal form, FIFTH normal form.

**UNIT IV:**

**UNIT V:**
Data on External Storage, File Organization and Indexing, Cluster Indexes, Primary and Secondary Indexes, Index data Structures, Hash Based Indexing, Tree base Indexing, Comparison of File
Organizations, Indexes and Performance Tuning, Intuitions for tree Indexes, Indexed Sequential Access Methods (ISAM), B+ Trees: A Dynamic Index Structure.

**Text Books:**

**References:**
2. Fundamentals of Database Systems, Elmasri Navrate Pearson Education
3. Introduction to Database Systems, C.J.Date Pearson Education
4. Oracle for Professionals, the X Team, S.Shah and V. Shah, SPD.
5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI.
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) III Year I-Sem

L T P C
4 0 0 4

MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS

Aim:
1. To understand the concepts and importance of economics in managerial problems
2. To understand the basic financial management concepts including the principles of financial analysis

Learning outcomes:
- Students will be able to apply the principles of economics for managerial decisions.
- The students will be able to analyse the financial position of a company with the techniques of financial accounting and ratio analysis


Unit II Production & Cost Analysis: Production Function – Isoquants and Isocosts, MRTS, Least Cost Combination of Inputs, Laws of Returns, Internal and External Economies of Scale. Break-even Analysis (BEA)-Determination of Break-Even Point (simple problems) - Managerial Significance.


Unit IV Capital Budgeting: Methods and sources of raising capital - Capital Budgeting: Methods of Capital Budgeting: Payback Method, Accounting Rate of Return (ARR) and Net Present Value Method (simple problems).


TEXT BOOKS:
1. Aryasri: Managerial Economics and Financial Analysis, TMH.

REFERENCES:
2. H. Craig Peterson & W. Cris Lewis, Managerial Economics, Pearson,
3. Lipsey & Chrystel, Economics, Oxford University Press, Domnick Salvatore: Managerial Economics In a Global Economy, Thomson.,
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) III Year I-Sem

DATABASE MANAGEMENT SYSTEMS LAB

Co-requisites
1. Co-requisite of course “Database Management Systems”

Objectives
1. Introduce ER data model, database design and normalization
2. Learn SQL basics for data definition and data manipulation

Outcomes
1. Design database schema for a given application and apply normalization
2. Acquire skills in using SQL commands for data definition and data manipulation.
3. Develop solutions for database applications using procedures, cursors and triggers

List of Experiments:-
1) Concept design with E-R Model
2) Relational Model
3) Normalization
4) Practicing DDL commands
5) Practicing DML commands
6) Querying (using ANY, ALL, IN, Exists, NOT EXISTS, UNION, INTERSECT, Constraints etc.)
7) Queries using Aggregate functions, GROUP BY, HAVING and Creation and dropping of Views.
8) Triggers (Creation of insert trigger, delete trigger, update trigger)
9) Procedures
10) Usage of Cursors

Text Books:

References:
2. Fundamentals of Database Systems, Elmasri Navrate Pearson Education
3. Introduction to Database Systems, C.J.Date Pearson Education
4. Oracle for Professionals, The X Team, S.Shah and V. Shah, SPD.
5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL,Shah,PHI.
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) III Year I-Sem

COMPILER DESIGN LAB

Prerequisites
1. A course on “Formal Languages and Automata Theory”
2. A course on “Computer Programming and Data Structures”

Co-requisite
1. A course on “Compiler Design”

Objectives
1. To provide practical programming skills necessary for constructing a compiler.

Outcomes
1. Ability to design a compiler given a set of language features.
2. Ability to use the knowledge of patterns, tokens & regular expressions for lexical analysis.
3. Able to use lex tool & yacc tool to develop a scanner & parser.
4. Design and implement LL(1), SLR, LR(1), LALR and operator precedence parsers
5. Generation of machine code

List of Experiments:–
1. Design a DFA to accept all strings containing a substring(01)
2. Write a LEX Program to scan reserved word & Identifiers of C Language
3. Write a LEX Program to scan integers as Float Numbers in C Language
4. Implement Predictive Parsing algorithm
5. Implement RD Parser for the Grammar
   S->AB
   A->a/E
   B->b/E
6. Write a C program to generate three address code.
7. Implement SLR(1) Parsing algorithm
8. Write a YACC program to parse the Strings.

Text Books:

References:
1. lex & yacc – John R. Levine, Tony Mason, Doug Brown, O’reilly
4. Compiler Construction, Louden, Thomson..
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) III Year I-Sem

L T P C
0 0 3 1

COMPUTER NETWORKS LAB

Prerequisites
1. A course on “Computer Programming and Data Structures”
2. A course on “Design and Analysis of Algorithms”

Co-requisite
1. A course on “Computer Networks”

Objectives
1. Intended to provide practical exposure of the concepts in computer networks.
2. Provide hands on experience of designing, modeling, and evaluation of computer networks

Outcomes
1. Implement data link layer framing methods.
2. Implement error correction and detection techniques.
3. Implement data link layer protocols
4. Implement routing and congestion algorithms
5. Implement encryption algorithms
6. Able to create a scenario and study the performance of computer networks and protocols

1. Implement the data link layer framing methods such as character, character-stuffing and bit stuffing.
2. Write a program to compute CRC code for the polynomials CRC-12, CRC-16 and CRC CCIP
3. Develop a simple data link layer that performs the flow control using the sliding window protocol, and loss recovery using the Go-Back-N mechanism.
4. Implement Dijsktra’s algorithm to compute the shortest path through a network
5. Take an example subnet of hosts and obtain a broadcast tree for the subnet.
6. Implement instance vector routing algorithm for obtaining routing tables at each node.
7. Implement data encryption and data decryption.
8. Using a simulation software
   i. Create a scenario and study the performance of CSMA/CD protocol
   ii. Create a scenario and study the performance of token bus and token ring
   iii. Study Transmission Control Protocol

TEXT BOOK:

REFERENCE BOOKS:
Prerequisites
1. A course on “Database Management Systems”
2. Knowledge of probability and statistics

Objectives
1. This course presents the techniques for preprocessing data before mining, and describes the concepts related to data warehousing, On-Line Analytical Processing (OLAP), and data generalization.
2. It also presents methods for mining frequent patterns, associations, and correlations.
3. It then describes methods for data classification and prediction, and data-clustering approaches.

Outcomes
1. Examine the types of the data to be mined and present a general classification of tasks and primitives to integrate a data mining system.
2. Apply preprocessing statistical methods for any given raw data.
3. Devise efficient and cost effective methods for designing and maintaining data warehouses.
4. Extract interesting patterns from large amounts of data that can be used for further analysis, for example in machine learning and prediction.
5. Discover the role played by data mining in various fields.
6. Choose and employ suitable data mining algorithms to build analytical applications
7. Evaluate the accuracy of supervised and unsupervised models and algorithms.

UNIT-I Data mining
Data-Types of Data-, Data Mining Functionalities- Interestingness Patterns-Classification of Data Mining systems- Data mining Task primitives -Integration of Data mining system with a Data warehouse-Major issues in Data Mining-Data Preprocessing.

UNIT-II Data warehouse and business analysis
Data Warehouse-Data Warehouse Architecture- Multidimensional Data Model-Data cube and OLAP Technology-Data Warehouse Implementation -DBMS schemas for Decision support - Efficient methods for Data cube computation.

UNIT-III Association rule mining and classification
Mining Frequent Patterns-Associations and correlations- Mining Methods- Mining Various kinds of Association Rules- Correlation Analysis- Constraint based Association mining.-Classification and Prediction- Basic concepts-Decision tree induction-Bayesian classification, Rule-based classification -classification by Back propagation-Support vector machines.-Associative Classification, Lazy learners-Other classification methods – Prediction.

UNIT-IV Clustering and applications
Cluster analysis-Types of Data in Cluster Analysis-Categorization of Major Clustering Methods-Partitioning Methods,-Hierarchical Methods- Density-Based Methods,-Grid-Based Methods,-Model-Based Clustering Methods- Clustering high dimensional data-Constraint- Based cluster analysis- Outlier Analysis

UNIT V Mining data streams, time-series and sequence data

Text Books:
1. Data Mining – Concepts and Techniques - Jiawei Han & Micheline Kamber, Elsevier.

References:
1. Building the Data Warehouse- W. H. Inmon, Wiley Dreamtech India Pvt. Ltd.
2. Data Mining Introductory and Advanced topics--Margare H Dunham, Pearson Education.
WEB TECHNOLOGIES

Prerequisites
1. A course on “Computer Programming and Data Structures”
2. A course on “Objected-Oriented Programming Through Java”

Objectives
1. To learn the basic web concepts and Internet protocols
2. To introduce XML and processing of XML data
3. To introduce client side scripting with Javascript and DHTML
4. To introduce server side programming with Java servl ets and JSP

Outcomes
1. Ability to create dynamic and interactive web sites
2. Gain knowledge of client side scripting using java srip t and DHTML.
3. Demonstrate understanding of what is XML and how to parse and use XML data
4. Able to do server side programming with Java Servelets and JSP

UNIT I: Introduction
Web Essentials - Clients, Servers and Communication:

Markup Languages – HTML: Basic Tags, Forms, Style sheets

UNIT II: Client-Side Programming
Introduction to JavaScript, JavaScript in Perspective, Basic Syntax, Variables and Data Types, Statements, Operators, Literals, Functions, Objects, Arrays, Built-in Objects, JavaScript Debuggers.


UNIT III: Server-Side Programming
Java Servlets: Servlet Architecture, Servlets Generating Dynamic Content, Servlet Life Cycle, Parameter Data, Sessions, Cookies, URL Rewriting, Case Study.

UNIT IV: Representing Web Data

UNIT V: Separating Programming and Presentation
JSP Technology: Introduction to JavaServer Pages, Running JSP Applications, Basic JSP, JavaBeans Classes and JSP, Tag Libraries and Files, Support for the Model-View-Controller Paradigm, Case Study.

TEXT BOOKS:
1. WEB TECHNOLOGIES: A Computer Science Perspective, Jeffrey C. Jackson, Pearson Education

REFERENCES:
4. Paul Dietel and Harvey Deitel,”Java How to Program”, Prentice Hall of India, 8th Edition
IDP (B.Tech. CSE & M.Tech. /MBA) w.e.f. 2017-2018 academic year

JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) III Year II-Sem

L T P C
4 0 0 4

PROFESSIONAL ELECTIVE - I
ARTIFICIAL INTELLIGENCE

Prerequisites
1. A course on “Computer Programming and Data Structures”
2. A course on “Advanced Data Structures”
3. A course on “Design and Analysis of Algorithms”
4. A course on “Mathematical Foundations of Computer Science”

Objectives
1. To learn the distinction between optimal reasoning Vs. human like reasoning
2. To understand the concepts of state space representation, exhaustive search, heuristic search together with the time and space complexities.
3. To learn different knowledge representation techniques.
4. To understand the applications of AI, namely game playing, theorem proving, expert systems, machine learning and natural language processing

Outcomes
1. Ability to formulate an efficient problem space for a problem expressed in natural language.
2. Select a search algorithm for a problem and estimate its time and space complexities.
3. Possess the skill for representing knowledge using the appropriate technique for a given problem
4. Possess the ability to apply AI techniques to solve problems of game playing, expert systems, machine learning and natural language processing.

UNIT I
Introduction:
AI problems, The Underlying Assumption, AI Techniques, The Level of the Model, Criteria for Success

Problems, Problem Spaces and Search: Defining the Problem as a State Space Search, Production Systems, Problem Characteristics, Production System Characteristics, Issues in the Design of Search Programs

Heuristic Search Techniques:
Generate – and – Test, Hill Climbing, Best – First Search, Problem Reduction, Constraint Satisfaction, Means-Ends Analysis.

UNIT II
Knowledge Representation:
Issues in Knowledge Representation, Representing Simple Facts in Predicate Logic, Representing Instance and ISA Relations, Computable Functions and Predicates, Resolution, Natural Deduction


Weak Slot – and – Filler Structures: semantic nets, frames

Strong Slot – and – Filler Structures: conceptual dependency, scripts, CYC

UNIT III

UNIT IV
Game Playing: Overview, Minimax Search, Alpha – Beta Cutoffs
Understanding: Understanding as constraint satisfaction, Waltz Algorithm
Natural Language Processing: Introduction, Syntactic Processing, Augmented Transition Networks, Semantic Analysis
UNIT V

Text Books:
1) Artificial Intelligence” 3rd Edn., E.Rich and K.Knight (TMH)

References:
2) Artificial Intelligence and Expert systems – Patterson PHI
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) III Year II-Sem

Professional Elective - I
COMPUTER GRAPHICS

Prerequisites
1. Familiarity with the theory and use of coordinate geometry and of linear algebra such as matrix multiplication.
2. A course on “Computer Programming and Data Structures”

Objectives
1. The aim of this course is to provide an introduction of fundamental concepts and theory of computer graphics.
2. Topics covered include graphics systems and input devices; geometric representations and 2D/3D transformations; viewing and projections; illumination and color models; animation; rendering and implementation; visible surface detection;

Outcomes
1. Acquire familiarity with the relevant mathematics of computer graphics.
2. Be able to design basic graphics application programs, including animation
3. Be able to design applications that display graphic images to given specifications

UNIT-I:
Introduction: Application areas of Computer Graphics, overview of graphics systems, video-display devices, raster-scan systems, random scan systems, graphics monitors and work stations and input devices
Output primitives: Points and lines, line drawing algorithms (Bresenham’s and DDA Algorithm), mid-point circle and ellipse algorithms
Filled area primitives: Scan-line polygon fill algorithm, boundary-fill and flood-fill algorithms

UNIT-II:
2-D geometrical transforms: Translation, scaling, rotation, reflection and shear transformations, matrix representations and homogeneous coordinates, composite transforms, transformations between coordinate systems
2-D viewing: The viewing pipeline, viewing coordinate reference frame, window to view-port coordinate transformation, viewing functions, Cohen-Sutherland and Cyrus-beck line clipping algorithms, Sutherland –Hodgeman polygon clipping algorithm, Polygon Filling

UNIT-III:
3-D object representation: Polygon surfaces, quadric surfaces, spline representation, Hermite curve, Bezier curve and B-Spline curves, Bezier and B-Spline surfaces. Basic illumination models, polygon rendering methods.

UNIT-IV:
3-D geometric transformations: Translation, rotation, scaling, reflection and shear transformations, composite transformations.
3-D viewing: Viewing pipeline, viewing coordinates, view volume and general projection transforms and clipping.

UNIT-V:
Computer animation: Design of animation sequence, general computer animation functions, raster animation, computer animation languages, key frame systems, motion specifications
Visible surface detection methods: Classification, back-face detection, depth-buffer, scan-line, depth sorting, BSP-tree methods, area sub-division and octree methods

101
Text Books:
3. Computer Graphics, Steven Harrington, TMH

References:
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) III Year II-Sem

Professional Elective -I
SOFTWARE PROJECT MANAGEMENT

Prerequisites
1. A course on “Software Engineering”

Objectives
1. To develop skills in software project management
2. The topics include—software economics; software development life cycle; artifacts of the process; workflows; checkpoints; project organization and responsibilities; project control and process instrumentation;

Outcomes
1. Gain knowledge of software economics, phases in the life cycle of software development, project organization, project control and process instrumentation.
2. Analyze the major and minor milestones, artifacts and metrics from management and technical perspective.
3. Design and develop software product using conventional and modern principles of software project management

UNIT I
Conventional Software Management: The waterfall model, conventional software Management performance.
Evolution of Software Economics: Software economics, pragmatic software cost estimation.

UNIT II
The old way and the new: The principles of conventional software Engineering, principles of modern software management, transitioning to an iterative process.

UNIT III
Life cycle phases: Engineering and production stages, inception, Elaboration, construction, transition phases.

UNIT IV

UNIT V
Future Software Project Management: modern Project Profiles, Next generation Software economics, modern process transitions.
Case Study: The command Center Processing and Display system- Replacement (CCPDS-R).
Text Books:

References:
2. Software Project Management, Joel Henry, Pearson Education.
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) III Year II-Sem

Professional Elective -I
SPEECH PROCESSING

Prerequisites
1. A course on “Mathematics II”
2. A course on “Computer Oriented Statistical Methods”
3. Generally, a basic knowledge of signals and systems, linear algebra, and probability and statistics and programming experience in a high-level language is required.

Objectives
1. The aim of the course is to familiarize students with the basic characteristics of the speech signal with regard to the production and perception of speech by humans.
2. To describe the basic techniques and practical aspects of speech analysis.
3. To present an overview of speech processing applications (such as speech recognition and speaker recognition)
4. The course includes the topics such as speech production, speech analysis, speech enhancement, speech and speaker recognition

Outcomes
1. Ability to understand and describe the mechanisms of speech production.
2. Ability to determine speech sound from the acoustic characteristics.
3. Ability to analyze the speech signal in time and frequency domains, and in terms of the parameters of a source-filter model.
4. Describe and implement methods for speech enhancement.
5. Design a simple speech processing system that recognizes a limited number of isolated words; and a speaker recognition system.

UNIT I: Fundamentals of Digital Speech Processing

UNIT II: Time Domain Models for Speech Processing

UNIT III: Linear Predictive Coding (LPC) Analysis

UNIT IV: Homomorphic Speech Processing


UNIT V: Automatic Speech & Speaker Recognition
Basic Pattern Recognition Approaches, Parametric Representation of Speech, Evaluating the Similarity of Speech Patterns, Isolated Digit Recognition System, Continuous Digit Recognition System

Hidden Markov Model (HMM) For Speech: Hidden Markov Model (HMM) for Speech Recognition, Viterbi algorithm, Training and Testing using HMMS
**Speaker Recognition:** Recognition techniques, Features That Distinguish Speaker, Speaker Recognition Systems: Speaker Verification System, Speaker Identification System.

**TEXT BOOKS:**

**REFERENCE BOOKS:**
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech./MBA) III Year II-Sem

PROFESSIONAL ELECTIVE-I
PRINCIPLES OF PROGRAMMING LANGUAGES

Prerequisites
1. A course on “Mathematical Foundations of Computer Science”
2. A course on “Computer Programming and Data Structures”

Objectives
1. Introduce important paradigms of programming languages
2. To provide conceptual understanding of high level language design and implementation
3. Topics include programming paradigms; syntax and semantics; data types, expressions and statements; subprograms and blocks; abstract data types; concurrency; functional and logic programming languages; and scripting languages

Outcomes
1. Acquire the skills for expressing syntax and semantics in formal notation
2. Identify and apply a suitable programming paradigm for a given computing application
3. Gain knowledge of and able to compare the features of various programming languages

UNIT-I
Preliminary Concepts: reasons for studying concepts of programming languages, programming domains, language evaluation criteria, influences on language design, language categories, language design trade-offs, implementation methods, programming environments

Major Programming Languages –LISP, ALGOL-60, COBOL, BASIC, PL/I, APL, SNOBOL, SIMULA67, ALGOL 68, Prolog, Ada, C++, Java, Scripting Languages, C#, Markup/Programming Hybrid Languages.

Syntax and Semantics: general problem of describing syntax and semantics, formal methods of describing syntax attribute grammars, describing the meanings of programs

UNIT-II
Names, Bindings, and Scopes: introduction, names, variables, concept of binding, scope, scope and lifetime, referencing environments, named constants

Data types: introduction, primitive, character string types, user defined ordinal types, array, associative arrays, record, union, tuple types, list types, pointer and reference types, type checking, strong typing, type equivalence

Expressions and Statements: arithmetic expressions, overloaded operators, type conversions, relational and Boolean expressions, short circuit evaluation, assignment statements, mixed-mode assignment

Control Structures – introduction, selection statements, iterative statements, unconditional branching, guarded commands.

UNIT-III
Subprograms and Blocks: Fundamentals of sub-programs, design issues for subprograms, local referencing environments, parameter passing methods, parameters that are subprograms, calling subprograms indirectly, overloaded subprograms, generic subprograms, design issues for functions, user defined overloaded operators, closures, co routines

Implementing subprograms: general semantics of calls and returns, implementing simple subprograms, implementing subprograms with stack-dynamic local variables, nested subprograms, blocks, implementing dynamic scoping

Abstract Data types: The concept of abstraction, introductions to data abstraction, design issues, language examples, parameterized ADT, encapsulation constructs, naming encapsulations

UNIT-IV
Concurrency: introduction, introduction to subprogram level concurrency, semaphores, monitors, message passing, Java threads, concurrency in function languages, statement level concurrency.
Exception Handling and Event Handling: Introduction, exception handling in Ada, C++, Java, introduction to event handling, event handling with Java and C#.

UNIT-V
Functional Programming Languages: Introduction, mathematical functions, fundamentals of functional programming language, LISP, support for functional programming in primarily imperative languages, comparison of functional and imperative languages
Logic Programming Language: Introduction, an overview of logic programming, basic elements of prolog, applications of logic programming.
Scripting Language: Pragmatics, Key Concepts, Case Study: Python – Values and Types, Variables, Storage and Control, Bindings and Scope, Procedural Abstraction, Data Abstraction, Separate Compilation, Module Library. (Text Book 2)

Text Books:

References:
Prerequisites
1. Students are expected to have knowledge in linear signals and systems, Fourier Transform, basic linear algebra, basic probability theory and basic programming techniques; knowledge of Digital Signal Processing is desirable.
2. A course on “Computational Mathematics”
3. A course on “Computer Oriented Statistical Methods”

Objectives
1. This course introduces fundamental concepts, theories, and algorithms for pattern recognition and machine learning.
2. Topics include: Pattern Representation, Nearest Neighbor Based Classifier, Bayes Classifier, Hidden Markov Models, Decision Trees, Support Vector Machines, Clustering, and an application of hand-written digit recognition.

Outcomes
1. Understand the theory, benefits, inadequacies and possible applications of various machine learning and pattern recognition algorithms
2. Identify and employ suitable machine learning techniques in classification, pattern recognition, clustering and decision problems.

UNIT-I: Introduction:
What is Pattern Recognition, Data Sets for Pattern Recognition, Different Paradigms for Pattern Recognition.

Representation:

UNIT-II: Nearest Neighbor Based Classifier:
Nearest Neighbor Algorithm, Variants of the NN Algorithm use of the Nearest Neighbor Algorithm for Transaction Databases, Efficient Algorithms, Data Reduction, Prototype Selection.

Bayes Classifier:
Bayes Theorem, Minimum Error Rate Classifier, Estimation of Probabilities, Comparison with the NNC, Naïve Bayes Classifier, Bayesian Belief Network.

UNIT-III: Hidden Markov Models:
Markov Models for Classification, Hidden Markov Models, Classification using HMMs.

Decision Trees:
Introduction, Decision Tree for Pattern Classification, Construction of Decision Trees, Splitting at the Nodes, Over-fitting and Pruning, Examples of Decision Tree Induction.

UNIT-IV: Support Vector Machines:
Introduction, Learning the Linear Discriminant Functions, Neural Networks, SVM for Classification.

Combination of Classifiers:
Introduction, Methods for Constructing Ensembles of Classifiers, Methods for Combining Classifiers.

UNIT-V: Clustering:
Why is Clustering Important, Hierarchical Algorithms, Partitional Clustering, Clustering Large Data Sets.

An Application-Hand Written Digit Recognition:
Description of the Digit Data, Pre-processing of Data, Classification Algorithms, Selection of Representative Patterns, Results.

TEXT BOOK:

REFERENCES:
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) III Year II-Sem

PROFESSIONAL ELECTIVE-II
SOFTWARE TESTING METHODOLOGIES

Prerequisites
1. A course on “Software Engineering”

Objectives
1. To provide knowledge of the concepts in software testing such as testing process, criteria, strategies, and methodologies.
2. To develop skills in software test automation and management using latest tools.

Outcomes
1. Design and develop the best test strategies in accordance to the development model.

UNIT-I:
Introduction:- Purpose of testing, Dichotomies, model for testing, consequences of bugs, taxonomy of bugs
Flow graphs and Path testing:- Basics concepts of path testing, predicates, path predicates and achievable paths, path sensitizing, path instrumentation, application of path testing.

UNIT-II:
Transaction Flow Testing:- transaction flows, transaction flow testing techniques.
Dataflow testing:- Basics of data flow testing, strategies in data flow testing, application of dataflow testing.
Domain Testing:- domains and paths, nice & ugly domains, domain testing, domains and interfaces’ testing, domain and interface testing, domains and testability.

UNIT-III:
Paths, Path products and Regular expressions:- path products & path expression, reduction procedure, applications, regular expressions & flow anomaly detection.
Logic Based Testing:- overview, decision tables, path expressions, kv charts, specifications.

UNIT-IV:
State, State Graphs and Transition testing:- state graphs, good & bad state graphs, state testing, Testability tips.

UNIT-V:
Graph Matrices and Application:- Motivational overview, matrix of graph, relations, power of a matrix, node reduction algorithm, building tools. (Student should be given an exposure to a tool like JMeter or Win-runner).

Text Books:

References:
1. The craft of software testing - Brian Marick, Pearson Education.
2. Software Testing Techniques – SPD(Oreille)
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) III Year II-Sem

PROFESSIONAL ELECTIVE-II
SOCIAL NETWORK ANALYSIS

Prerequisites
1. A course on “Web Technologies”
2. A course on “Computer Networks”
3. A course on “Data Warehousing and Data Mining”

Objectives
1. It introduces the concepts of social media
2. It provides the mechanisms for social network analysis
3. Includes the concepts that allow for better visualization and analysis of widely used services such as email, Wikis, Twitter, flickr, YouTube, etc.

Outcomes
1. Ability to construct social network maps easily
2. Gain skills in tracking the content flow through the social media

UNIT I:
Introduction: Social Media and Social Networks
Social Media: New Technologies of Collaboration

UNIT-II:

UNIT-III:
CASE STUDIES-I:
Email: The lifeblood of Modern Communication.
Thread Networks: Mapping Message Boards and Email Lists
Twitter: Conversation, Entertainment and Information

UNIT-IV:
CASE STUDIES-II:
Visualizing and Interpreting Face Book Networks, WWW Hyperlink Networks
Flickr: Linking People, Photos, Tags

UNIT-V:
CASE STUDIES-III:
You Tube: Contrasting Patterns of Content Interaction, and Prominence.
Wiki Networks: Connections of Creativity and Collaboration

Text Books:
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) III Year II-Sem

PROFESSIONAL ELECTIVE-II
DIGITAL IMAGE PROCESSING

Prerequisites
1. Students are expected to have knowledge in linear signals and systems, Fourier Transform, basic linear algebra, basic probability theory and basic programming techniques; knowledge of Digital Signal Processing is desirable.
2. A course on “Computational Mathematics”
3. A course on “Computer Oriented Statistical Methods”

Objectives
1. Provide a theoretical and mathematical foundation of fundamental Digital Image Processing concepts.
2. The topics include image acquisition; sampling and quantization; preprocessing; enhancement; restoration; segmentation; and compression.

Outcomes
1. Demonstrate the knowledge of the basic concepts of two-dimensional signal acquisition, sampling, and quantization.
2. Demonstrate the knowledge of filtering techniques.
3. Demonstrate the knowledge of 2D transformation techniques.
4. Demonstrate the knowledge of image enhancement, segmentation, restoration and compression techniques.


UNIT IV: Image Segmentation Detection of Discontinuities, Edge Linking and Boundary Detection, Thresholding, Region Oriented Segmentation.


TEXT BOOK:

REFERENCES:
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) III Year II-Sem

WEB TECHNOLOGIES LAB

Prerequisites
1. A Course on “Computer Programming and Data Structures”
2. A Course on “Objected Oriented Programming through Java”

Co-requisites
1. A course on “Web Technologies”

Objectives
1. To provide hands-on experience on web technologies
2. To develop client-server application using web technologies
3. To introduce server side programming with Java servlets and JSP
4. To introduce client side scripting with Javascript and AJAX

Outcomes
1. Design and develop interactive and dynamic web applications using HTML, CSS, JavaScript and XML
2. Apply client-server principles to develop scalable and enterprise web applications.

List of Experiments:
1. Develop static pages (using Only HTML) of an online book store. The pages should resemble: www.amazon.com. The website should consist the following pages.
   a) Home page
   b) Registration and user Login
   c) User Profile Page
   d) Books catalog
   e) Shopping Cart
   f) Payment By credit card
   g) Order Conformation
2. Validate the Registration, user login, user profile and payment by credit card pages using JavaScript.
3. Create and save an XML document on the server, which contains 10 users information. Write a program, which takes User Id as an input and returns the user details by taking the user information from the XML document.
4. Bean Assignments
   a. Create a JavaBean which gives the exchange value of INR (Indian Rupees) into equivalent American/Canadian/Australian Dollar value.
   b. Create a simple Bean with a label - which is the count of number of clicks. Then create a BeanInfo class, such that only the “count” property is visible in the Property Window.
   c. Create two Beans- a) KeyPad. b) DisplayPad. After that integrate the two Beans to make it work as a Calculator.
   d. Create two Beans: Traffic Light(Implemented as a Label with only three background colors - Red, Green, Yellow) and Automobile (Implemented as a TextBox which states its state/movement). The state of the Automobile should depend on the following Light Transition Table.

<table>
<thead>
<tr>
<th>Light Transition</th>
<th>Automobile State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red --&gt; Yellow</td>
<td>Ready</td>
</tr>
<tr>
<td>Yellow --&gt; Green</td>
<td>Move</td>
</tr>
<tr>
<td>Green --&gt; Red</td>
<td>Stopped</td>
</tr>
</tbody>
</table>
5. Install TOMCAT web server. Convert the static web pages of assignments 2 into dynamic web pages using servlets and cookies. Hint: Users information (user id, password, credit card number) would be stored in web.xml. Each user should have a separate Shopping Cart.

6. Redo the previous task using JSP by converting the static web pages of assignments 2 into dynamic web pages. Create a database with user information and books information. The books catalogue should be dynamically loaded from the database. Follow the MVC architecture while doing the website.

TEXT BOOKS:
1. WEB TECHNOLOGIES: A Computer Science Perspective, Jeffrey C. Jackson, Pearson Education

REFERENCES:
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) III Year II-Sem

DATA WAREHOUSING AND DATA MINING LAB

Prerequisites
1. A course on “Database Management Systems”

Objectives
1. The course is intended to obtain hands-on experience using data mining software.
2. Intended to provide practical exposure of the concepts in data mining algorithms

Outcomes
1. Apply preprocessing statistical methods for any given raw data.
2. Gain practical experience of constructing a data warehouse.
3. Implement various algorithms for data mining in order to discover interesting patterns from large amounts of data.

LIST OF EXPERIMENTS:-

Experiments using Weka & Clementine Tools
1. Data Processing Techniques:
   (i) Data cleaning (ii) Data transformation - Normalization (iii) Data integration
2. Partitioning - Horizontal, Vertical, Round Robin, Hash based
3. Data Warehouse schemas – star, snowflake, fact constellation
4. Data cube construction – OLAP operations
5. Data Extraction, Transformations & Loading operations
6. Implementation of Attribute oriented induction algorithm
7. Implementation of apriori algorithm
8. Implementation of FP – Growth algorithm
9. Implementation of Decision Tree Induction
10. Calculating Information gain measures
11. Classification of data using Bayesian approach
12. Classification of data using K – nearest neighbour approach
13. Implementation of K – means algorithm
15. Implementation of PAM algorithm
16. Implementation of DBSCAN algorithm

Text Books:
ADVANCED ENGLISH LANGUAGE COMMUNICATION SKILLS (ACS) LAB

1. Introduction
The introduction of the Advanced Communication Skills Lab is considered essential at 3rd year level. At this stage, the students need to prepare themselves for their careers which may require them to listen to, read, speak and write in English both for their professional and interpersonal communication in the globalised context.

The proposed course should be a laboratory course to enable students to use ‘good’ English and perform the following:
• Gathering ideas and information to organize ideas relevantly and coherently.
• Engaging in debates.
• Participating in group discussions.
• Facing interviews.
• Writing project/research reports/technical reports.
• Making oral presentations.
• Writing formal letters.
• Transferring information from non-verbal to verbal texts and vice-versa.
• Taking part in social and professional communication.

2. Objectives:
This Lab focuses on using multi-media instruction for language development to meet the following targets:
• To improve the students’ fluency in English, through a well-developed vocabulary and enable them to listen to English spoken at normal conversational speed by educated English speakers and respond appropriately in different socio-cultural and professional contexts.
• Further, they would be required to communicate their ideas relevantly and coherently in writing.
• To prepare all the students for their placements.

Learning Outcomes
❖ Accomplishment of sound vocabulary and its proper use contextually.
❖ Flair in Writing and felicity in written expression.
❖ Enhanced job prospects.
❖ Effective Speaking Abilities

3. Syllabus:
The following course content to conduct the activities is prescribed for the Advanced Communication Skills (ACS) Lab:
1. Activities on Fundamentals of Inter-personal Communication and Building Vocabulary - Starting a conversation – responding appropriately and relevantly – using the right body language – Role Play in different situations & Discourse Skills- using visuals - Synonyms and antonyms, word roots, one-word substitutes, prefixes and suffixes, study of word origin, business vocabulary, analogy, idioms and phrases, collocations & usage of vocabulary.
2. Activities on Reading Comprehension – General Vs Local comprehension, reading for facts, guessing meanings from context, scanning, skimming, inferring meaning, critical reading & effective goggling.
4. Activities on Presentation Skills – Oral presentations (individual and group) through JAM sessions/seminars/PPTs and written presentations through posters/projects/reports/ e-mails/assignments etc.
5. **Activities on Group Discussion and Interview Skills** – Dynamics of group discussion, intervention, summarizing, modulation of voice, body language, relevance, fluency and organization of ideas and rubrics for evaluation- Concept and process, pre-interview planning, opening strategies, answering strategies, interview through tele-conference & video-conference and Mock Interviews.

4. **Minimum Requirement:**
   The Advanced Communication Skills (ACS) Laboratory shall have the following infra-structural facilities to accommodate at least 35 students in the lab:
   - Spacious room with appropriate acoustics.
   - Round Tables with movable chairs
   - Audio-visual aids
   - LCD Projector
   - Public Address system
   - T. V, a digital stereo & Camcorder
   - Headphones of High quality

5. **Suggested Software:** The software consisting of the prescribed topics elaborated above should be procured and used.
   - Oxford Advanced Learner’s Compass, 8th Edition
   - DELTA’s key to the Next Generation TOEFL Test: Advanced Skill Practice.
   - Lingua TOEFL CBT Insider, by Dreamtech
   - TOEFL & GRE( KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS)
   - The following software from ‘train2success.com’
     - Preparing for being Interviewed
     - Positive Thinking
     - Interviewing Skills
     - Telephone Skills
     - Time Management

6. **Books Recommended:**
   2. **English Language Communication : A Reader cum Lab Manual** Dr A Ramakrishna Rao, Dr G Natanam & Prof SA Sankaranarayanan, Anuradha Publications, Chennai 2008.
DISTRIBUTION AND WEIGHTAGE OF MARKS:
Advanced Communication Skills Lab Practical Exam:
1. The practical examinations for the ACS Laboratory practice shall be conducted as per the University norms prescribed for the core engineering practical sessions.
2. For the English Language lab sessions, there shall be continuous evaluation during the year for 30 sessional marks and 70 End Examination marks. Of the 30 marks, 20 marks shall be awarded for day-to-day work and 10 marks to be awarded by conducting Internal Lab Test(s). The End Examination shall be conducted by the teacher concerned, by inviting the External Examiner from outside. In case of the non-availability of the External Examiner, other teacher of the same department can act as the External Examiner.

Mini Project: As a part of Internal Evaluation
1. Seminar/ Professional Presentation
2. A Report on the same has to be prepared and presented.
* Teachers may use their discretion to choose topics relevant and suitable to the needs of students.
* Not more than two students to work on each mini project.
* Students may be assessed by their performance both in oral presentation and written report.
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) IV Year I-Sem

GRID AND CLOUD COMPUTING

Prerequisites
- A course on Operating Systems,
- A Course on Computer Organization & Architecture
- A Course on Computer Networks

Objectives
- The course will provide an insight for achieving cost efficient high performance system. The course will deal with design and architecture of grid computing

Outcomes
- To implement the techniques and tools for Grid Computing
- To understand any kind of heterogeneous resources over a network using open standards
- To implement management of several service models

UNIT-I:

UNIT –II: GRID SECURITY

SCHEDULERS

UNIT –III
Introduction to virtualization and virtual machine, Virtualization in cluster/grid context, Virtual network, Information model & data model for virtual machine, Software as a Service (SaaS), SOA, On Demand Computing, Cloud computing: Introduction, What it is and What it isn’t, from Collaborations to Cloud, Cloud application architectures, Value of cloud computing, Cloud Infrastructure models, Scaling a Cloud Infrastructure, Capacity Planning, Cloud Scale.

UNIT – IV

UNIT – V
Text Books:
2. Cloud Computing – Web Based Applications That Change the way you Work and Collaborate Online – Michael Miller, Pearson Education.

Reference Book:
2. Enterprise Web 2.0 Fundamentals by Krishna Sankar; Susan A. Bouchard, Cisco Press
Prerequisites
1. A Course on Software Engineering
2. A Course on "Object Oriented Programming Through Java"

Objectives
1. The aim of the course is to appreciate the idea behind Design Patterns in handling common problems faced during building an application
2. This course covers all pattern types from creational to structural, behavioral to concurrency and highlights the scenarios when one pattern must be chosen over others.

Outcomes
1. Create software designs that are scalable and easily maintainable
2. Understand the best use of Object Oriented concepts for creating truly OOP programs
3. Use creational design patterns in software design for class instantiation
4. Use structural design patterns for better class and object composition
5. Use behavioral patterns for better organization and communication between the objects
6. Use refactoring to compose the methods for proper code packaging
7. Use refactoring to better organize the class responsibilities of current code

UNIT I:
Introduction: What is a design pattern? design patterns in Smalltalk MVC, Describing Design Patterns, The Catalog of Design Patterns, Organizing the Catalog, How Design Patterns Solve Design Problems, How to Select a Design Pattern, How to Use a Design Pattern.

UNIT II:
Designing a Document Editor: Design Problems, Document Structure, Formatting, Embellishing the User Interface, Supporting Multiple Look-and-Feel Standards, Supporting Multiple Window Systems, User Operations Spelling Checking and Hyphenation, Summary

UNIT III:
Creational Patterns: Abstract Factory, Builder, Factory Method, Prototype, Singleton, Discussion of Creational Patterns.

UNIT IV:
Structural Pattern: Adapter, Bridge, Composite, Decorator, Façade, Flyweight, Proxy

UNIT V:

Text Book:
1. Design Patterns, Erich Gamma, Pearson Education

Reference Books:
4. Head First Design Patterns, Eric Freeman, O'reily publications
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) IV Year I-Sem

Professional Elective III
ADVANCED DATABASES

Prerequisites
1. A course on “Database Management Systems”

Objectives
1. The purpose of the course is to enrich the previous knowledge of database systems and exposing the need for distributed database technology to confront with the deficiencies of the centralized database systems.
2. Introduce basic principles and implementation techniques of distributed database systems.
3. Equip students with principles and knowledge of parallel and object oriented databases.
4. Topics include distributed DBMS architecture and design, query processing and optimization, distributed transaction management and reliability, parallel and object database management systems.

Outcomes
1. Understand theoretical and practical aspects of distributed database systems.
2. Study and identify various issues related to the development of distributed database system.
3. Understand the design aspects of object oriented database system and related development.

UNIT I:
Database System Applications, Purpose of Database Systems, View of Data – Data Abstraction, Instances and Schemas, Data Models – the ER Model, Relational Model, Other Models – Database Languages – DDL, DML, Database Access from Applications Programs, Transaction Management, Data Storage and Querying, Database Architecture, Database Users and Administrators, ER diagrams, Relational Model: Introduction to the Relational Model – Integrity Constraints Over Relations, Enforcing Integrity constraints, Querying relational data, Logical database Design, Introduction to Views – Altering Tables and Views, Relational Algebra, Basic SQL Queries, Nested Queries, Complex Integrity Constraints in SQL, Triggers

UNIT II:

UNIT III:
Transaction Management: The ACID Properties, Transactions and Schedules, Concurrent Execution of Transactions – Lock Based Concurrency Control, Deadlocks – Performance of Locking – Transaction Support in SQL, Concurrency Control: Serializability, and recoverability – Introduction to Lock Management – Lock Conversions, Dealing with Deadlocks, Specialized Locking Techniques – Concurrency Control without Locking, Crash recovery: Introduction to Crash recovery, Introduction to ARIES, the Log, and Other Recovery related Structures, the Write-Ahead Log Protocol, Checkpointing, recovering from a System Crash, Media recovery

UNIT IV:
UNIT V:
Distributed databases: Introduction to distributed databases, Distributed DBMS architectures, Storing data in a distributed DBMS, Distributed catalog management, Distributed query processing Updating distributed data, Distributed transactions, Distributed concurrency control, Distributed recovery

TEXT BOOKS:

REFERENCE BOOKS:
1. Introduction to Database Systems, C.J.Date, Pearson Education.
2. Database Management System Oracle SQL and PL/SQL, P.K.Das Gupta, PHI.
IDP (B.Tech. CSE & M.Tech. /MBA) IV Year I-Sem

Professional Elective III
MOBILE COMPUTING

Prerequisites:
1. A course on “Computer Networks”

Objectives:
• To make the student understand the concept of mobile computing paradigm, its novel applications and limitations.
• To understand the typical mobile networking infrastructure through a popular GSM protocol
• To understand the issues and solutions of various layers of mobile networks, namely MAC layer, Network Layer & Transport Layer
• To understand the database issues in mobile environments & data delivery models.
• To understand the ad hoc networks and related concepts.
• To understand the platforms and protocols used in the mobile environment.

Outcomes:
• Able to think and develop new mobile application.
• Able to take any new technical issue related to this new paradigm and come up with a solution(s).
• Able to develop new ad hoc network applications and/or algorithms/protocols.
• Able to understand & develop any existing or new protocol related to the mobile environment

UNIT I Introduction
Mobile Communications, Mobile Computing – Paradigm, Promises/Novel Applications and Impediments and Architecture; Mobile and Handheld Devices, Limitations of Mobile and Handheld Devices.
GSM – Services, System Architecture, Radio Interfaces, Protocols, Localization, Calling, Handover, Security, New Data Services, GPRS, CSHSD, DECT.

UNIT –II (Wireless) Medium Access Control (MAC)
Motivation for a specialized MAC (Hidden and exposed terminals, Near and far terminals), SDMA, FDMA, TDMA, CDMA, Wireless LAN/(IEEE 802.11)
Mobile Network Layer
IP and Mobile IP Network Layers, Packet Delivery and Handover Management, Location Management, Registration, Tunneling and Encapsulation, Route Optimization, DHCP.

UNIT –III Mobile Transport Layer
Database Issues
Database Hoarding & Caching Techniques, Client-Server Computing & Adaptation, Transactional Models, Query processing, Data Recovery Process & QoS Issues.

UNIT IV Data Dissemination and Synchronization
Communications Asymmetry, Classification of Data Delivery Mechanisms, Data Dissemination, Broadcast Models, Selective Tuning and Indexing Methods, Data Synchronization – Introduction, Software, and Protocols

UNIT V Mobile Ad hoc Networks (MANETs)
Introduction, Applications & Challenges of a MANET, Routing, Classification of Routing Algorithms, Algorithms such as DSR, AODV, DSDV, Mobile Agents, Service Discovery.
Protocols and Platforms for Mobile Computing

Text Books:
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) IV Year I-Sem

Professional Elective III
BUSINESS INTELLIGENCE & BIG DATA

L   T   P   C
4   0   0   4

Prerequisites
1. Data Mining

Objectives
1. The purpose of this course is to provide the students with the knowledge of Business Intelligence principles and techniques.
2. This course is also designed to give an exposure of the frontiers of BI-intensive Big data computing

Outcomes
1. Explain the foundations, definitions, and capabilities of Big Data and Business Intelligence.
2. Apply Big Data technologies in Business Intelligence.
3. Ability to program using HADOOP

UNIT-I:
Business Intelligence, Data mining and Decision making, Business Intelligence Architecture, Distributed Computing, Cloud and Big Data, Cloud Storage, Virtualization, Cloud Models, Cloud Services

UNIT-II:

UNIT-III:
Information Management, Big Data Management, Geo-Spatial Intelligence, Business analytics, Data Analytics, Big data Analytics, Big Data Technology.

UNIT-IV:
Exploring the World of HADOOP, HDFS, Name Nodes, Data Nodes, Map Reduce Programming

UNIT-V:
Advanced Analytics, Operational Analytics, Monetizing Analytics, NOKIA, NASA, Consumption of Analytics, 360 Modelling

Text Books:
1. Big Data and Big Analytics by Michael Minelli and Michell Chambers
2. Big Data for DUMMIES by Alan Nugent Dr. Fern Halper

References:
1. Business Intelligence Data Mining and Optimization for decision making [Author: Carlo-Verellis] [Publication: (Wiley)]
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) IV Year I-Sem

PROBLEM SOLVING WITH ALGORITHMS AND DATA STRUCTURES
PGC-I

Prerequisites

- A course on “Computer Programming & Data Structures”
- A course on “Design & Analysis of Algorithms”

Objectives

- Introduces the notations for analysis of the complexities of algorithms
- Introduces the amortized analysis
- Introduces the heap data structures such as leftist trees, binomial heaps, fibonacci and min-max heaps
- Introduces the randomized, approximation and non deterministic algorithms
- Introduces a variety of data structures such as disjoint sets, hash tables, search structures and digital search structures

Outcomes

- Ability to analyze the performance of algorithms
- Ability to select the data structures that efficiently model the information in a problem
- Ability to understand how the choice of data structures impact the performance of programs
- Ability to design programs using a variety of data structures, including hash tables, search structures and digital search structures

UNIT-I

UNIT-II

UNIT-III
Search Structures- OBST, AVL trees, Red-Black trees, Splay trees, B-trees.

UNIT-IV
Digital Search Structures - Digital Search trees, Binary tries and Patricia, Multiway Tries, Suffix trees. Approximation Algorithms: Planar graph colouring, Job Scheduling, TSP.

UNIT-V

Text Book:
1. Fundamentals of Data structures in C++ Sahni, Horowitz, Mehatla, Universities Press.

References:
1. Introduction to Algorithms, TH Cormen, PHI
2. Design methods and analysis of Algorithms, SK Basu, PHI.
INFORMATION RETRIEVAL SYSTEMS

Prerequisites:
- Data Structures

Objectives:
- To learn the important concepts and algorithms in IRS
- To understand the data/file structures that are necessary to design, and implement information retrieval (IR) systems.

Outcomes:
- Ability to apply IR principles to locate relevant information large collections of data
- Ability to design different document clustering algorithms
- Implement retrieval systems for web search tasks.
- Design an Information Retrieval System for web search tasks.

UNIT I
Introduction:
Motivation, Basic Concepts, Past-Present and Future, the Retrieval Process
Modeling :

UNIT II
Retrieval Evaluation
Introduction, retrieval Performance Evaluation, Reference Collections ,Query languages Introduction, Keyword-Based Querying, Pattern Matching, Structural Queries, Query Protocols Query Operations , User Relevance Feedback, Automatic Local Analysis, Automatic global Analysis
Text Operations
Introduction, Document Preprocessing, Document Clustering, Text Compression, Comparing text Compression Techniques

UNIT III
Indexing and Searching Introduction, Inverted Files, Other Indices for Text, Boolean queries, Sequential Searching, pattern Matching, Structural Queries, Compression Searching the Web
Introduction, Challenges, Characterizing the Web, Search Engines, Browsing, Metasearches, Finding the Needle in the Haystack, Searching using Hyperlinks

UNIT IV
User Interfaces and Visualization

UNIT V

Text Book
1. Modern Information Retrieval By Yates and Neto Pearson Education.

Reference:
ADHOC & SENSOR NETWORKS
PGE-I

Prerequisites
- Computer Networks
- Distributed Systems
- Mobile Computing

Objectives
- To understand the concepts of sensor networks
- To understand the MAC and transport protocols for adhoc networks
- To understand the security of sensor networks
- To understand the applications of adhoc and sensor networks

Outcomes
- Understanding the state of the art research in emerging subject of ad hoc and wireless sensor networks (ASN)
- Ability to solve the issues in real-time application development based on ASN
- Ability to conduct further research in the ASN domain

UNIT I
Introduction to Ad Hoc Networks - Characteristics of MANETs, Applications of MANETs and Challenges of MANETs.
Routing in MANETs - Criteria for classification, Taxonomy of MANET routing algorithms, Topology-based routing algorithms-Proactive: DSDV, WRP; Reactive: DSR, AODV, TORA; Hybrid: ZRP; Position-based routing algorithms-Location Services-DREAM, Quorum-based, GLS; Forwarding Strategies: Greedy Packet, Restricted Directional Flooding-DREAM, LAR; Other routing algorithms-QoS Routing, CEDAR.

UNIT II
Data Transmission - Broadcast Storm Problem, Rebroadcasting Schemes-Simple-flooding, Probability-based Methods, Area-based Methods, Neighbour Knowledge-based: SBA, Multipoint Relaying, AHBP. Multicasting: Tree-based: AMRIS, MAODV; Mesh-based: ODMRP, CAMP; Hybrid: AMRoute, MCEDAR and Geocasting: Data-transmission Oriented-LBM; Route Creation Oriented-GeoTORA, MGR.

UNIT III
TCP over Ad Hoc TCP protocol overview, TCP and MANETs, Solutions for TCP over Ad hoc Basics of Wireless, Sensors and Applications Applications, Classification of sensor networks, Architecture of sensor network, Physical layer, MAC layer, Link layer.

UNIT IV
Data Retrieval in Sensor Networks
Routing layer, Transport layer, High-level application layer support, Adapting to the inherent dynamic nature of WSNs, Sensor Networks and mobile robots.

UNIT V

Text Books:
IDP (B.Tech. CSE & M.Tech. /MBA) IV Year I-Sem

EMBEDDED SYSTEMS
PGE-I

Prerequisites:
- Assembly language and C programming language.
- Sequential Logic Concepts
- Basic Computer Organization

Objectives:
- To introduce the students to the modern embedded systems and to show how to understand and program such systems using a concrete platform built around.
- To introduce RTOS and its application.

Course Outcomes:
Students are able to
- Describe the differences between the general computing system and embedded system, also recognize the classification of embedded systems.
- Design the real time embedded systems using the concepts of RTOS.
- Analyze various examples of embedded systems
- Develop programs in C/C++ for embedded systems.

UNIT - 1 : INTRODUCTION TO EMBEDDED SYSTEMS
Definition and Classification - Overview of Processors and hardware units in an embedded system - Software embedded into the system - Exemplary Embedded Systems - Embedded Systems on a Chip (SoC) and the use of VLSI designed circuits.

UNIT - 2 : DEVICES AND BUSES FOR DEVICES NETWORK
I/O Devices - Device I/O Types and Examples - Synchronous - Iso-synchronous and Asynchronous Communications from Serial Devices - Examples of Internal Serial-Communication Devices - UART and HDLC - Parallel Port Devices - Sophisticated interfacing features in Devices/Ports- Timer and Counting Devices - '12C', 'USB', 'CAN' and advanced I/O Serial high speed buses- ISA, PCI, PCI-X, cPCI and advanced buses.

UNIT - 3 : PROGRAMMING CONCEPTS AND EMBEDDED PROGRAMMING IN C, C++

UNIT - 4 : REAL TIME OPERATING SYSTEMS - PART - 1
Definitions of process, tasks and threads - Clear cut distinction between functions - ISRs and tasks by their characteristics - Operating System Services- Goals - Structures- Kernel - Process Management - Memory Management - Device Management - File System Organisation and Implementation - I/O Subsystems - Interrupt Routines Handling in RTOS, REAL TIME OPERATING SYSTEMS : RTOS Task scheduling models - Handling of task scheduling and latency and deadlines as performance metrics - Co-operative Round Robin Scheduling - Cyclic Scheduling with Time Slicing (Rate Monotonics Co-operative Scheduling) - Preemptive Scheduling Model strategy by a Scheduler - Critical Section Service by a Preemptive Scheduler - Fixed (Static) Real time scheduling of tasks - INTER PROCESS COMMUNICATION AND SYNCHRONISATION - Shared data problem - Use of Semaphore(s) - Priority Inversion Problem and Deadlock Situations - Inter Process Communications using Signals - Semaphore Flag or mutex as Resource key - Message Queues - Mailboxes - Pipes - Virtual (Logical) Sockets - Remote Procedure Calls (RPCs).
UNIT - 5 : REAL TIME OPERATING SYSTEMS - PART - 2
Study of Micro C/OS-II or Vx Works or Any other popular RTOS - RTOS System Level Functions - Task Service Functions - Time Delay Functions - Memory Allocation Related Functions - Semaphore Related Functions - Mailbox Related Functions - Queue Related Functions - Case Studies of Programming with RTOS - Understanding Case Definition - Multiple Tasks and their functions - Creating a list of tasks - Functions and IPCs - Exemplary Coding Steps.

TEXT BOOK

REFERENCES
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) IV Year I-Sem

NATURAL LANGUAGE PROCESSING
PGE-I

L T P C
4 0 0 4

Prerequisites:
- Finite automata
- Data structures,
- Probability theory

Objectives:
- Introduce to some of the problems and solutions of NLP and their relation to linguistics and statistics.

Outcomes:
- Show sensitivity to linguistic phenomena and an ability to model them with formal grammars.
- Understand and carry out proper experimental methodology for training and evaluating empirical NLP systems
- Able to manipulate probabilities, construct statistical models over strings and trees, and estimate parameters using supervised and unsupervised training methods.
- Able to design, implement, and analyze NLP algorithms
- Able to design different language modeling Techniques.

UNIT I
Finding the Structure of Words Words and Their Components, Issues and Challenges, Morphological Models, Finding the Structure of Documents
Introduction, Methods, Complexity of the Approaches, Performances of the Approaches

UNIT II
Syntax Parsing Natural Language, Treebanks: A Data-Driven Approach to Syntax, Representation of Syntactic Structure, Parsing Algorithms, Models for Ambiguity Resolution in Parsing, Multilingual Issues

UNIT III

UNIT IV

UNIT V

Text Book:
1. Multilingual natural Language Processing Applications : From Theory to Practice – Daniel M. Bikel and Imed Zitouni, Pearson Publication

Reference:
1. Speech and Natural Language Processing - Daniel Jurafsky & James H Martin, Pearson Publications
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) IV Year I-Sem

L T P C
4 0 0 4

ETHICAL HACKING
PGE-II

Prerequisites:
- Information security

Objectives:
- To learn about how systems vulnerabilities manifest themselves and why hackers continue to enjoy success breaking into systems, despite increasing attention paid to cyber defense.
- To gain experience with a systematic hacking methodology.
- To learn about and experiment with hacking tools that can be applied at different stages of the hacking process.

Outcomes:
- Understand the Security Triad – Confidentiality, Integrity, and Availability – as they form the basis on which all security is built.
- Realize that ethical hackers differ from hackers in that ethical hackers perform activities only after obtaining written permission from the client and that different types of test can be performed.

UNIT I
Introduction to Ethical Hacking, Ethics, and Legality:
Ethical Hacking Terminology, Different Types of Hacking Technologies, Different Phases Involved in Ethical Hacking and Stages of Ethical Hacking: Passive and Active Reconnaissance, Scanning, Gaining Access, Maintaining Access, Covering Tracks, Hacktivism, Types of Hacker Classes, Skills Required to Become an Ethical Hacker, Vulnerability Research, Ways to Conduct Ethical Hacking, Creating a Security Evaluation Plan, Types of Ethical Hacks, Testing Types, Ethical Hacking Report.
Footprinting and Social Engineering:

UNIT II
Scanning and Enumeration
System Hacking

UNIT III
Trojans, Backdoors, Viruses, and Worms
Trojans and Backdoors, Overt and Covert Channels, Types of Trojans, Reverse-Connecting Trojans, Netcat Trojan, Indications of a Trojan Attack, Wrapping, Trojan Construction Kit and Trojan Makers, Countermeasure Techniques in preventing Trojans, Trojan-Evading Techniques, System File...
Verification Sub-objective to Trojan Countermeasures. Viruses and Worms, Difference between a Virus and a Worm, Types of Viruses, Understand Antivirus Evasion Techniques, Understand Virus Detection Methods.

Sniffers
Protocols Susceptible to Sniffing, Active and Passive Sniffing, ARP Poisoning, Ethereal Capture and Display Filters, MAC Flooding, DNS Spoofing Techniques, Sniffing Countermeasures.
Denial of Service and Session Hijacking

UNIT IV
Hacking Web Servers, Web Application Vulnerabilities, and Web-Based Password Cracking Techniques
SQL Injection and Buffer Overflows
SQL Injection, Steps to Conduct SQL Injection, SQL Server Vulnerabilities, SQL Injection Countermeasures, Buffer Overflows, Types of Buffer Overflows and Methods of Detection, Stack-Based Buffer Overflows, Buffer Overflow Mutation Techniques.

UNIT V
Linux Hacking
Linux Basics, Compile a Linux Kernel, GCC Compilation Commands, Install Linux Kernel Modules, Linux Hardening Methods.
Penetration Testing Methodologies

TEXT BOOK:
1. CEH official Certified Ethical Hacking Review Guide, Wiley India.

REFERENCE BOOKS:
Prerequisites:
- Data Mining, Discrete Maths & Statistics, Database Management Systems

Objectives:
- Introduce students to the basic concepts and techniques of Information Retrieval, Web Search, Data Mining, and Machine Learning for extracting knowledge from the web.
- Develop skills of using recent data mining software for solving practical problems of Web Mining.
- Gain experience of doing independent study and research.

Outcomes:
- To become familiar with classic and recent developments in Web search and data mining;
- To acquire statistical techniques to analyze complex information and social networks;
- To study several models to interpret emergent features such as the structure and evolution of the Web graph, its traffic patterns, and the spread of information.

UNIT I: Introduction to Web Data Mining and Data Mining Foundations
- Introduction – World Wide Web (WWW), A Brief History of the Web and the Internet, Web Data Mining - Data Mining, Web Mining.
- Data Mining Foundations – Association Rules and Sequential Patterns – Basic Concepts of Association Rules, Apriori Algorithm - Frequent Itemset Generation, Association Rule Generation, Data Formats for Association Rule Mining, Mining with multiple minimum supports – Extended Model, Mining Algorithm, Rule Generation, Mining Class Association Rules, Basic Concepts of Sequential Patterns, Mining Sequential Patterns on GSP, Mining Sequential Patterns on PrefixSpan, Generating Rules from Sequential Patterns.

UNIT II: Supervised and Unsupervised Learning
- Supervised Learning - Basic Concepts, Decision Tree Induction – Learning Algorithm, Impurity Function, Handling of Continuous Attributes, Classifier Evaluation, Rule Induction – Sequential Covering, Rule Learning, Classification Based on Associations, Naïve Bayesian Classification, Naïve Bayesian Text Classification - Probabilistic Framework, Naïve Bayesian Model.

UNIT III: Information Retrieval and Web Search

UNIT IV: Link Analysis and Web Crawling
- Link Analysis and Web Crawling - Social Network Analysis, Co-Citation and Bibliographic Coupling, Page Rank Algorithm, HITS Algorithm, Community Discovery - Problem Definition, Bipartite Core Communities, Maximum Flow Communities, Email Communities.

UNIT V
Opinion Mining and Web Usage Mining, Opinion Mining - Sentiment Classification – Classification based on Sentiment Phrases, Classification Using Text Classification Methods, Feature based Opinion Mining and Summarization – Problem Definition, Object feature extraction, Feature Extraction from Pros and Cons of Format 1, Feature Extraction from Reviews of Format 2 and 3, Comparative Sentence and Relation Mining, Opinion Search and Opinion Spam.

Web Usage Mining - Data Collection and Preprocessing- Sources and Types of Data, Key Elements of Web usage Data Preprocessing, Data Modeling for Web Usage Mining, Discovery and Analysis of Web usage Patterns - Session and Visitor Analysis, Cluster Analysis and Visitor Segmentation, Association and Correlation Analysis, Analysis of Sequential and Navigation Patterns.

TEXT BOOK:

REFERENCE BOOKS:
1. Data Mining: Concepts and Techniques, Second Edition Jiawei Han, Micheline Kamber (Elsevier Publications)
2. Web Mining: Applications and Techniques by Anthony Scime
3. Mining the Web: Discovering Knowledge from Hypertext Data by Soumen Chakrabarti
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) IV Year I-Sem

L T P C
4 0 0 4

BIO-INFORMATICS
PGE-II

Prerequisites
- A course on “Database Management Systems”
- A course on “Data Warehousing and Data Mining”
- A course on “Computer Programming and Data Structures”

Objectives
- To impart the knowledge of theoretical and practical concepts of bioinformatics.
- To develop skills in designing biological database and retrieving.
- To apply appropriate sequence analysis methods for analyzing bio-molecular sequences.

Outcomes
- Demonstrate the knowledge on concepts of biological databases, Genomes and Proteome.
- Ability to analyze biological database management system.
- Ability to select and apply appropriate techniques and tools to manage the biological data.

UNIT I
INTRODUCTION:- Definition – Overview- Major databases in Bio Informatics- Molecular biology –
Central Dogma- Data retrieval tools – Data mining of Databases – Gene Analysis – Prokaryotic and
Eukaryotic Genomes – Sequence Assembly – Gene mapping – Physical maps – cloning – ORF –
amino acids – DNA, RNA sequences – Genetic code.

UNIT II
DNA and PROTEIN SEQUENCES:-DNA: working with single DNA sequence : removing vector
sequences- verifying restriction maps – PCR design – GC content – counting words – internal repeats
– protein coding regions – ORFing – Genome scan, Protein: predicting properties – primary structure
analysis – transmembrane segments – PROSITE patterns –interpreting scanprosite results- finding
domains – CD server results – pfscan results.

UNIT III
ALIGNMENT OF PAIR OF SEQUENCES:- Terminology – Global and Local alignment – Dot matrix –
gapped BLAST- PSIBLAST – comparison of FASTA and BLAST.

UNIT IV
MULTIPLE SEQUENCE ALIGNMENT:- Criteria for Multiple sequence alignment – applications –
choosing the right sequences; FASTA, ClustalW, TCoffee methods – interpreting multiple sequence

UNIT V
PROTEIN CLASSIFICATION & STRUCTURE PREDICTION:- Structure of amino acids – primary
structure – secondary structure – folds and motifs – alpha and beta helix –structure based protein
analysis and prediction – secondary structure analysis and prediction – motifs – profiles –patterns and
fingerprints

TEXT BOOKS
1. S.C Rostogi , Mehenndirata, P.Rasogi, “BioInformatics: methods and applications”,second
2. Jean Mickel Clavere & Cadrienotredom “Bio Informatics– A beginners guide” Wiley DreamTech,
2003.

REFERENCE BOOKS
2. Dan E.Krane, Michael L.Raymer, “fundamental concepts of BioInformatics ”, Pearson Education,
2004.
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) IV Year I-Sem

SIMULATION AND MODELING
PGE-II

Prerequisites
1. A course on “Computer oriented Statistical Methods”

Objectives
1. The course is intended to provide a thorough understanding of methods, techniques and tools for modeling, simulation and performance analysis of complex systems
2. The topics include system models and studies; random number generation; simulation of continuous and discrete systems; simulation of queuing systems and pert networks.

Outcomes
1. Acquire proficiency in constructing a model for a given system/set of data.
2. Ability to generate and test random number variates and employ them in developing simulation models.
3. Ability to infer from the model and apply the results to resolve issues in a real world environment

Unit-I: System Models and Studies

Unit-II: Random Numbers
Random Number Generation: Properties, Generation of Pseudo-Random Numbers, Techniques of generating random numbers, tests for random numbers

Unit-III: Simulation of Continuous and Discrete Systems
Simulation of Continuous Systems: A chemical reactor, Numerical integration vs. continuous system simulation, Selection of an integration formula, Runge-Kutta integration formulas, Simulation of a servo system, Simulation of a water reservoir system, Analog vs. digital simulation.
Discrete System Simulation: Fixed time-step vs. event-to-event model, On simulating randomness, Generation of random numbers, Generation of non-uniformly distributed random numbers, Monte-Carlo computation vs. stochastic simulation.

Unit-IV: System Simulation
Simulation of Queueing Systems: Rudiments of queueing theory, Simulation of a single-server queue, Simulation of a two-server queue, Simulation of more general queues.

Unit-V: Simulation Experimentation
Design and Evaluation of Simulation Experiments: Length of simulation runs, Variance reduction techniques, Experimental layout, Validation.
Simulation Languages: Continuous and discrete simulation languages, Continuous simulation languages, Block-structured continuous simulation languages, Expression-based languages, Discrete-system simulation languages, GPSS.

Text Books

Reference Books
1. System Modeling and Simulation - An Introduction Frank L. Severance, Wiley Publisher, 2005
Prerequisites:
- A course on object oriented programming

Objectives:
- Covers the theory of AI and robotics from the hierarchical to the hybrid deliberative/reactive paradigm for organizing intelligence.
- Includes sensing and programming techniques for reactive behaviors, in order to permit a class to get covers, the coordination and control of teams of multi-agents.
- Covers architectures that provide examples of how to transfer the principles of the paradigm into a coherent, reusable implementation on a single robot or teams of robots.
- Focuses on navigation, a critical ability for a robot that claims to be mobile

Outcomes:
- Enables students to embark on a serious robot project.
- Ability to integrate the sensor with robots.
- Ability to design an appropriate path planning and navigation of Robot.

UNIT-I:
From Teleoperation To Autonomy: How Can a Machine Be Intelligent? What Can Robots Be Used For? A Brief History of Robotics, Teleoperation, The Seven Areas of AI.

UNIT-II:
Designing a Reactive Implementation: Behaviors as Objects in OOP, Steps in Designing a Reactive Behavioral System, Case Study.

UNIT-III:
Multi-agents: Heterogeneity, Control, Cooperation, Goals, Emergent Social Behavior.

UNIT-IV:
Topological Path Planning: Landmarks and Gateways, Relational Methods, Associative Methods, Case Study of Topological Navigation with a Hybrid Architecture.
Metric Path Planning, Configuration Space, Cspace Representations, Graph Based Planners, Wavefront Based Planners, Interleaving Path Planning and Reactive Execution.

UNIT-V:
Localization and Map Making: Sonar Sensor Model, Bayesian, Dempster-Shafer Theory, HIMM, Comparison of Methods, Localization, Exploration.
On the Horizon: Shape-Shifting and Legged Platforms, Applications and Expectations.

Text Book:
1. Introduction to AI Robotics, Robin R. Murphy

Reference Books:
1. The Robotics Primer By Maja J. Mataric, MIT Press.
Prerequisites
• Operating System Principles
• Knowledge of C programming language

Objectives
• Ability to know how kernel works and how to customize kernel
• Ability to design and develop new kernel modules
• To Provide basic understanding of Linux scheduler, process management, Kernel synchronization
primitives, Kernel memory management, Kernel virtual memory, kernel time keeping architecture,
virtual file systems and page/buffer cache

Outcomes
Students will be able to
• configure, compile, and install a Linux kernel from sources
• design and implement own/new kernel module
• design and implement device driver from the scratch

UNIT I
Introduction to linux kernel, getting started with kernel Process Management: process descriptor and
the task structure, process creation, Linux implementation of threads, process termination
Process scheduling: Multitasking, process scheduler, policy, scheduling algorithm, scheduling
implementation, process selection, preemption and context switching, real-time scheduling policies,
scheduler related system calls.

UNIT II
System calls: sys calls, system call handler, system call implementation, system call context
Interrupts and Interrupt handlers: Interrupts, interrupt handlers, Registering an interrupt handler,
writing interrupt handler, interrupt context, implementing interrupt handlers, interrupt control.

UNIT III
Kernel Synchronization: Critical regions and race conditions, locking, deadlocks, contention and
scalability, atomic operations, spin locks, reader writer spin locks, semaphores, reader writer
semaphores, mutexes, sequential locks, preemption disabling, ordering and barriers
Timers and time management: kernel notion of time, tick rate, jiffies, hardware clocks and timers,
timer interrupt handler, timers, delaying execution.

UNIT IV
Memory Management: Pages, Jones, getting pages, Kmalloc (), vmalloc (), Slab layer, statically
allocating on the stack, high memory mappings, per-CPU allocations, per-CPU interface,
Virtual File System: common file system interface, file system abstraction layer, Unix file systems,
VFS objects and their data structures, the super block object and operations, inode object and
operations.

UNIT V
Block I/O layer: anatomy of a block device, buffers and buffer heads, the bio-structure, request
queues, I/O schedulers, Process Address Space: Address spaces, memory descriptor, virtual memory
areas, manipulating memory areas, Page cache and page write back: approaches to caching, linux
page cache the buffer cache, flusher threads.

TEXT BOOKS:

REFERENCE BOOKS:
1. Linux Kernel programming by Michael Beck, Harald Bohme et al., Third Ed.,
Pearson Education
Prerequisites: Nil

Objectives:
- To understand the cyberspace
- To gain knowledge on fundamentals of computer forensics
- To understand the evidence capturing process
- To understand the preservation of digital evidence

Outcomes:
- Ability to understand the computer forensics evidence, capture and data recovery
- Ability to understand the current computer forensics tools
- Ability to apply forensics tools in the event of cyber crime.

UNIT I:

UNIT II:

UNIT III:

UNIT IV:

UNIT V:

TEXT BOOKS:

REFERENCES:
MOBILE APPLICATION DEVELOPMENT
PGE-III

JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) IV Year I-Sem

Prerequisites:
- A Course on JAVA
- A Course on DBMS

Objectives:
- To demonstrate their ability to develop software with reasonable complexity on mobile platform
- To demonstrate their ability to deploy software to mobile devices
- To demonstrate their ability to debug programs running on mobile devices

Outcomes:
- Student will be able to develop, deploy and maintain the mobile Applications
- Student understands the working of Android OS Practically.
- Student will be able to develop Android user interfaces

UNIT I

UNIT II

UNIT III
Commands Items and Event Processing: J2ME User Interfaces, Display Class, the Palm OS Emulator, Command Class, Item Class, Exception Handling.

UNIT IV
High-Level Display: Screens: Class, Alert Class, Form Class, Item Class, List Class, Text Box Class, Ticker Class.
Low Level Display: Canvas: The Canvas, User Interactions, Graphics, Clipping Regions, Animation.

UNIT V
Android
Developing for Android: Developing for Mobile and Embedded device Android Development Tools
Creating Applications and Activities: Application Manifest File, Android Application Lifecycle, Android Application Class, Android Activities.

Text Books:
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) IV Year I-Sem

GRID AND CLOUD COMPUTING LAB
PC(UG)

L T P C
0 0 3 2

Prerequisites: Nil

Objectives:
The student should be made to:

- Be exposed to tool kits for grid and cloud environment.
- Be familiar with developing web services/Applications in grid framework
- Learn to run virtual machines of different configuration.
- Learn to use Hadoop

Outcomes
At the end of the course, the student should be able to

- Use the grid and cloud tool kits.
- Design and implement applications on the Grid.
- Design and Implement applications on the Cloud.

LIST OF EXPERIMENTS:

GRID COMPUTING LAB
Use Globus Toolkit or equivalent and do the following:

1. Develop a new Web Service for Calculator.
2. Develop new OGSA-compliant Web Service.
4. Develop applications using Java or C/C++ Grid APIs
5. Develop secured applications using basic security mechanisms available in Globus Toolkit.
6. Develop a Grid portal, where user can submit a job and get the result. Implement it with and without GRAM concept.

CLOUD COMPUTING LAB
Use Eucalyptus or Open Nebula or equivalent to set up the cloud and demonstrate.

1. Find procedure to run the virtual machine of different configuration. Check how many virtual machines can be utilized at particular time.
2. Find procedure to attach virtual block to the virtual machine and check whether it holds the data even after the release of the virtual machine.
3. Install a C compiler in the virtual machine and execute a sample program.
4. Show the virtual machine migration based on the certain condition from one node to the other.
5. Find procedure to install storage controller and interact with it.
6. Find procedure to set up the one node Hadoop cluster.
7. Mount the one node Hadoop cluster using FUSE.
8. Write a program to use the API's of Hadoop to interact with it.
9. Write a wordcount program to demonstrate the use of Map and Reduce tasks.
IDP (B.Tech. CSE & M.Tech. /MBA) IV Year I-Sem

PROBLEM SOLVING WITH ALGORITHMS AND DATA STRUCTURES LAB
PG Core Lab

L T P C
0 0 4 2

Prerequisites

A course on “Computer Programming & Data Structures” and “Advanced Data Base Engineering”.

Objectives

Introduces the basic concepts of abstract data types (ADTs).
Introduces a variety of data structures such as hash tables, search trees, tries, heaps, graphs, B-trees.
To understand the basic concepts of relational database.
To master the basics of mySQL and construct queries using mySQL.
Topics include datamodels, database design, relational model, relational algebra, transaction control, concurrency control, storage structures and access techniques.

Outcomes

Ability to select the data structures that efficiently model the information in a problem.
Ability to assess efficiency trade-offs among different data structure implementations or combinations.
Design programs using a variety of data structures, including binary and general tree structures, search trees, tries, heaps and B-trees.
Understand the fundamentals of Relational database design and normal forms
Master the basics of mySQL for retrieval and management of data.
Ability to understand the basics of transaction processing and concurrency control.
Ability to handle the database storage structures and access techniques

Experiments for ADS:

1. Write a program to implement the Randomized n-Queens problem
2. Write a program to implement the Randomized Quick sort
3. Write a program to implement the Optimal Binary Search Tree
4. Write a program to implement the operations of AVL trees
5. Write a program to implement the operations of Leftist tree
6. Write a program to implement the operations of Fibonacci Heap
7. Write a program to implement the Operations of Digital Search trees
8. Write a program to implement the Operations of Binary Tries
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech./MBA) IV Year II-Sem

L  T  P  C
4  0  0  4

MANAGEMENT SCIENCE

Objective
The course introduces the basic concepts of Management Science and Operations Management and its application to business. The topics include human resource management, project and strategic management; the course develops problem solving and spreadsheet skills, an invaluable tool for modern business.

Learning outcome
- To enable students to gain an insight into different managerial decisions using standard techniques and problem structuring methods
- Students will be able to gain an understanding of the core concepts of Management Science and Operations Management;
- To understand the management issues in different functional areas of management namely operations and Human resources, strategy, marketing and project management.


Unit IV Project Management (PERT/CPM): Network Analysis, Programme Evaluation and Review Technique (PERT), Critical Path Method (CPM), Identifying critical path, Probability of Completing the project within given time, Project Cost Analysis, Project Crashing (simple problems).


TEXTBOOKS:
REFERENCES:
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) IV Year II-Sem

L T P C
4 0 0 4

ADVANCED DATABASES ENGINEERING

Prerequisites
1. A course on “Database Management Systems”

Objectives
1. The purpose of the course is to enrich the previous knowledge of database systems and exposing the need for distributed database technology to confront with the deficiencies of the centralized database systems.
2. Introduce basic principles and implementation techniques of distributed database systems.
3. Equip students with principles and knowledge of parallel and object oriented databases.
4. Topics include distributed DBMS architecture and design; query processing and optimization; distributed transaction management and reliability; parallel and object database management systems.

Outcomes
1. Understand theoretical and practical aspects of distributed database systems.
2. Study and identify various issues related to the development of distributed database system.
3. Understand the design aspects of object oriented database system and related development.

UNIT-I
Introduction; Distributed Data Processing, Distributed Database System, Promises of DDBSs, Problem areas.

UNIT-II
Query processing and decomposition: Query processing objectives, characterization of query processors, layers of query processing, query decomposition, localization of distributed data.
Distributed query Optimization: Query optimization, centralized query optimization, distributed query optimization algorithms.

UNIT-III
Transaction Management: Definition, properties of transaction, types of transactions, distributed concurrency control: serializability, concurrency control mechanisms & algorithms, time - stamped & optimistic concurrency control Algorithms, deadlock Management.

UNIT-IV
Distributed DBMS Reliability: Reliability concepts and measures, fault-tolerance in distributed systems, failures in Distributed DBMS, local & distributed reliability protocols, site failures and network partitioning.
Parallel Database Systems: Parallel database system architectures, parallel data placement, parallel query processing, load balancing, database clusters.

UNIT-V
Distributed object Database Management Systems: Fundamental object concepts and models, object distributed design, architectural issues, object management, distributed object storage, object query Processing.
Object Oriented Data Model : Inheritance, object identity, persistent programming languages, persistence of objects, comparison OODBMS and ORDBMS

Text Books:
2. Stefano Ceri and Giuseppe Pelagatti: Distributed Databases, McGraw Hill.

Reference Books:
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) IV Year II-Sem

WEB SERVICES & SERVICE ORIENTED ARCHITECTURE

PGE-IV

Pre-requisites: Object Oriented Programming ,Web Technologies

Objectives:

- To gain understanding of the basic principles of service orientation
- To learn service oriented analysis techniques
- To learn technology underlying the service design
- To learn the concepts such as SOAP, registering and discovering services.

Outcomes:

At the end of this course, students are expected to gain the following learning:

- Get the foundations and concepts of service based computing
- Advocate the importance and means of technology alignment with business
- Understanding the basic operational model of web services,
- Gain the knowledge of key technologies in the service oriented computing arena
- Apply and practice the learning through a real or illustrative project/case study.

UNIT- I

Evolution and Emergence of Web Services – Evolution of distributed computing. Core distributed computing technologies – client/server, CORBA, JAVA RMI, Micro Soft DCOM, MOM, Challenges in Distributed Computing, role of J2EE and XML in distributed computing, emergence of Web Services and Service Oriented Architecture (SOA). Introduction to Web Services – The definition of web services, basic operational model of web services, tools and technologies enabling web services, benefits and challenges of using web services.

UNIT -II

Web Service Architecture – Web services Architecture and its characteristics, core building blocks of web services, standards and technologies available for implementing web services, web services communication, basic steps of implementing web services. Describing Web Services – WSDL introduction, non functional service description, WSDL1.1 Vs WSDL 2.0, WSDL document, WSDL elements, WSDL binding, WSDL tools, WSDL port type, limitations of WSDL.

UNIT III


UNIT – IV

Registering and Discovering Services : The role of service registries, Service discovery, Universal Description, Discovery, and Integration, UDDI Architecture, UDDI Data Model, Interfaces, UDDI Implementation, UDDI with WSDL, UDDI specification, Service Addressing and Notification, Referencing and addressing Web Services, Web Services Notification.

UNIT - V

Text Book:

References:
1. Introduction to Algorithms, TH Cormen, PHI XML, Web Services, and the Data Revolution, F.P.Coyle, Pearson Education.
3. Java Web Services, D.A. Chappell & T. Jewell, O’Reilly, SPD.
Prerequisites
A Course on Computer Networks and a course on Mathematics

Objectives
- To understand the fundamentals of Cryptography
- To understand various key distribution and management schemes
- To understand how to deploy encryption techniques to secure data in transit across data networks
- To apply algorithms used for secure transactions in real world applications

Outcomes
- Demonstrate the knowledge of cryptography, network security concepts and applications.
- Ability to apply security principles in system design.
- Ability to identify and investigate vulnerabilities and security threats and mechanisms to counter them.

UNIT I
Security Attacks (Interruption, Interception, Modification and Fabrication), Security Services (Confidentiality, Authentication, Integrity, Non-repudiation, access Control and Availability) and Mechanisms, A model for Internetwork security.

UNIT II
Message authentication and Hash Functions, Authentication Requirements and Functions, Message Authentication, Hash Functions and MACs Hash and MAC Algorithms SHA-512, HMAC.

UNIT III

UNIT IV
IP Security:

UNIT V

TEXT BOOKS:

REFERENCE BOOKS:
Prerequisite: NIL

Objective:
- Introduces research paper writing and publication skills.

Outcome:
Gain the sound knowledge of the following important elements:
- Ability to distinguish research methods
- Ability to write and publish a technical research paper.
- Ability to review papers effectively

UNIT I
Introduction, Technical Research Paper Writing and Publication

UNIT II
Research Paper Search

UNIT III
Research Ethics, Research Methods in Computer Science and Engineering, Research Methods for Software Engineering, Research Methods (deductive methods and proofs)

UNIT IV
Paper Publishing and Reviewing, Measured-based research methods in Computer Engineering

UNIT V
Preparation & Presentation of a scientific paper

Text Book:

Reference
SOFTWARE DESIGN AND ENGINEERING
PGE-IV

Prerequisite:
- Computer Programming using C and C++

Objectives:
- To develop in students the knowledge, understanding, skills and values to solve problems through the creation of software solutions
- To design and experiment with software prototypes
- To elicit, analyze and specify software requirements through a productive working relationship with project stakeholders.
- To build solutions using different technologies, architectures and life-cycle approaches.
- The context of different organizational structures.

Outcomes:
- Understanding of the historical developments that have led to current practices in software design and development, and of emerging trends and technologies in this field.
- Acquiring and applying the skills in designing and developing software solutions.
- Acquiring and using the skills required to schedule a software project.

UNIT I
Process models: The waterfall model, Incremental process models, Evolutionary process models, Specialized process models, The Unified process.
Software Requirements: Functional and non-functional requirements, User requirements, System requirements, Interface specification, the software requirements document.
Requirements engineering process: Feasibility studies, Requirements elicitation and analysis, Requirements validation, Requirements management.

UNIT II
Software Design
The nature of the design process, transferring design knowledge, constraints upon the design process and product, recording design decisions, designing with others, context for design, economic factors, assessing design qualities, quality attributes of the design product, assessing the design process.
Representing abstract ideas, design viewpoints, the architecture concept, design methods, design patterns, design representations, rationale for design methods.
Design Processes and Strategies : The role of strategy in design methods, describing the design process - The D – Matrix, design by top-down decomposition, design by composition, organizational influences upon design.

UNIT III
Designing with objects and components
Designing with objects : Design practices for object-oriented paradigm, Object-oriented paradigm, Object-oriented frame works, Hierarchical object oriented design process and heuristics, the fusion method, the unified process.
Component - based design:
The component concept, designing with components, designing components, COTS.
User Interface design
The Golden rules, Interface analysis and design models, user and task analysis, analysis of display content and work environment, applying interface design issues, design evaluation.
UNIT IV
Concepts Of Software Projects

UNIT V
Project Scheduling and Management
Project Scheduling: Basic concepts, project scheduling, defining a task set and task network, timeline charts, tracking the schedule, tracking the progress for an OO project, Earned value analysis.
Risk Management: Reactive Vs. Proactive risk strategies, software risks, risk identification, risk projection, risk refinement, risk mitigation and monitoring, the RMMM plan.

Text Books:

Reference Books:
1. Payroll processing system - Database design using E-R model
2. Applying Normalization techniques on Payroll processing systems.
3. Integrity constraints enforcement, High level language extension with Triggers on Payroll processing systems
4. Implement query processing algorithms: nested loop join, merge join, hash join, hybrid hash join.
5. Implement Dynamic programming algorithm for join order optimization.
6. Image storage and retrieval in MySQL database
7. Transaction Processing activities – application program development – concurrent executions
UNIT-I
AI Problems and Search: AI problems, Techniques, Problem Spaces and Search, Heuristic Search Techniques- Generate and Test, Hill Climbing, Best First Search Problem reduction, Constraint Satisfaction and Means End Analysis. Approaches to Knowledge Representation- Using Predicate Logic and Rules.

UNIT-II

UNIT-III

UNIT-IV

UNIT-V
Fuzzy Arithmetic and Fuzzy Measures, Fuzzy Rule Base and Approximate Reasoning Fuzzy Decision making

Text Books:
References:
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) V Year I-Sem

INFORMATION SYSTEMS CONTROL & AUDIT
PGE-V

Prerequisites
-NIL-

Objectives
- Introduces the basic concepts of information systems auditing..
- To understand the management control frameworks and the application control framework.

Outcomes
- Understand functions of information systems audit and management
- Acquire skills for the evidence collection & evaluation

Unit-I
Overview of Information System Auditing-Conducting an Information Systems Audit, Overview & steps in an Audit.

Unit-II

Unit-III
The Application Control Framework-I : Boundary Controls, Input Controls, Processing Controls, Database Controls, output Controls.

Unit-IV

Unit-V

Text Book:

References:
2. Davis: IT Auditing, TMH, 2007
INTERNET OF THINGS
PGE-V

Prerequisites: NIL

Objectives:
- To introduce the terminology, technology and its applications
- To introduce the raspberry PI platform, that is widely used in IoT applications
- To introduce the implementation of web based services on IoT devices

Outcomes:
- Understand the new computing technologies
- Able to apply the latest computing technologies like cloud computing technology and Big Data
- Ability to introduce the concept of M2M (machine to machine) with necessary protocols
- Get the skill to program using python scripting language which is used in many IoT devices

Unit I

Unit II
IoT and M2M – Software defined networks, network function virtualization, difference between SDN and NFV for IoT Basics of IoT System Management with NETCOZF, YANG- NETCONF, YANG, SNMP NETOPEER

Unit III
Introduction to Python - Language features of Python, Data types, data structures, Control of flow, functions, modules, packaging, file handling, data/time operations, classes, Exception handling Python packages - JSON, XML, HTTPLib, URLLib, SMTPLib

Unit IV
IoT Physical Devices and Endpoints - Introduction to Raspberry PI-Interfaces (serial, SPI, I2C) Programming – Python program with Raspberry PI with focus of interfacing external gadgets, controlling output, reading input from pins.

Unit V
IoT Physical Servers and Cloud Offerings – Introduction to Cloud Storage models and communication APIs Webserver – Web server for IoT, Cloud for IoT, Python web application framework Designing a RESTful web API

Text Books:
IDP (B.Tech. CSE & M.Tech./MBA) V Year I-Sem

ADVANCED COMPUTER ARCHITECTURE
PGE-V

Prerequisites: Computer Organization

Objectives:
- To impart the concepts and principles of parallel and advanced computer architectures.
- To develop the design techniques of parallel and advanced computer architectures.
- To apply the concepts and techniques of parallel and advanced computer architectures to design modern computer systems.

Outcomes:
On successful completion of this course the students will be able to:
- Gain knowledge of Computational models and Computer Architectures.
- Concepts of parallel computer models.
- Scalable Architectures, Pipelining, Superscalar processors, multiprocessors.

UNIT - I:
Instruction set principles and examples - Introduction, classifying instruction set-memory addressing-type and size of operands, Operations in the instruction set.

UNIT –II: Pipelines:
Introduction, basic RISC instruction set, Simple implementation of RISC instruction set, Classic five stage pipe lined RISC processor, Basic performance issues in pipelining, Pipeline hazards, Reducing pipeline branch penalties

UNIT -III: Instruction Level Parallelism (ILP)
The Hardware Approach: Instruction-Level parallelism, Dynamic scheduling, Dynamic scheduling using Tomasulo’s approach, Branch prediction, High performance instruction delivery-Hardware based speculation.
ILP Software Approach:
Basic compiler level techniques, Static branch prediction, VLIW approach, Exploiting ILP, Parallelism at compile time, Cross cutting issues -Hardware verses Software.

UNIT –IV:
Multi Processors and Thread Level Parallelism: Multi Processors and Thread level Parallelism-
Introduction, Characteristics of application domain, Systematic shared memory architecture, Distributed shared Memory architecture, Synchronization.

UNIT –V: Inter Connection and Networks:
Introduction, Interconnection network media, Practical issues in interconnecting networks, Examples of inter connection, Cluster, Designing of clusters. Intel Architecture: Intel IA-64 ILP in embedded and mobile markets Fallacies and pitfalls.

TEXT BOOKS:

REFERENCE BOOKS:
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) V Year I-Sem

USER INTERFACE TECHNOLOGIES
PGE-V

L T P C
4 0 0 4

Prerequisites: Nil

Objectives
- To understand the design principles of developing a Human Computer Interface (HCI).
- To learn tools and devices required for designing a good interface.

Outcomes
After the successful completion of this course, the student will be able to
- Acquire knowledge on principles and components of HCI.
- Analyze product usability evaluations and testing methods.
- Design an effective user interface for software application using the building tools and techniques.

UNIT I
INTRODUCTION
Human–Computer Interface – Characteristics Of Graphics Interface – Direct Manipulation

UNIT II
HUMAN COMPUTER INTERACTION
User Interface Design Process – Obstacles – Usability – Human Characteristics In Design
– Human Interaction Speed – Business Functions – Requirement Analysis – Direct –
Indirect Methods – Basic Business Functions – Design Standards – System Timings –
Human Consideration In Screen Design – Structures Of Menus – Functions Of Menus–
Contents Of Menu– Formatting – Phrasing The Menu – Selecting Menu Choice–
Navigating Menus– Graphical Menus.

UNIT III
WINDOWS
Characteristics– Components– Presentation Styles– Types– Managements–
Screen – Based Controls – Operate Control – Text Boxes– Selection Control–
Combination Control– Custom Control– Presentation Control.

UNIT IV
MULTIMEDIA
Text For Web Pages – Effective Feedback– Guidance & Assistance–
Internationalization– Accesssibility– Icons– Image– Multimedia – Coloring.

UNIT V
WINDOWS LAYOUT– TEST
Hypermedia – WWW– Software Tools.

TEXT BOOKS:

REFERENCE:
Prerequisite: NIL

Objectives:

- To make students well-versed in the concepts of storage networks.
- To enable the students in perceiving storage as an infrastructure.
- To handle the transition from storage infrastructure planning and design to store operations.
- To prepare the students for handling rapid changes in business processes and in the applications and technical infrastructure that enable them.

Outcomes:

- Ability to plan, install and manage a successful storage network.
- Ability to analyze network file systems, volume managers, and database storage challenges used in storage networks.
- Ability to integrate storage networking solutions with structured and unstructured data using data center models.
- Ability to learn I/O workload planning and estimate storage networking capacities and requirements.

UNIT – I

Concepts of storage networking: the data storage and data access problem, storage networking, business applications, benefits of storage networks on business applications, the effects of storage networks on IT organizations.

Decoupling the storage component: NAS - Data-centric world, distributing computer processing, distributing I/O processing, SAN - idea, evolution and development, operational overview, caveats.

UNIT – II

Storage Architectures: storage elements, storage systems, peripheral connectivity components and concepts, host adapter, controller, magnetic disk storage, disk systems, magnetic tape storage.

Connectivity options: connections, bus evolution, bus operations, PCI, SCSI bus, Fibre channel, USB and Firewire, creative connection strategies; Data organizational methods.

UNIT – III

Network Attached Storage: architecture – hardware, software architectures, network connectivity, NAS as a storage system; NAS hardware devices; NAS software components; NAS connectivity options.

Storage Area Network: architecture; hardware devices; software components; configurations for SANs.

UNIT – IV

Defining the I/O workload: storage planning and capacity planning, definition and characterization of workloads, I/O content and workloads, consideration for I/O workloads in storage networking.

Applying the SAN solution: workload characterization, OLTP workloads, Web transactional workloads, data warehouse workloads, conclusions.

Applying the NAS solution: workload characterization, Departmental workloads, Web workloads, specialized workloads, conclusions.

Integrating SAN and NAS: similarities, differences, need to integrate, future storage connectivity, storage integration.

UNIT – V

Storage Management: Planning business continuity; Managing availability; Maintaining serviceability. Capacity planning, security considerations: overview, security methods, storage security - technology, challenges, Fibre channel SAN security, NAS security, Best practices for security.

TEXT BOOK:

JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) V Year I-Sem

PROFESSIONAL ETHICS
PGE-VI

Prerequisites: Nil

Objectives
- To introduce the basic concepts of universal human values
- To familiarize the students with desirable business and professional ethics, rights and responsibilities
- To prepare students against possible gaps and unethical practices in contemporary times
- To sensitise the students so that they can protect themselves and the organization from the possible professional crime malpractices

Outcomes
- The students learn about diverse ethical issues rooted in society, trade, business, and environment on local as well as a global platform.
- The students appreciate their role as a responsible citizen, professional, and as managers, advisors, experts and consultants.
- The students will reflect and learn major values and ethics from their observations of a spiritual discourse and a visit to a business organization as a practical part of this course.

Unit 1

Unit II

Unit III

Unit IV
Professional Rights: professional rights and employee rights communicating risk and public policy – Whistle blowing - Professionals /engineers as managers, advisors, experts, witnesses and consultants – moral leadership- Regulatory compliances, Monitoring and control- Mini-Cases

Unit V
Mini-projects

Project 1:
The student of this course should invariably attend (or watch on internet/any TV channel/youtube/social media) two speeches of 30 minutes duration each dealing with spiritual discourse and submit a report on the contents of the lecture proceedings.

Project 2:
Visit any organization (including shops/ hotels or shopping malls in your region) of your choice and observe how the professionals perform the given job with a focus on professional ethics and human values.
References
1. Aryasri, Human Values and Professional Ethics, Maruthi Publications.
2. S B George, Human Values and Professional Ethics, Vikas Publishing.
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech./MBA) V Year I-Sem

SECURITY IN COMPUTING
PGE-VI

Prerequisites
- A Course on “Information Security”

Objectives
- To understand various key distribution and management schemes
- To understand how to deploy encryption techniques to secure data in transit across data networks
- To apply algorithms used for secure transactions in real world applications

Outcomes
- Demonstrate the knowledge of network security concepts and applications.
- Ability to apply security principles in system design.
- Ability to identify and investigate vulnerabilities and security threats and mechanisms to counter them.

Unit I
Security Problem in Computing
Computer Security, Threats, Attacks, Computer Criminals, Defense Methods,
Cryptography
Symmetric and Public-key Encryption, Uses of Encryption.

Unit II
Program Security
Secure Programs, Viruses and other Malicious Code, Control against Program Threats
Protection in General-Purpose OS
Protected Objects and Methods of Protection, Memory and Address Protection, Control of Access to General Objects, File Protection Mechanism, User Authentication.

Unit III
Designing Trusted OS
Database and Data Mining Security
Security Requirements, Reliability and Integrity, Sensitive Data, Inference, Multilevel Databases, Proposals for Multilevel Security, Data Mining

Unit IV
Security in Networks
Threats in Networks, Network Security Controls, Firewalls, Intrusion Detection System, Secure E-Mail
Administering Security
Security Planning, Organizational Security Policies, Physical Security
Economics of Cybersecurity
Quantifying Security, Modeling Cybersecurity, Current Research and Future directions

Unit V
Privacy in Computing
Privacy Concepts, Privacy Principles and Policies, Authentication and Privacy, Privacy on the Web
Legal and Ethical Issues in Computer Security
Protecting Programs and Data, Computer Crime, Ethical Issues in Computer Security, Case Studies of Ethics
Security in Service-Oriented Architecture (SOA)
Web Services, XML Firewalls
Prescribed Text Book

References
4. C K Shyamala, N Harini, Dr T R Padmanabham, Cryptography and Network Security, Wiley India
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) V Year I-Sem

HIGH PERFORMANCE COMPUTING
PGE-VI

L T P C
4 0 0 4

Prerequisites
- Computer Organization & Architecture
- Operating System Programming

Objectives
- To Improve the system performance
- To learn various distributed and parallel computing architecture
- To learn different computing technologies

Outcomes
- Understanding the concepts in grid computing
- Ability to set up cluster and run parallel applications
- Ability to understand the cluster projects and cluster OS
- Understanding the concepts of pervasive computing & quantum computing.

Unit I

Unit II

Unit III:

Unit IV
Device Connectivity; Java For Pervasive Devices; Application Examples.

Unit V
Classical Vs Quantum Logic Gates; One, Two & Three Qubit Quantum Gates; Fredkin & Toffoli Gates; Quantum Circuits; Quantum Algorithms.

Text Book:
1. “Selected Topics In Advanced Computing” Edited By Dr. P. Padmanabham And Dr. M.B. Srinivas, 2005 Pearson Education.

References:
2. J. Burkhardt et.al: ‘pervasive computing’ Pearson Education
4. Raj kumar Buyya:’High performance cluster computing’, pearson Education.
6. A networking approach to Grid Computing , Minoli , Wiley
Prerequisites
A Course on Network Security, Mathematics

Objectives
- To understand the importance of cryptanalysis in our increasingly computer-driven world.
- To understand the fundamentals of Cryptography
- To understand the Lattice-based cryptanalysis and elliptic curves and pairings
- To understand birthday-based algorithms for functions and attacks on stream ciphers
- To apply the techniques for secure transactions in real world applications

Outcomes
- Ability to apply cryptanalysis in system design to protect it from various attacks.
- Ability to identify and investigate vulnerabilities and security threats and the mechanisms to counter them.
- Ability to analyze security of cryptographic algorithm against brute force attacks, birthday attacks.

UNIT-I
A bird’s – eye view of modern Cryptography: Preliminaries, Defining Security in Cryptography
Mono alphabetic Ciphers: Using Direct Standard Alphabets, The Caesar Cipher, Modular arithmetic,
Direct Standard alphabets, Solution of direct standard alphabets by completing the plain component,
Solving direct standard alphabets by frequency considerations, Alphabets based on decimations of
the normal sequence, Solution of decimated standard alphabets, Mono alphabets based on linear
transformation.
Poly alphabetic Substitution: Poly alphabetic ciphers, Recognition of poly alphabetic ciphers,
Determination of number of alphabets, Solution of individual alphabets if standard, Poly alphabetic
ciphers with a mixed plain sequences, Matching alphabets, Reduction of a poly alphabetic cipher to
a mono alphabetic ciphers with mixed cipher sequences

UNIT- II
Transposition: Columnar transposition, Solution of transpositions with Completely filled rectangles,
Incompletely filled rectangles, Solution of incompletely filled rectangles – Probable word method,
Incompletely filled rectangles general case, Repetitions between messages ; identical length messages.
Sieve algorithms: Introductory example: Eratosthenes’s sieve, Sieving for smooth composites

UNIT- III
Brute force Cryptanalysis: Introductory example: Dictionary attacks, Brute force and the DES
Algorithm, Brute force as a security mechanism, Brute force steps in advanced cryptanalysis, Brute
force and parallel computers.
The birthday paradox: Sorting or not?: Introductory example: Birthday attacks on modes of operation,
Analysis of birthday paradox bounds, Finding collisions, Application to discrete logarithms in generic
groups.

UNIT- IV
Birthday-based algorithms for functions: Algorithmic aspects, Analysis of random functions, Number-
theoretic applications, A direct cryptographic application in the context of blockwise
Security, Collisions in hash functions.
Attacks on stream ciphers: LFSR-based key stream generators, Correlation attacks, Noisy LFSR
model, Algebraic attacks, Extension to some non-linear shift registers, The cube attack.
UNIT-V

Text Books:
2. “Algorithmic Cryptanalysis” by Antoine joux, CRC Press’

References:
2. Cryptanalysis of Number Theoretic Ciphers, Sameul S. Wag staff, Champan & Hall/CRC
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech./MBA) V Year I-Sem

DATA ANALYTICS
PGE-VII

Prerequisites
- Data Mining

Objectives
- The purpose of this course is to provide the students with the knowledge of Data Analytics principles and techniques
- This course is also designed to give an exposure of the frontiers of Big data Analytics

Outcomes
- Ability to explain the foundations, definitions, and challenges of data analytics and various tools.
- Ability to program using HADOOP and Map reduce, NOSQL
- Ability to understand importance of Big Data in Social Media and Mining.

UNIT - 1:
Foundations of Business Analytics, Introduction to Business Analytics, Analytics on Spreadsheets

UNIT – 2 :
Descriptive Analytics, Visualizing and Exploring Data, Descriptive Statistical Measures, Probability Distributions and Data Modelling, Sampling and Estimation, Statistical Inference

UNIT – 3:
Predictive Analytics, Predictive Modelling and Analysis, Regression Analysis, Forecasting Techniques, Simulation and Risk Analysis, Introduction to Data Mining

UNIT – 4:
Prescriptive Analytics, Linear Optimization, Applications of Linear Optimization, Integer Optimization, Nonlinear and Non Smooth Optimization, Optimization Models with Uncertainty

UNIT – 5:
Making Decisions, Decision Analysis

TEXT BOOK

REFERENCES
10. R in Nutshell , O Reilly,
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) V Year I-Sem

REAL TIME OPERATING SYSTEMS
PGE-VII

Prerequisites:
- Computer Organization
- Microprocessors
- Operating Systems

Objectives:
- To provide students with a thorough understanding of the principles behind the structure and operation of real-time operating systems.

Outcomes:
- Distinguish a real-time system from other systems
- Identify the functions of operating system
- Evaluate the need for real-time operating system
- Implement the real-time operating system principles

UNIT – I:
Introduction to Real Time Operating Systems: Brief History of OS, Defining an RTOS, The Scheduler, Objects, Services, Key Characteristics of an RTOS
Tasks: Defining a Task, Task States and Scheduling, Typical Task Operations, Typical task Structure, Synchronization, Communication and Concurrency.
Semaphores: Defining Semaphores, Operations and Use, Defining Message Queue, States, Content, Storage, Operations and Use

UNIT - II:

UNIT- III:
Exceptions and Interrupts: What are Exceptions and Interrupts, Application of exceptions and Interrupts, A closer look at Exceptions and Interrupts, Processing General Exceptions, Nature of Spurious Exceptions,Timer and Timer Services: Real Time Clocks, Programmable Interval Timers, Timer Interrupt Service Routines, A Model for Implementing the Soft-Timer Handling Capacity, Timing Wheels

UNIT IV:
I/O Subsystem: Basic I/O Concepts, The I/O subsystem Memory Management: Dynamic Memory allocation In Embedded Systems, Fixed Size Memory management, Blocking Vs NON-Blocking Memory Functions

UNIT V:
Synchronization and Communication: Synchronization, Communication, Resource Synchronization Methods, Common Practical Design Patterns
Case Studies: RT Linux, MicroC/OS-II, Vx Works

TEXT BOOKS:

REFERENCE BOOKS:
1. Embedded Systems- Architecture, Programming and Design by Rajkamal, 2007, TMH.
2. Advanced UNIX Programming, Richard Stevens
3. Embedded Linux: Hardware, Software and Interfacing – Dr. Craig Hollabaugh
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) V Year I-Sem

DIGITAL IMAGE PROCESSING
PGE-VII

Prerequisite Subject: ---Nil---

Course Objectives:
1. To comprehend the relation between human visual system and machine perception and processing of digital images.
2. To provide a detailed approach towards image processing applications like enhancement, segmentation and compression.

Course Outcomes:
1. Exploration of the limitations of the computational methods on digital images.
2. Expected to implement the spatial and frequency domain image transforms on enhancement and restoration of images.
3. Elaborate understanding on image enhancement techniques.
4. Expected to define the need for compression and evaluate the basic compression algorithms.

UNIT I
Fundamental steps of image processing, components of an image processing of system, the image model and image acquisition, sampling and quantization, station ship between pixels, distance functions, scanner.

UNIT II

UNIT III
Morphological and other area operations, basic morphological operations, opening and closing operations, dilation erosion, Hit or Miss transform, morphological algorithms, extension to grey scale images. Segmentation and Edge detection region operations, basic edge detection, second order detection, crack edge detection, gradient operators, compass and laplace operators, edge linking and boundary detection, thresholding, region based segmentation, segmentation by morphological watersheds.

UNIT IV
Image compression: Types and requirements, statistical compression, spatial compression, contour coding, quantizing compression, image data compression-predictive technique, pixel coding, transfer coding theory, lossy and lossless predictive type coding. Basics of color image processing, pseudocolor image processing, color transformation, color smoothing and sharpening, color segmentation, color image compression, compression standards.

UNIT V
Image Transforms -Fourier, DFT, DCT, DST, Haar, Hotelling, Karhunen -Loeve, Walsh, Hadamard, Slant. Representation and Description -Chain codes, Polygonal approximation, Signatures Boundary Segments, Skeltons, Boundary Descriptors, Regional Descriptors, Relational Descriptors, PCA.

TEXT BOOK:
REFERENCE BOOKS
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) III Year I-Sem

DISASTER MANAGEMENT
OPEN ELECTIVE-I

Pre Requisites: NIL

Course Objectives:
The subject provide different disasters, tools and methods for disaster management

Course Outcomes:
Estimate, perform quantity survey & valuate various engineering works

UNIT 1 : Understanding Disaster
Concept of Disaster
Different approaches
Concept of Risk
Levels of Disasters
Disaster Phenomena and Events (Global, national and regional)

Hazards and Vulnerability
Natural and man-made hazards; response time, frequency and forewarning levels of different hazards
Characteristics and damage potential or natural hazards; hazard assessment
Dimensions of vulnerability factors; vulnerability assessment
Vulnerability and disaster risk
Vulnerabilities to flood and earthquake hazards

UNIT 2 : Disaster Management Mechanism
Concepts of risk management and crisis managements
Disaster Management Cycle
Response and Recovery
Development, Prevention, Mitigation and Preparedness
Planning for Relief

UNIT 3: Capacity Building
Capacity Building: Concept
Structural and Nonstructural Measures
Capacity Assessment; Strengthening Capacity for Reducing Risk
Counter-Disaster Resources and their utility in Disaster Management
Legislative Support at the state and national levels

UNIT 4: Coping with Disaster
Coping Strategies; alternative adjustment processes
Changing Concepts of disaster management
Industrial Safety Plan; Safety norms and survival kits
Mass media and disaster management

UNIT 5: Planning for disaster management
Strategies for disaster management planning
Steps for formulating a disaster risk reduction plan
Disaster management Act and Policy in India
Organizational structure for disaster management in India
Preparation of state and district disaster management plans
Text Books

References
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) III Year I-Sem  L   T   P   C
NON CONVENTIONAL POWER GENERATION
OPEN ELECTIVE-I

Pre-requisite: Nil.

Objectives:
- To introduce various types of renewable technologies available.
- The technologies of energy conversion from these resources and their quantitative analysis.

Outcomes:
- The student will be able to analyse solar thermal and photovoltaic systems and related technologies for energy conversion.
- Wind energy conversion and devices available for it.
- Biomass conversion technologies.
- Geothermal resources and energy conversion principles and technologies.
- Power from oceans (thermal, wave, tidal) and conversion and devices.
- Fundamentals of fuel cells and commercial batteries.

UNIT - I

UNIT - II

UNIT - III

UNIT - IV

UNIT - V

TEXT BOOKS
REFERENCE BOOKS
2. F.C. Treble, Generating Electricity from Sun.
4. S.P. Sukhatme, Solar Energy Principles and Application - TMH
Pre-requisites: Nil

Objectives: To understand the importance of various materials used in electrical engineering and obtain a qualitative analysis of their behavior and applications.

OUTCOMES: Will be able to
1. Understand various types of dielectric materials, their properties in various conditions.
2. Evaluate magnetic materials and their behavior.
3. Evaluate semiconductor materials and technologies.
4. Materials used in electrical engineering and applications.

UNIT – I
DIELECTRIC MATERIALS: Dielectric as Electric Field Medium, leakage currents, dielectric loss, dielectric strength, breakdown voltage, breakdown in solid dielectrics, flashover, liquid dielectrics, electric conductivity in solid, liquid and gaseous dielectrics, Ferromagnetic materials, properties of ferromagnetic materials in static fields, spontaneous, polarization, curie point, anti-ferromagnetic materials, piezoelectric materials, pyroelectric materials.

UNIT – II
MAGNETIC MATERIALS: Classification of magnetic materials, spontaneous magnetization in ferromagnetic materials, magnetic Anisotropy, Magnetostriiction, diamagnetism, magnetically soft and hard materials, special purpose materials, feebly magnetic materials, Ferrites, cast and cermet permanent magnets, ageing of magnets. factors effecting permeability and hysteresis

UNIT – III
SEMICONDUCTOR MATERIALS: Properties of semiconductors, Silicon wafers, integration techniques, Large and very large scale integration techniques (VLSI).

UNIT – IV
MATERIALS FOR ELECTRICAL APPLICATIONS: Materials used for Resistors, rheostats, heaters, transmission line structures, stranded conductors, bimetal fuses, soft and hard solders, electric contact materials, electric carbon materials, thermocouple materials. Solid, Liquid and Gaseous insulating materials, Effect of moisture on insulation.

UNIT – V
SPECIAL PURPOSE MATERIALS: Refractory Materials, Structural Materials, Radioactive Materials, Galvanization and Impregnation of materials, Processing of electronic materials, Insulating varnishes and coolants, Properties and applications of mineral oils, Testing of Transformer oil as per ISI

TEXT BOOKS
3. TTTI Madras: Electrical Engineering Materials
NANO-TECHNOLOGY
OPEN ELECTIVE-I

Pre-requisites: Nil

OBJECTIVES:
To enable the student to understand fundamentals of nano materials and technologies for these materials and their manufacturing, applications in various fields.

OUTCOMES:
- To evaluate electronic structural studies of nano materials and different synthesis methods to obtain nano structures.
- Understand characterization techniques through various measurements to study electrical, mechanical, thermal properties of nano materials.
- Applications of nano materials for specific purposes like MEMS, NEMS, nano electronics, energy storage.

UNIT - I
Background of Nanotechnology: Scientific Revolutions, Nanotechnology and Nanomachines - The Periodic Table, Atomic Structure, Molecules and Phases, Energy, Molecular and Atomic size, Surfaces and Dimensional Space, Top down and Bottom up approach.

UNIT - II

UNIT - III
Nanopowders and Nanomaterials: Preparation, Plasma arcing, chemical vapor deposition, Sol-gels, Electrodeposition, Ball milling, using natural nanoparticles, Applications of nanomaterials.

UNIT - IV
Nanoelectronics: Approaches to nanoelectronics, Fabrication of integrated circuits, MEMS, NEMS, Nano circuits, Quantum wire, Quantum well, DNA-directed assembly and application in electronics.

UNIT - V

TEXT BOOKS
1. Introduction to Nanoscience and Nanotechnology Gabor L. Hornyak, NanoThread, Inc., Golden, Colorado, USA; H.F. Tibbals, University of Texas Southwestern Medical Center, Dallas, USA; Joydeep Dutta, Asian Institute of Technology, Pathumthani, Thailand; John J. Moore, Colorado School of Mines, Golden, USA
2. Introduction to Nanotechnology by Charles P. Poole Jr and Frank J. Owens Wiley India Pvt Ltd.
3. Introduction to Nanoscience and Nanotechnology, Chatopadhyaya.K.K, and Banerjee A.N,
4. Introduction to nano tech by phani kumar
5. Introduction to Nano Technology by Charles P. Poole Jr and Frank J. Owens. Wiley India Pvt Ltd.
6. Introduction to Nanoscience and Nanotechnology, Chatopadhyaya.K.K, and Banerjee A.N,
NANOTECHNOLOGY Basic Science and Emerging Technologies by Michael Wilson, Kamali Kannangara, Geoff Smith, Michelle Simmons, Burkhard Raguse- CHAPMAN & HALL/CRC PRESS 2002.
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) III Year I-Sem

OPERATIONS RESEARCH
OPEN ELECTIVE-I

L T P C
3 0 0 3

Prerequisites: None

Objectives:
Understanding the mathematical importance of development of model in a particular optimization model for the issue and solving it.

Outcomes:
Understanding the problem, identifying variables & constants, formulas of optimization model and applying appropriate optimization Techniques

UNIT – I


UNIT – II

UNIT – III
SEQUENCING – Introduction – Flow –Shop sequencing – n jobs through two machines – n jobs through three machines – Job shop sequencing – two jobs through ‘m’ machines-graphical model

REPLACEMENT: Introduction – Replacement of items that deteriorate with time – when money value is not counted and counted – Replacement of items that fail completely- Group Replacement.

UNIT – IV

INVENTORY: Introduction – Single item, Deterministic models – Types - Purchase inventory models with one price break and multiple price breaks –Stochastic models – demand discrete variable or continuous variable – Single Period model with no setup cost.

UNIT – V


TEXT BOOK:
2. Operations Research/A.C.S.Kumar/Yesdee

REFERENCE BOOKS:
1. Operations Research: Methods and Problems / Maurice Saseini, Arthur Yaspan and Lawrence Friedman
4. Introduction to O.R/Hillier & Libermann (TMH).
5. Introduction to O.R /Taha/PHI
IDP (B.Tech. CSE & M.Tech. /MBA) III Year I-Sem

BASICS OF THERMODYNAMICS
OPEN ELECTIVE-I

Pre-requisite: Engineering Chemistry and Physics

Course Objective: To understand the treatment of classical Thermodynamics and to apply the First and Second laws of Thermodynamics to engineering applications

Course Outcomes:
At the end of the course, the student should be able to
- Understand and differentiate between different thermodynamic systems and processes
- Understand and apply the laws of Thermodynamics to different types of systems undergoing various processes
- Understand and analyze the Thermodynamic cycles

UNIT – I
Introduction: Basic Concepts:

UNIT II

UNIT – III

UNIT IV
Atmospheric air - Psychrometric Properties – Dry bulb Temperature, Wet Bulb Temperature, Dew point Temperature, , Specific Humidity, Relative Humidity, saturated Air, Vapour pressure, Degree of saturation – Adiabatic Saturation ,Psychrometric chart.

UNIT - V
Power Cycles : Otto, Diesel cycles - Description and representation on P–V and T-S diagram, Thermal Efficiency, Mean Effective Pressures on Air standard basis
Refrigeration Cycles:
Bell-Coleman cycle, Vapour compression cycle-performance Evaluation.

TEXT BOOKS :
1. Engineering Thermodynamics / PK Nag /TMH, III Edition
2. Thermodynamics / C.P.Arora.

REFERENCE BOOKS:
1. Thermodynamics – An Engineering Approach – Yunus Cengel & Boles /TMH
3. Thermodynamics – J.P.Holman / McGraw-Hill
4. Engineering Thermodynamics – Jones & Dugan
IDP (B.Tech. CSE & M.Tech. /MBA) III Year I-Sem

L T P C

3 0 0 3

FABRICATION PROCESSES
OPEN ELECTIVE-I

Prerequisites:
Nil

Objectives:
Understand the philosophies of various Manufacturing process.

Outcomes:
For given product, one should be able identify the manufacturing process.

UNIT – I

UNIT – II
Welding: Classification – Types of welds and welded joints; Gas welding - Types, oxy-fuel gas cutting, Arc welding, forge welding, submerged arc welding, Resistance welding, Thermit welding. Inert Gas Welding _ TIG Welding, MIG welding, explosive welding, Laser Welding; Soldering and Brazing; Heat affected zone in welding. Welding defects – causes and remedies; destructive and non-destructive testing of welds.

UNIT – III

UNIT – IV
Extrusion of Metals: Basic extrusion process and its characteristics. Hot extrusion and cold extrusion - Forward extrusion and backward extrusion – Impact extrusion – Extruding equipment – Tube extrusion and pipe making, Hydrostatic extrusion. Forces in extrusion

UNIT – V

TEXT BOOKS:
1. Manufacturing Technology / P.N. Rao/TMH

REFERENCE BOOKS:
1. Production Technology / R.K. Jain
2. Metal Casting / T.V Ramana Rao / New Age
4. Welding Process / Parmar /
5. Production Technology /Sarma P C /
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) III Year I-Sem

ELECTRONIC MEASURING INSTRUMENTS
OPEN ELECTIVE-I

L T P C
3 0 0 3

Note: No detailed mathematical treatment is required.

Prerequisite : Nil

Course Objectives:
• It provides an understanding of various measuring systems functioning and metrics for performance analysis.
• Provides understanding of principle of operation, working of different electronic instruments viz. signal generators, signal analyzers, recorders and measuring equipment.
• Provides understanding of use of various measuring techniques for measurement of different physical parameters using different classes of transducers.

Course Outcomes:
On completion of this course student can be able to
• Identify the various electronic instruments based on their specifications for carrying out a particular task of measurement.
• Measure various physical parameters by appropriately selecting the transducers.
• Use various types of signal generators, signal analyzers for generating and analyzing various real-time signals.

Unit-I:

Unit-II:
Signal Generators: AF, RF Signal Generators, Sweep Frequency Generators, Pulse and Square wave Generators, Function Generators, Arbitrary Waveform Generator, and Specifications.

Unit-III:

Unit-IV:
Recorders: X-Y Plotter, Curve tracer, Galvanometric Recorders, Servo transducers, pen driving mechanisms, Magnetic Recording, Magnetic recording techniques.

Unit-V:
Transducers: Classification, Strain Gauges, Bounded, unbounded; Force and Displacement Transducers, Resistance Thermometers, Hotwire Anemometers, LVDT, Thermocouples, Synchros, Special Resistance Thermometers, Digital Temperature sensing system, Piezoelectric Transducers, Variable Capacitance Transducers, Magneto Strictive Transducers.

TEXT BOOKS:
REFERENCES:
OBJECT ORIENTED PROGRAMMING THROUGH JAVA
OPEN ELECTIVE-I

Prerequisites
1. A course on “Computer Programming & Data Structures”

Objectives
1. Introduces object oriented programming concepts using the Java language.
2. Introduces the principles of inheritance and polymorphism; and demonstrates how they relate to the design of abstract classes
3. Introduces the implementation of packages and interfaces
4. Introduces exception handling, event handling and multithreading
5. Introduces the design of Graphical User Interface using applets and swings

Outcomes
1. Develop applications for a range of problems using object-oriented programming techniques
2. Design simple Graphical User Interface applications

UNIT I:
Object oriented thinking and Java Basics- Need for OOP paradigm, summary of OOP concepts, coping with complexity, abstraction mechanisms. A way of viewing world – Agents, responsibility, messages, methods, History of Java, Java buzzwords, data types, variables, scope and life time of variables, arrays, operators, expressions, control statements, type conversion and casting, simple java program, concepts of classes, objects, constructors, methods, access control, this keyword, garbage collection, overloading methods and constructors, method binding, inheritance, overriding and exceptions, parameter passing, recursion, nested and inner classes, exploring string class.

UNIT II:
Inheritance, Packages and Interfaces – Hierarchical abstractions, Base class object, subclass, subtype, substitutability, forms of inheritance- specialization, specification, construction, extension, limitation, combination, benefits of inheritance, costs of inheritance. Member access rules, super uses, using final with inheritance, polymorphism- method overriding, abstract classes, the Object class.
Defining, Creating and Accessing a Package, Understanding CLASSPATH, importing packages, differences between classes and interfaces, defining an interface, implementing interface, applying interfaces, variables in interface and extending interfaces, Exploring java.io.

UNIT III:
Exception handling and Multithreading-- Concepts of exception handling, benefits of exception handling, Termination or resumptive models, exception hierarchy, usage of try, catch, throw, throws and finally, built in exceptions, creating own exception sub classes.
String handling,Exploring java.util.Differences between multi threading and multitasking, thread life cycle, creating threads, thread priorities, synchronizing threads, inter-thread communication, thread groups, daemon threads, Enumerations, auto boxing, annotations, generics.

UNIT IV:
Event Handling: Events, Event sources, Event classes, Event Listeners, Delegation event model, handling mouse and keyboard events, Adapter classes. The AWT class hierarchy, user interface components- labels, button, canvas, scrollbars, text components, check box, check box groups, choices, lists panels – scroll pane, dialogs, menu bar, graphics, layout manager – layout manager types – border, grid, flow, card and grid bag.

UNIT V:
Applets – Concepts of Applets, differences between applets and applications, life cycle of an applet, types of applets, creating applets, passing parameters to applets.

TEXT BOOKS:
1. Java the complete reference, 7th edition, Herbert Schildt, TMH.
2. Understanding OOP with Java, updated edition, T. Budd, Pearson Education.

REFERENCES:
2. Introduction to Java programming, Y. Daniel Liang, Pearson Education.
3. An introduction to Java programming and object oriented application development, R.A. Johnson-Thomson.
Prerequisites
1. Familiarity with the theory and use of coordinate geometry and of linear algebra such as matrix multiplication.
2. A course on “Computer Programming and Data Structures”

Objectives
1. The aim of this course is to provide an introduction of fundamental concepts and theory of computer graphics.
2. Topics covered include graphics systems and input devices; geometric representations and 2D/3D transformations; viewing and projections; illumination and color models; animation; rendering and implementation; visible surface detection;

Outcomes
1. Acquire familiarity with the relevant mathematics of computer graphics.
2. Be able to design basic graphics application programs, including animation
3. Be able to design applications that display graphic images to given specifications

UNIT-I:
Introduction: Application areas of Computer Graphics, overview of graphics systems, video-display devices, raster-scan systems, random scan systems, graphics monitors and work stations and input devices
Output primitives: Points and lines, line drawing algorithms (Bresenham’s and DDA Algorithm), mid-point circle and ellipse algorithms
Filled area primitives: Scan-line polygon fills algorithm, boundary-fill and flood-fill algorithms

UNIT-II:
2-D geometrical transforms: Translation, scaling, rotation, reflection and shear transformations, matrix representations and homogeneous coordinates, composite transforms, transformations between coordinate systems
2-D viewing: The viewing pipeline, viewing coordinate reference frame, window to view-port coordinate transformation, viewing functions, Cohen-Sutherland and Cyrus-beck line clipping algorithms, Sutherland –Hodgeman polygon clipping algorithm, Polygon Filling

UNIT-III:
3-D object representation: Polygon surfaces, quadric surfaces, spline representation, Hermite curve, Bezier curve and B-Spline curves, Bezier and B-Spline surfaces. Basic illumination models, polygon rendering methods.

UNIT-IV:
3-D Geometric transformations: Translation, rotation, scaling, reflection and shear transformations, composite transformations.
3-D viewing: Viewing pipeline, viewing coordinates, view volume and general projection transforms and clipping.

UNIT-V:
Computer animation: Design of animation sequence, general computer animation functions, raster animation, computer animation languages, key frame systems, motion specifications.
Visible surface detection methods: Classification, back-face detection, depth-buffer, scan-line, depth sorting, BSP-tree methods, area sub-division and octree methods
Text Books:
3. Computer Graphics, Steven Harrington, TMH

References:
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) III Year I-Sem

ENGINEERING MATERIALS
OPEN ELECTIVE-I

Pre requisites: Nil

Course Objectives:
1. To gain an knowledge about the uses and application of various ferrous metals and alloys.
2. To gain an knowledge about the uses and application of various non ferrous alloys.
3. To gain an knowledge about the uses and application of various ceramics, polymers and composites for different engineering applications.

Course Outcomes:
At the end of the course, student would be able to recommend
1. Ferrous metals and alloys for a given engineering applications and service condition.
2. Non ferrous alloys for a given engineering applications and service condition.
3. Ceramics, Polymers and composites for a given engineering applications and service condition.

UNIT-I

UNIT-II
NONFERROUS ALLOYS: Introduction, properties and applications, Aluminum Alloys, Magnesium Alloys, Copper Alloys and Titanium Alloys.

UNIT-III
CERAMIC MATERIALS: Introduction, Properties and Applications of Ceramics, Glasses and Refractories.

UNIT-IV
POLYMERS: Introduction, Classification of Polymers, Polymerization, Degree of Polymerization, Typical Thermoplastics and Thermosets.

UNIT-V
COMPOSITES: Introduction, Classification, Properties and Applications of Polymer matrix, Metal Matrix Ceramic Matrix and Laminar composites.

TEXT / REFERENCE BOOKS:
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) III Year I-Sem

METALLURGY FOR NON METALLURGISTS
OPEN ELECTIVE-I

Pre requisites: Nil

Course Objectives:
1. To describe the basic principles of metallurgy and the importance of metallurgy in various discipline of engineering.
2. Gain a thorough knowledge about heat treatment of steels.
3. Gain a knowledge about properties and uses of cast irons and non ferrous metals.
4. Gain a working knowledge of basic testing methods for metals.

Course Outcomes:
At the end of the course Student would be able
1. To use and apply metallurgy in his own branch of engineering.
2. The student will be able to justify the various testing methods adopted for metals.

UNIT-I
Introduction: Crystal structure and defects, Crystal structure of metals, Classification of steels, Carbon steels

UNIT-II
Heat Treatment of Steels: The Iron carbon systems, Common phases in steels, Annealing, Normalizing, Hardening and tempering

UNIT-III
Cast irons: Properties and applications of Ductile irons, Malleable irons, Compacted graphite iron.

UNIT-IV
Non Ferrous Metals: Properties and applications of Light Metals (Al, Be, Mg, Ti), Super alloys

UNIT-V

TEXT BOOKS
2. Introduction to Physical Metallurgy – SH Avner, TATA Mc GRAW HILL, 1997
3. Metallurgy for Engineers- Clark and Varney
4. Mechanical Metallurgy – G. E. Dieter

REFERENCE BOOKS
1. Engineering Physical Metallurgy and Heat treatment – Y Lakhtin
   Foundations of Materials Science and Engineering – WF Smith
Objective:
To expose the students to various types of industrial pollutions and controlling techniques.

OUTCOME:
The student will be able learn the sources of air, water pollution and also their treatment methods.

UNIT-I
Introduction to industrial pollution and types of pollution from chemical industries, Effects of pollution as environment and ecosystems-global warming-green house effect; Environmental legislatures-standards and guidelines.

UNIT –II
Air pollution- Meteorological aspects of pollution dispersion-adiabatic lapse rate-Environmental lapse rate-Turbulence and stability of atmosphere, Richardson number-Plume raise-plume behavior and characteristics, effective stack height. Major air pollutants and their sources, measurement of air pollutants

UNIT -III

UNIT -IV
Introduction to water pollution – water pollutants classification – characteristics of liquid effluents from fertilizer, pulp & paper and petroleum industries, estimation of oxygen demands – DO, BOD, COD, TOC – BOD curves, oxygen sag curve – modeling of BOD curves


UNIT -V

Text books:
1. Pollution control in process industries by S.P. Mahajan TMH.,1985

References:
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) III Year II-Sem

ESTIMATION, QUANTITY SURVEY & VALUATION
OPEN ELECTIVE -II

L T P C
3 0 0 3

Pre Requisites:
Concrete Technology, RC Design, Design of Steel Structure

Course Objectives:
The subject provides the process of estimations required for various work in construction. To have knowledge of using SOR & SSR for analysis of rates on various works.

Course Outcomes:
Able to provide control steps for disaster mitigation steps

UNIT – I

UNIT – II
Detailed Estimates of Buildings - Reinforcement bar bending and bar requirement schedules

UNIT – III
Earthwork for roads and canals.

UNIT – IV
Rate Analysis – Working out data for various items of work over head and contingent charges.

UNIT-V

NOTE : NUMBER OF EXERCISES PROPOSED :
1. Three in flat Roof & one in Sloped Roof
2. Exercises on Data – three Nos.

Text Books:
2. Estimating and Costing by G.S. Birdie

Reference books:
2. I. S. 1200 ( Parts I to XXV – 1974/ method of measurement of building and Civil Engineering works – B.I.S.)
3. Estimation, Costing and Specifications by M. Chakraborthi; Laxmi publications.
IDP (B.Tech. CSE & M.Tech. /MBA) III Year II-Sem

L T P C
3 0 0 3

DESIGN ESTIMATION AND COSTING OF ELECTRICAL SYSTEMS
OPEN ELECTIVE-II

Pre-requisite: Power systems-I and Power Systems-II

Objectives:
Objectives of this course are
- To emphasize the estimating and costing aspects of all electrical equipment, installation and designs to analyze the cost viability.
- To design and estimation of wiring,
- To design overhead and underground distribution lines, substations and illumination design.

OUTCOMES:
Students are in a position to Understand the design considerations of electrical installations.
- To design electrical installation for buildings and small industries.
- To identify and design the various types of light sources for different applications.

UNIT - I
DESIGN CONSIDERATIONS OF ELECTRICAL INSTALLATIONS: Electric Supply System, Three phase four wire distribution system, Protection of Electric Installation against over load, short circuit and Earth fault, Earthing, General requirements of electrical installations, testing of installations, Indian Electricity rules, Neutral and Earth wire, Types of loads, Systems of wiring, Service connections , Service Mains, Sub-Circuits, Location of Outlets, Location of Control Switches, Location of Main Board and Distribution board, Guide lines for Installation of Fittings, Load Assessment, Permissible voltage drops and sizes of wires, estimating and costing of Electric installations.

UNIT - II
ELECTRICAL INSTALLATION FOR DIFFERENT TYPES OF BUILDINGS AND SMALL INDUSTRIES: Electrical installations for residential buildings – estimating and costing of material, Electrical installations for commercial buildings, Electrical installations for small industries.

UNIT - III
OVERHEAD AND UNDERGROUND TRANSMISSION AND DISTRIBUTION LINES: Introduction, Supports for transmission lines, Distribution lines – Materials used, Underground cables, Mechanical Design of overhead lines, Design of underground cables.

UNIT - IV
SUBSTATIONS: Introduction, Types of substations, Outdoor substation – Pole mounted type, Indoor substations – Floor mounted type.

UNIT – V
DESIGN OF ILLUMINATION SCHEMES: Introduction, Terminology in illumination, laws of illumination, various types of light sources, Practical lighting schemes LED, CFL and OCFL differences.

TEXT BOOKS
2. Design of Electrical Installations, Er. V. K. Jain, Er. Amitabh Bajaj, University Science Press.
REFERENCE BOOKS
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) III Year II-Sem

ENERGY STORAGE SYSTEMS
OPEN ELECTIVE-II

L   T   P   C
3   0   0    3

Pre-requisite: None

Objectives:
Objectives of this course are
• To enable the student to understand the need for energy storage, devices and technologies available and their applications.

OUTCOMES: After this course, the student
• Can analyze the characteristics of energy from various sources and need for storage
• Can classify various types of energy storage and various devices used for the purpose
• Can apply the same concepts to real time problems.

UNIT - I
Electrical Energy Storage Technologies: Characteristics of electricity, Electricity and the roles of EES, High generation cost during peak-demand periods, Need for continuous and flexible supply, Long distance between generation and consumption, Congestion in power grids, Transmission by cable.

UNIT - II

UNIT - III
Features of Energy Storage Systems: Classification of EES systems, Mechanical storage systems, Pumped hydro storage (PHS), Compressed air energy storage (CAES), Flywheel energy storage (FES), Electrochemical storage systems, Secondary batteries, Flow batteries, Chemical energy storage, Hydrogen (H2), Synthetic natural gas (SNG).

UNIT - IV
Types of Electrical Energy Storage systems: Electrical storage systems, Double-layer capacitors (DLC), Superconducting magnetic energy storage (SMES), Thermal storage systems, Standards for EES, Technical comparison of EES technologies.

UNIT - V
Applications: Present status of applications, Utility use (conventional power generation, grid operation & service), Consumer use (uninterruptable power supply for large consumers), New trends in applications, Renewable energy generation, Smart Grid, Smart Micro grid, Smart House, Electric vehicles, Management and control hierarchy of storage systems, Internal configuration of battery storage systems, External connection of EES systems, Aggregating EES systems and distributed generation (Virtual Power Plant), Battery SCADA—aggregation of many dispersed batteries.

TEXT BOOKS

REFERENCE BOOKS:
UNIT – I
INTRODUCTION: Definition – Trends - Control Methods: Standalone , PC Based ( Real Time Operating Systems, Graphical User Interface , Simulation) - Applications: identification of sensors and actuators in Washing machine, Automatic Camera, Engine Management, SPM, Robot, CNC, FMS, CIM.

UNIT – II
PRECISION MECHANICAL SYSTEMS: Modern CNC Machines – Design aspects in machine structures, guideways, feed drives, spindle and spindle bearings, measuring systems, control software and operator interface, gauging and tool monitoring.
ELECTRONIC INTERFACE SUBSYSTEMS: TTL, CMOS interfacing - Sensor interfacing – Actuator interfacing – solenoids , motors Isolation schemes- opto coupling, buffer IC’s - Protection schemes – circuit breakers, over current sensing, resetable fuses, thermal dissipation - Power Supply - Bipolar transistors / MOSFETs

UNIT – III
ELECTROMECHANICAL DRIVES: Relays and Solenoids - Stepper Motors - DC brushed motors – DC brushless motors - DC servo motors - 4-quadrant servo drives , PWM’s - Pulse Width Modulation – Variable Frequency Drives, Vector Drives - Drive system load calculation.

UNIT – IV

UNIT – V

TEXT BOOKS
2. Mechatronics by M.D.Singh, J.G.Joshi PHI.
3. Mechatronics HMT

REFERENCE BOOKS
2. Michel B. Histand and David G. Alciatore,”
Prerequisites: None

Course outcomes:
After doing this course, student should be in position to
1. Understand Turbo Jet Propulsion System
2. Analyze the flight performance
4. Learn the Aero thermo chemistry of the combustion products
5. Understand the physics of Solid propellant rocket engine, Liquid Rocket Propulsion System & Ramjet and Integral Rocket Ramjet Propulsion System:

Unit - I:
Turbo Jet Propulsion System:
Gas turbine cycle analysis – layout of turbo jet engine. Turbo machinery- compressors and turbines, combustor, blade aerodynamics, engine off design performance analysis.
Flight Performance:
Forces acting on vehicle – Basic relations of motion – multi stage vehicles.

Unit - II:
Principles of Jet Propulsion and Rocketry:
Fundamentals of jet propulsion, Rockets and air breathing jet engines – Classification – turbo jet, turbo fan, turbo prop, rocket (Solid and Liquid propellant rockets) and Ramjet engines.
Nozzle Theory and Characteristics Parameters:
Theory of one dimensional convergent – divergent nozzles – aerodynamic choking of nozzles and mass flow through a nozzle – nozzle exhaust velocity – thrust, thrust coefficient, \( \frac{A_c}{A_t} \) of a nozzle, Supersonic nozzle shape, non-adapted nozzles, summer field criteria, departure from simple analysis – characteristic parameters – 1) characteristic velocity, 2) specific impulse 3) total impulse 4) relationship between the characteristic parameters 5) nozzle efficiency, combustion efficiency and overall efficiency.

Unit - III: Aero Thermo Chemistry of The Combustion Products:
Solid Propulsion System:

Unit - IV:
Solid propellant rocket engine – internal ballistics, equilibrium motor operation and equilibrium pressure to various parameters. Transient and pseudo equilibrium operation, end burning and burning grains, grain design. Rocket motor hardware design. Heat transfer considerations in solid rocket motor design. Ignition system, simple pyro devices.
Liquid Rocket Propulsion System:
Liquid propellants – classification, Mono and Bi propellants, Cryogenic and storage propellants, ignition delay of hypergolic propellants, physical and chemical characteristics of liquid propellant. Liquid propellant rocket engine – system layout, pump and pressure feed systems, feed system components. Design of combustion chamber, characteristic length, constructional features, and chamber wall stresses. Heat transfer and cooling aspects. Uncooled engines, injectors – various types, injection patterns, injector characteristics, and atomization and drop size distribution, propellant tank design.
Unit - V: Ramjet and Integral Rocket Ramjet Propulsion System:
Fuel rich solid propellants, gross thrust, gross thrust coefficient, combustion efficiency of ramjet engine, air intakes and their classification – critical, super critical and sub-critical operation of air intakes, engine intake matching, classification and comparison of IIRR propulsion systems.

TEXT BOOKS:

REFERENCE BOOKS:
1. Rocket propulsion –Sutton
2. Gas Turbines /Cohen, Rogers & Sarvana Muttoo/Addision Wesley & Longman.
3. Gas Turbines-V.Ganesan /TMH.
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech./MBA) III Year II-Sem

ERGONOMICS
OPEN ELECTIVE-II

L T P C
3 0 0 3

Prerequisites: None

Objectives:
Provide a broad based introduction to ergonomic principles and their application in the design of work, equipment and the workplace. Consideration is given to musculo-skeletal disorders, manual handling, ergonomic aspects of the environment as well as to the social and legal aspects.

Course Outcomes:
On completing this course successfully the student will be able to:
• understand and apply ergonomic principles to the creation of safer, healthier and more efficient and effective activities in the workplace;
• understand ergonomic risk assessments and appropriate control measures;
• understand the causes of upper limb disorders and how to reduce them;
• appreciate workplace layout and equipment design;
• appreciate environmental aspects of good ergonomic design.

UNIT I

UNIT II

UNIT III

UNIT IV

UNIT V

Text books
1. Introduction to Ergonomics(Third Edition)/ R.S.Bridger/CRC Press , Taylor & Francis Group

References
1. Human factors in Engineering and Design/E.J.McCormick/ TMH Edison
MECHATRONICS
OPEN ELECTIVE-II

Pre-requisites: None.

Course objectives:
• They should be able to link up mechanical and electronics.

Outcomes:
• Develop a relationship between mechanical elements and electronics elements for proper functioning of mechanical systems.

UNIT – I
INTRODUCTION:
Definition – Trends - Control Methods: Standalone , PC Based ( Real Time Operating Systems, Graphical User Interface , Simulation ) - Applications: identification of sensors and actuators in Washing machine, Automatic Camera, Engine Management, SPM, Robot, CNC, FMS, CIM.


UNIT – II
PRECISION MECHANICAL SYSTEMS :
Modern CNC Machines – Design aspects in machine structures, guideways, feed drives, spindle and spindle bearings, measuring systems, control software and operator interface, gauging and tool monitoring.

Note: (text book: Mechatronics HMT – chapter 5)

ELECTRONIC INTERFACE SUBSYSTEMS :
TTL, CMOS interfacing - Sensor interfacing – Actuator interfacing – solenoids , motors Isolation schemes- opto coupling, buffer IC’s - Protection schemes – circuit breakers , over current sensing , resetable fuses , thermal dissipation - Power Supply - Bipolar transistors / mosfets

UNIT – III
ELECTROMECHANICAL DRIVES :
Relays and Solenoids - Stepper Motors - DC brushed motors – DC brushless motors - DC servo motors - 4-quadrant servo drives , PWM’s - Pulse Width Modulation – Variable Frequency Drives, Vector Drives - Drive System load calculation.

MICROCONTROLLERS OVERVIEW :

UNIT – IV
PROGRAMMABLE LOGIC CONTROLLERS :

UNIT – V
PROGRAMMABLE MOTION CONTROLLERS :
TEXT BOOKS:
2. Mechatronics/M.D.Singh/J.G.Joshi PHI.

REFERENCE:
2. Michel B. Histand and David G. Alciatore,
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) III Year II-Sem  

PRINCIPLES OF ELECTRONIC COMMUNICATIONS  
OPEN ELECTIVE-II

Prerequisite: Nil

Course Objectives:
The objective of this subject is to:
- Introduce the students to modulation and various analog and digital modulation schemes.
- They can have a broad understanding of satellite, optical, cellular, mobile, wireless and telecom concepts.

Course Outcomes:
By completing this subject, the student can
- Work on various types of modulations.
- Should be able to use these communication modules in implementation.
- Will have a basic understanding of various wireless and cellular, mobile and telephone communication systems.

Unit 1:  
Introduction: Need for Modulation, Frequency translation, Electromagnetic spectrum, Gain, Attenuation and decibels.

Unit 2:  

Unit 3:  
Telecommunication Systems: Telephones Telephone system, Paging systems, Internet Telephony. Networking and Local Area Networks: Network fundamentals, LAN hardware, Ethernet LANs, Token Ring LAN.

Unit 4:  

Unit 5:  
Cellular and Mobile Communications: Cellular telephone systems, AMPS, GSM, CDMA, WCDMA. Wireless Technologies: Wireless LAN, PANs and Bluetooth, ZigBee and Mesh Wireless networks, Wimax and MANs, Infrared wireless, RFID communication, UWB.

Text Books:
2. Kennady, Davis, Electronic Communications systems, 4e, TMH, 1999

Reference Books:
Prerequisites
1. A Course on “Network Security and Cryptography”

Objectives
1. The purpose of the course is to educate on cyber security and the legal perspectives of cyber crimes and cyber offenses.
2. Introduce tools and methods for enhancing cyber security.
3. Topics include- cyber crimes, cyber offenses, cyber crimes on mobile and wireless devices, tools and methods to prevent cyber crimes, legal perspectives of cyber crimes and cyber security, computer forensics, Intellectual Property Rights and cyber terrorism

Outcomes
1. Demonstrate the knowledge of cyber security and understand the Indian and Global Act concerning cyber crimes
2. Employ security and privacy methods in the development of modern applications such that personal data is protected; and provide safe Internet usage.

UNIT-I
Introduction to Cybercrime:
Introduction, Cybercrime and Information security, who are cyber criminals, Classification of Cyber crimes, Cybercrime: The legal Perspectives and Indian Perspective, Cybercrime and the Indian ITA 2000, A Global Perspective on Cyber crimes.
Cyber offenses : How Criminals Plan Them

UNIT-II
Cybercrime: Mobile and Wireless Devices
Tools and Methods Used in Cyber Crime:
Introduction, Proxy services and Anonymizers, Phishing, Password Cracking, Keyloggers and Spywares, Virus and Worms, Trojan Horses and Backdoors, Steganography, DoS and DDoS Attacks, SQL Injection, Buffer Overflow, Attacks on Wireless Networks.

UNIT III
Cyber crimes and Cyber Security: the Legal Perspectives Introduction
Cyber Crime and Legal Landscape around the world, Why Do We Need Cyber laws: The Indian Context, The Indian IT Act, Challenges to Indian Law and Cybercrime Scenario In India, Digital signatures and the Indian IT Act, Amendments to the Indian IT Act, Cybercrime and Punishment Cyber law, Technology and Students: Indian Scenario.
Understanding Computer Forensics
Introduction, Historical background of Cyber forensics, Digital Forensics Science, The Need for Computer Forensics, Cyber Forensics and Digital evidence, Forensics Analysis of Email, Digital Forensics Lifecycle, Chain of Custody concept, Network Forensics, Approaching a computer, Forensics Investigation, Challenges in Computer Forensics, Special Tools and Techniques Forensics Auditing
UNIT IV
Cyber Security: Organizational Implications
Introduction, cost of cyber crimes and IPR issues, web threats for organizations, security and privacy implications, social media marketing: security risks and perils for organizations, social computing and the associated challenges for organizations.

Cybercrime and Cyber terrorism: Introduction, intellectual property in the cyberspace, the ethical dimension of cyber crimes the psychology, mindset and skills of hackers and other cyber criminals

UNIT V
Cybercrime: Illustrations, Examples and Mini-Cases
Examples:
Official Website of Maharashtra Government Hacked, Indian Banks Lose Millions of Rupees, Parliament Attack, Pune City Police Bust Nigerian Racket, e-mail spoofing instances.

Mini-Cases:
The Indian Case of online Gambling, An Indian Case of Intellectual Property Crime, Illustrations of Financial Frauds in Cyber Domain, Digital Signature-Related Crime Scenarios.

Text book:

Reference book:
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) III Year II-Sem

DATABASE MANAGEMENT SYSTEMS
OPEN ELECTIVE-II

Prerequisites
1. A course on “Advanced Data Structures”

Objectives
1. To understand the basic concepts and the applications of database systems.
2. To master the basics of SQL and construct queries using SQL.
3. Topics include data models, database design, relational model, relational algebra, transaction control, concurrency control, storage structures and access techniques.

Outcomes
1. Gain knowledge of fundamentals of DBMS, database design and normal forms
2. Master the basics of SQL for retrieval and management of data.
3. Be acquainted with the basics of transaction processing and concurrency control.
4. Familiarity with database storage structures and access techniques

UNIT I:
Database System Applications: database system Vs. file system, view of data, data abstraction, instances and schemas, data models, the ER model, relational model, other models, database languages, DDL, DML, database access for application programs, database users and administrator, transaction management, database system structure, storage manager, the query processor, history of data base systems, data base design and ER diagrams, beyond ER design entities, attributes and entity sets, relationships and relationship sets, additional features of ER model, concept design with the ER Model, conceptual design for large enterprises.

UNIT II:
Introduction to the Relational Model: integrity constraint over relations, enforcing integrity constraints, querying relational data, logical data base design, introduction to views, destroying/altering tables and views, form of basic SQL query, examples of basic SQL queries, introduction to nested queries, correlated nested queries, set comparison operators, aggregation operators, NULL values, comparison using null values, logical connectivity’s, AND, OR and NOT, impact on SQL constructs, outer joins, disallowing NULL values, complex integrity constraints in SQL, triggers and active data bases, Oracle, SQL Server, DB2.

UNIT III:
Relational Algebra: Selection and projection, set operations, renaming, Joins, Division, Examples of Algebra overviews, Relational calculus, Tuple relational Calculus, Domain relational calculus, Expressive Power of Algebra and calculus.
Schema refinement: Problems caused by redundancy, decompositions, problems related to decomposition, reasoning about functional dependencies, FIRST, SECOND, THIRD normal forms, BCNF, lossless join decomposition, dependency preserving decomposition, schema refinement in database design, multi valued dependencies, FOURTH normal form, FIFTH normal form.

UNIT IV:
UNIT V:

Text Books:

References:
2. Fundamentals of Database Systems, Elmasri Navratae Pearson Education
3. Introduction to Database Systems, C.J. Date Pearson Education
4. Oracle for Professionals, The X Team, S.Shah and V. Shah, SPD.
5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah,PHI.
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) III Year II-Sem

CORROSION ENGINEERING
OPEN ELECTIVE-II

Pre-requisites: NIL

Course Objectives:
1. To demonstrate electrometallurgy principles in deposition winning and the efficiency of the bath.
2. To determine corrosion rate/ resistance of metals and alloys.
3. To explain corrosion protection methods and tests.

Course Outcomes:
At the end of the course the student will be able:
1. To gain knowledge in various types of electrolytic cells and the processes taking place in them.
2. To obtain knowledge about the importance of controlling corrosion and its prevention measures.
3. The course is useful for higher studies, R&D, and also for getting into jobs in industries.

UNIT - I
Introduction, Electro Chemistry principles, electrochemical reactions, Polarization, passivity, environmental effects (oxygen, oxidizers, velocity, temperature, corrosive concentration, Galvanic coupling).

UNIT - II

UNIT - III
Intergranular corrosion: Sensitization, weld decay, Knife-Line attack, Stress corrosion cracking: crack morphology, stress effects, environmental factors, metallurgical factors, Erosion corrosion: cavitation damage, fretting corrosion, Corrosion fatigue.

UNIT - IV

UNIT - V
Modern theory and applications of corrosion: Introduction, free energy, cell potentials, emf series, applications of thermodynamics to corrosion, Corrosion rate expressions and measurements, corrosion testing.

Text / Reference Books:
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. /MBA) III Year II-Sem

TESTING OF MATERIALS
OPEN ELECTIVE-II

Pre-requisites: NIL

Course Objectives:
1. To gain and understanding of the response of various metals under the application of stress and/or temperature.
2. To build necessary theoretical background of the role of lattice defects in governing both elastic and plastic properties of metals will be discussed.
3. Obtain a working knowledge of various hardness testing machines BHN, VHN, RHN
4. Obtain a working knowledge of creep and fatigue and analysis of data.

Course Outcomes:
At the end of the course the student will be able to:
1. Classify mechanical testing of ferrous and non-ferrous metals and alloys.
2. Recognize the importance of crystal defects including dislocations in plastic deformation.
3. Identify the testing methods for obtaining strength and hardness.
4. Examine the mechanisms of materials failure through fatigue and creep

UNIT – I
Introduction, Importance of testing
Hardness Test: Methods of hardness testing – Brinell, Vickers, Rockwell hardness tests.
The Impact Test: Notched bar impact test and its significance, Charpy and Izod Tests, fracture toughness testing - COD and CTOD tests, significance of transition temperature curve.

UNIT - II

UNIT - III

UNIT – IV
Creep and Stress Rupture: Introduction, The creep curve, Stress-rupture test, Structural changes during creep, Mechanism of creep deformation, theories of creep. Fracture at elevated temperature.

UNIT – V
NDT: Principle, Operation, Advantages and Limitations of Liquid Penetrant, Magnetic Particle, Radiography and Ultrasonic tests.

TEXT / REFERENCE BOOKS:
1. Mechanical Metallurgy – G. E. Dieter
2. Mechanical behavior - Ed. Wulf.
Objectives:
- To know the Classification of solid waste and characterization of the same
- Understand the sense of onsite handling storage and collection systems including transportation
- Understand the different processing technologies of solid waste.

Outcomes:
The student will be able to
- Apply the knowledge of characterization of waste and develop a suitable management plan
- Assess the cost of transportation and laboratory processing of solid waste
- Identify hazardous nature of waste if any and can suggest suitable dumping methods.
- Suggest processing waste for material for energy recovery.

Unit I


Unit II

Unit III

Unit IV


Unit V
Case studies: Major industries and management methods used in typical industries – Coal fired power stations, textile industry, oil refinery, distillery, sugar industry, and radioactive waste generation units.

Text Books:

Reference Books:
MARKETING MANAGEMENT  
PG CORE-I  

(Students must read textbook. Faculty are free to choose any other cases)  

Course Aim: The aim of the Marketing Management Course is to provide students the marketing skills and enable them .  
- To understand the basic marketing trends through case studies.  
- To familiarise with basic concepts of marketing mix and strategies  
- To get oriented to the tools required to help develop and implement marketing strategies.  

Learning outcome:  
The students would be able to describe key marketing concepts, theories and techniques for analyzing a variety of marketing situations  
By reading text and relating the concepts through cases the student would be able to understand the importance and role of marketing in a global environment  
They will be able to analyze markets and design customer driven strategies and will be able to communicate the decisions towards business development with superior customer value.  

Case 1: Bata (Rajendra.P Maheshwari page no: 03)  
Case 2: Mahindra Scooters (Arun Kumar page no: 89).  
Case 3: Ready Meal Manufactures (Adrian palmer, page no: 70).  
Case 4: Santoor –(lamb Hair– page no : 238).  
Case 5: Drawing on data, searching for insight (Adrian palmer – Page no: 175).  

Case 1: Small New Phones (Adrian palmer- page no: 296).  

Case 1: (Segmentation) Zee TV (lamb, Hair page no 212).  
Case 2: (Targeting) Kellogg’s (lamb, Hair page no 300 ).  
Case 3: (Positioning) Nimbooz (S. Neelamegham page no 225).  

4. Distribution Decisions, Promotion & Communication Strategies : Marketing Channels, Channel intermediates and functions, channel structure, channel for consumer products, business and industrial products, alternative channel, channel strategy decisions. The promotional mix, advertising, public relations, sales promotion, personal selling, marketing communication- communication process, communication promotion mix, factors effecting the promotion mix  
Case 1: Barista (Arun Kumar – page no:33).  
Case 2: Nano Car (lamb, Hair – page no:52)  
Case 4: TESCO (Adrian palmer page no : 388 )  
Case 5: Hero Motor Corp (lamb, Hair Page no:446)  
5. Pricing Decisions & Personal Communication - Importance of price, cost determinant of price, markup pricing, profit maximization pricing, break even pricing, pricing strategy, ethics of pricing strategy, product line pricing, WOM, Rural marketing, BOP, relationship marketing, Digital marketing, Social marketing, post modern marketing, market sustainability and ethics, Global marketing.

   Case 1: Coca Cola (lamb, Hair – page no: 112).
   Case 4: Compact car (Arun Kumar page no :369)
   Case 5: Chick (lamb,Hair Page no:850)
   Case 6: Nokia (Neelamegham page no– 645).
   Case 8: Airtel (Arun – page no: 901)
   Case 9: Beer Marketing (Adrian palmer page no:529)

Textbook:
   Journal : MICA Communications Review – A Marketing Communications Journal, Mudra Institute of Communications, Ahmedabad.
   Business Game
   Music2Go Marketing: (Marketing Management Simulation Game), TMH, 2013. You can play on any computer with internet (Rs.150/- per year-better buy and play).
IDP (B.Tech. CSE & M.Tech. / MBA)  
JNTUH COLLEGE OF ENGINEERING HYDERABAD  

IDP (B.Tech. CSE & M.Tech. / MBA) IV Year I-Sem  

L T P C  
4 0 0 4  

HUMAN RESOURCE MANAGEMENT  
PG CORE-II  

(Students must read textbook. Faculty are free to choose any other cases)  

Course Aim:  
To understand various terms in HRM and be able to manage the human resources of an organization effectively and efficiently.  

Learning Outcome:  
Students should be able to understand the basic HR concepts. They will be able to understand the process of recruitment, selection, performance appraisal, training & development, compensation and employee retention approaches and strategies.  

***  

Unit-I:  

Case: Social Surveyors in Flood-hit Areas (Gary Dessler page no 160)  
Case: Finding people who are passionate about what they do (Gary Dessler page no 195)  
Case: HR, CULTURE and Business Results Success at Google, Scripps and UPS (Robert L Mathis P.No. 35)  
Case: Religious Accommodation (Robert L Mathis P. No. 118)  
Case: Mitsubishi Believes in EEO-Now (Robert L Mathis P. No. 119)  

Unit-II:  

Case: Reinventing the wheel at apex door Company (Gary Dessler page no 309)  
Case: Xerox Focuses on HR (Robert L Mathis P. No. 79)  
Case: where do you find the Bodies? (Robert L Mathis P. No. 79)  
Case: The Reluctant Receptionist (Robert L Mathis P. No.159)  
Case: Accenture –Retaining for Itself (Robert L Mathis P. No.193)  
Case: Recruiting at Kia (Robert L Mathis P. No. 231)  
Case: Strategic Selection: A Review of Two Companies (Robert L Mathis P. No.267)  

Unit-III:  

Case: Training Crucial for Hotels (Robert L Mathis P. No. 307)  
Case: performance management improvements for Bristol-Myers Squibb (Robert L Mathis P. No. 393)  
Case: Just Another Job (Robert L Mathis P. No. 647)  
Case: The Dilemma Within (Robert L Mathis P. No. 667)  
Case: Performance Appraisal at Cola Magic Drinks (Robert L Mathis P. No. 671)  
Case: Appraising the secretaries at Sweet water U? (Gary Dessler page no 349)

Case: Salary inequities at ACME Manufacturing (Gary Dessler page no 429)
Case: HR Contributes at CSSCO (Robert L Mathis P. No. 36)
Case: Compensation changes at JC Penny (Robert L Mathis P. No. 435)
Case: Benefiting Connie (Robert L Mathis P. No. 507)


Case: The New Safety and Health Program (Gary Dessler page no 623)
Case: Full Disclosure on Sex Offenders? (Robert L Mathis P. No. 231)
Case: Wal-Mart and Watching Its “Union Prevention” (Robert L Mathis P. No. 629)

REFERENCES:
SALES AND DISTRIBUTION

PG Elective-I (Marketing)

(Students must read textbook. Faculty are free to choose any other cases)

Aim: The aim of this course is to enable students to the sales and distribution processes with particular focus on Sales Management and Sales Personnel, the role of Distribution Channels and enabling them to manage Channel partners.

To expose students to the tools and strategies necessary for designing, motivating and evaluating sales & distribution management systems.

Learning outcomes:

- The student should be able to manage the sales force and distribution processes through sales planning and Budgeting.
- The Students should be able to understand & appreciate the diverse variables affecting the sales & distribution function and analyse their impact on the sales and distribution processes.

1. **Introduction to Sales Management:** Evolution of Sales Management, importance of Sales Management, types of Selling, difference between Selling and Marketing, Modern Day Sales Activities, Selling Skills, Selling Strategies, Selling Process.
   - Case: United air flow manufacturer of households appliances sales persons job. (Richard R.Still page no 115 to 118)

2. **Sales Planning and Budgeting:** Sales planning process, sales forecasting methods, sales budgeting process, methods used for deciding sales budget, types of quotas and quota setting procedure, reasons for establishing or revising sales territories, routing and scheduling sales persons, market cost analysis.
   - Case: Augsburg Wiesel Ltd, manufacturer of table ware, establishment of sales territories (Richard R Still, Page no 603 to 605)
   - Case: Midland office engineering, establishment of sales budgeting program, (Richard R Still, page no 588 to 589)

3. **Sales Force Management:** Recruitment and selection of the sales force, training the sales force, sales force motivation, sales force compensation, sales force control and evaluation.
   - Case: 1 Adjusting Compensation Plan to Motivate Sales Representatives ( K.Sridhara Batt, page no 576 to 577)
   - Case: 2 Sales Force Strategy at Life Insurance Corporation (K.Sridhara Batt, page no 579)

4. **Introduction to Distribution Management**
   Definition of Distribution Management, need for Distribution Channels, Distribution Channels for Rural Markets, designing the Marketing Channels, Motivating and Evaluating Channel Members, Capturing the Customer requirements
   - Case: 1 Fed Ex’s Value Chain Solutions, (K.Sridhara Batt page no 618 to 620)
   - Case: 2 The National Handloom Development Corporation. (Tapan K. Panda, Sunil Sahadev page no. 504)
5. Managing Channel Institutions
Managing Channel Information Systems, Managing Retailers, Wholesalers, Franchisers, Designing Channel Systems, reasons for Channel Conflicts, Managing Conflict, Managing International Channel of Distribution, Ethical issues in Sales and Distribution Management

Case: 1 Kinetic Engineering Company, Handling Channel Conflict, (Krishna K Havalidar, Vasant page no 461)
Case: 2 Indian Ayurveda Pharmacy Limited, (Tapan K. Panda, Sunil Sahad page no 719)

Textbook

Journal: MICA Communications Review – A Marketing Communications Journal, Mudra Institute of Communications, Ahmedabad.

Business Game: Music2Go Marketing: (Marketing Management Simulation Game), TMH, 2013. You can play on any computer with internet (Rs.150/- per year-better buy and play).
Music2Go is a Principles of Marketing/Marketing Management simulation game, where the students are required to formulate and implement their own Sales and Marketing Campaign. This helps the students to have a hands – on business experience in the classroom – experiential learning at its best.
Course Objectives:
1. To provide the students information on the Career opportunities in training, important concepts and meanings, Integrating strategy and training.
2. To enable the students to understand the design of training, implementation
3. To introduce the knowledge of evaluation of training programs in the organization.

Learning Outcome:
1. The student will be familiar with how to do training need analysis
2. Students will be able to learn various training methods, design training programs, implement training programs.
3. They also gain the knowledge to evaluate the effectiveness of training programs.

1. Training in organizations: Trends in training, Career opportunities in training, important concepts and meanings, Integrating OD, strategy and training, understand motivation and performance, aligning training design with learning process.
   Case : Taking Charge at Domtar : What it takes for a turnaround? (Nick Blanchard)
   Case :LG Electronics ((Nick Blanchard)
   Case : The wilderness training lab((Nick Blanchard)

2. Need Analysis and Training design: The Training Need Analysis (TNA) Model, TNA and Design, organizational constraints, developing objectives, Facilitation of learning and training transfer to the job, design theory.
   Case : Developing a training package at westcan (Nick Blanchard)
   Case : The Training program (Fabrics Inc.) (Nick Blanchard)

3. Training methods: Matching methods with outcomes, lectures and demonstrations , games and simulations, OJT, computer based training.(CBT).
   Case : Training & Development at Godrej. (Nick Blanchard)

4. Implementation & Evaluation of Training: Development of training, implementation, transfer of training, major players in training & development, rational for evaluation, resistance to training evaluation, types of evaluation.
   Case : Jack goes to training. (Nick Blanchard)
   Case 3 : Training designed to change behavior and attitude. (Nick Blanchard)

5. Areas of organizational Training: Orientation training, diversity training, sexual harassment training, team training, cross functional teams, cross cultural training, training for talent management and competency mapping.
   Case 4: The competent employee. (Nick Blanchard)

Textbook:

References:
FINANCIAL MANAGEMENT
PG Elective-I (Finance)

(Students must read textbook. Faculty are free to choose any other cases)
'The students need Discounting Table and Annuity tables for the examination

Course Aim: To give an overview of the functions of a financial manager in the commercial world with a particular focus on the concepts and theories of corporate finance.

Learning Outcome:
The students will gain skills to understand, evaluate and resolve the problems confronted by the financial managers. They will gain in insight into the decision making process of a financial manager based on timely, relevant and reliable financial and non-financial information. This course will further help the students to understand the diligent use of resources efficiently, effectively and economically.

1. The Finance Function: Nature and Scope; Evolution of finance function – Its new role in the contemporary scenario – Goals of finance function – maximizing vs. satisfying; Profit vs. Wealth vs. Welfare; the Agency relationship and costs; Risk-Return trade off; Concept of Time Value of Money – Future Value and Present value and the basic valuation model.

2. The Investment Decision: Investment decision process- Project generation, project evaluation, project selection and project Implementation. Developing Cash Flow; Data for New Projects; Capital Budgeting Techniques –Traditional and DCF methods. The NPV vs. IRR Debate; Approaches for reconciliation. Capital budgeting decision under conditions of risk and uncertainty. Cost of capital: Concept and measurement of cost of capital, Debt vs. Equity, cost of equity, preference shares, equity capital and retained earnings, weighted average cost of capital and marginal cost of capital. Importance of cost of capital in capital budgeting decisions.


4. Dividend Decisions: Dividends and value of the firm - Relevance of dividends, the MM hypothesis, Factors determining Dividend Policy-dividends and valuation of the firm-the basic models. Declaration and payment of dividends. Bonus shares. Rights issue, share-splits, Major forms of dividends – Cash and Bonus shares. The theoretical backdrop – Dividends and valuation; Major theories centered on the works of GORDON, WALTER and LITNER. A brief discussion on dividend policies of Indian companies. Working Capital Management: Components of working capital, gross vs. net working capital, determinants of working capital needs, the operating cycle approach. Planning of working capital, Financing of working capital through Bank finance and Trade Credit – Recommendations of Tandon and Daheja Committee on Working Capital. Cases.

Textbook

References:
7. IM Pandey, Cases in Financial Management, TMH 2/e, 2012
Course Objectives
1. To provide students basic concepts of MIS and IS models
2. To explain integration process of MIS with Enterprise Resource Planning (ERP)
3. To provide a practical framework for Information System operations and management

Learning Outcomes
1. Students learn different models of MIS and their applicability in various business resource requirement plans
2. Students learn user training, operations, control, troubleshooting and maintenance aspects of MIS
3. Students will appreciate what is the successful design and implementation of MIS in business departments and operations


References
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. / MBA) IV Year I-Sem

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

**SOFT SKILLS LAB**
(Activity-based)

- To improve the fluency of students in English
- To facilitate learning through interaction
- To illustrate the role of skills in real-life situations with case studies, role plays etc.
- To train students in group dynamics, body language and various other activities which boost their confidence levels and help in their overall personality development
- To encourage students develop behavioral skills and personal management skills
- To impart training for empowerment, thereby preparing students to become successful professionals

**INTRODUCTION**
Definition and Introduction to Soft Skills – Hard Skills vs Soft Skills – Significance of Soft/Life/Self Skills – Self and SWOT Analysis

1. **Exercises on Productivity Development**
   - Effective/Assertive Communication Skills (Activity based)
   - Time Management (Case Study)
   - Creativity & Critical Thinking (Case Study)
   - Decision Making and Problem Solving (Case Study)
   - Stress Management (Case Study)

2. **Exercises on Personality Development Skills**
   - Self-esteem (Case Study)
   - Positive Thinking (Case Study)
   - Emotional Intelligence (Case Study)
   - Team building and Leadership Skills (Case Study)
   - Conflict Management (Case Study)

3. **Exercises on Presentation Skills**
   - Netiquette
   - Importance of Oral Presentation – Defining Purpose- Analyzing the audience- Planning outline and preparing the Presentation- Individual & Group Presentation- Graphical Organizers- Tools and Multi-media Visuals
   - One Minute Presentations (Warming up)
   - PPT on Project work- Understanding the Nuances of Delivery- Body Language – Closing and Handling Questions – Rubrics for Individual Evaluation (Practice Sessions)

4. **Exercises on Professional Etiquette and Communication**
   - Role-Play and Simulation- Introducing oneself and others, Greetings, Apologies, Requests, Agreement & Disagreement….etc.
   - Telephone Etiquette
   - Active Listening
   - Group Discussions (Case study)- Group Discussion as a part of Selection Procedure-Checklist of GDs
   - Analysis of Selected Interviews (Objectives of Interview)
   - Mock-Interviews (Practice Sessions)
   - Job Application and Preparing Resume
   - Process Writing (Technical Vocabulary) – Writing a Project Report- Assignments
5. Exercises on Ethics and Values

Introduction — Types of Values - Personal, Social and Cultural Values - Importance of Values in Various Contexts

- Significance of Modern and Professional Etiquette – Etiquette (Formal and Informal Situations with Examples)
- Attitude, Good Manners and Work Culture (Live Examples)
- Social Skills - Dealing with the Challenged (Live Examples)
- Professional Responsibility – Adaptability (Live Examples)
- Corporate Expectations

Note:
- Hand-outs are to be prepared and given to students.
- Training plan will be integrated in the syllabus.
- Topics mentioned in the syllabus are activity-based.

SUGGESTED SOFTWARE:
The following software from ‘train2success.com’
- Preparing for being Interviewed,
- Positive Thinking,
- Interviewing Skills,
- Telephone Skills,
- Time Management
- Team Building,
- Decision making

SUGGESTED READING

12. The Hindu Speaks on Education by the Hindu Newspaper
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. / MBA) IV Year II-Sem

RESEARCH METHODOLOGY & STATISTICAL ANALYSIS
PG CORE-III

(Students must read textbook. Faculty are free to choose any other cases)

Course Aim: To understand the basic statistical tools for interpretation of quantitative and qualitative data.

Learning Outcome: Students will be able to apply the principles of research methodology for the research design for the various mini and major projects of the MBA programme. They will be able to analyse the data statistically.


2. **Tabulation, Graphical presentation of data**: Histogram, Diagrammatic representation of data: Bar diagram, Multiple Bar diagram, Sub-divided Bar Diagram, Pie Diagram, Measures of Central Tendency: Mean, Median and Mode. Measures of Dispersion: Range, Standard deviation and Variance, Coefficient of variation, Measure of Skewness.

3. **Linear Correlation and Regression Analysis**: Covariance, Pearson’s Correlation Coefficient, Scatter plot, Spearman’s rank Correlation Coefficient, Regression lines.

4. **Parametric and Non-Parametric Hypothesis Testing**: Procedure for Testing of Hypothesis, One Sample t-test for the Population Mean, Two Sample t-test for independent Samples, Paired Sample t-test. F-test for two population Variances (Variance ratio test), ANOVA One Way Classification, ANOVA two way Classification, Chi Squares test of association, Chi Square test of independence.

5. **Time Series and Data Analysis**: Fitting a trend line to a time series, Method of least Squares and Method of Moving Averages, Measure of Seasonal Variation.

Textbook

References:
BUSINESS LAW AND REGULATION
PG CORE-IV

(Students must read textbook along with cases. Faculty are free to choose any other cases)

Course Aim: The aim of this course is to enable students understand legal and regulatory framework for doing business in India.

Learning Outcome: After going through the text and case lets in terms of various court judgements, the students should be able to understand the formalities involved in incorporating a company and the nuances related to the Law of Contract. The student will also be able to know the implications of direct and indirect taxes, negotiable instruments Act and also about the cyber laws.


5. Cyber Crime and the Legal Landscape-the world-Why do we need cyber laws in the indian context-The indina IT act-challenges to indian Law and cyber crime scenario in india. (Refer Nina Godbole & Sunit Belapure)

Textbook:
1. RSN Pillai, Bagavathi, Business Law, S.Chand, 2013.

References
Aim: The aim of this course is to a) enable students to understand management of marketing communication, marketing mix and ethical aspects of marketing communication b) choose a marketing communications mix to achieve the communications and behavioral objectives of the IMC campaign plan.

Learning outcome
- The student should be able to design innovative integrated marketing communication strategies for a given product or service using social media.
- Students will be able to create an integrated marketing communications plan to promote IMC strategies and to measure their effectiveness.

   Case: Cadbury Manages a Crisis with Integrated Marketing Communications (Kruti Shah page no 59)

2. Budgeting, Objectives and Evaluation of IMC: Setting Communication Objectives, DAGMAR Approach to setting objectives and measuring advertising effectiveness, allocating the Marketing Communication Budget, Conducting research to measure communication effectiveness, Post-Testing tools and techniques, Evaluating other promotional tools and IMC.
   Case: The Premium Milk Food Private Ltd. (Kruti Shah page no 820)

3. Marketing Communication Mix I:
   Creative Execution in Advertising, Decision in Print, Execution on Radio, Execution on online and television, getting that ‘Big Idea’ of creativity.
   Case: Tata Salt (Part I,II,III) (Kruti Shah page no 282,284,310-311,367-372)

4. Marketing Communication Mix II:
   Case: Amul taste of India (Kruti Shah page no 793)
   Case: Rasha Preankees promotion (Kruti Shah page no 600)

5. Regulation, Social and Ethical Aspects of Advertising and Promotion:
   Case: Surrogate advertising (Jaishri Jethwaney page no 475-480)
   Case: The Unilever experience (Jaishri Jethwaney page no 606)
Textbook:

  
  Journal : MICA Communications Review – A Marketing Communications Journal, Mudra Institute of Communications, Ahmedabad.

Businesss Game : AdSim Advertising: (Advertising & Promotion Simulation Game), TMH, 2013. You can play on any computer with internet (Rs.150/- per year-better buy and play).

AdSim is a simulation game for the Advertising & Promotion course, where the students are required to formulate and implement their own Advertising and Promotion campaign. This helps the students to have an hands – on business experience in the classroom – experiential learning at its best.

References:

MANAGEMENT OF INDUSTRIAL RELATIONS  
PG Elective – II (HR)  

(Students must read textbook. Faculty are free to choose any other cases)

Course objectives:
1. The aim of the course is to enable HR elective students develop awareness towards labour laws.
2. The students will be introduced, how to deal with legal problems emanating from employer and employee relations in organizations.
3. To introduce the students with the concept of collective bargaining, employee welfare, wage policy act.

Learning Outcomes:
1. The student understands the industrial relations, its importance in HR
2. Various Labour Laws like Factories Act, Wage and Bonus Act and Dispute Preventive and Corrective Mechanisms are learnt.
3. They will also understand the role of Trade Unions, Settlement of disputes, Collective Bargaining, Wage Policy.

   Case 1. Let us get back to work (p.no. 720, C.B.Mamoria)  
   Case 2. A case of complicated multi-union manoeuvres (J.A. Kulkarni)

   Case 1. Stop the shouting game please (p.no. 760, C.B.Mamoria)  
   Case 2. The dish ends ltd. (p.no.07, J.A. Kulkarni)

   Case 1. who is to be blamed (p.no. 685, C.B.Mamoria)

   Case 1. Rules and regulations still guide actions at UPS (p.no. 37, C.B.Mamoria)

   Case 1. Organizations and unions working as partners (p.no. 738, C.B.Mamoria)

Textbook:

Cases:
References:
1. Dr K S Anandram “Cases in Personnel Management Industrial Relations and Trade Relations” Everest, 2012.
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. / MBA) IV Year II-Sem

SECURITY ANALYSIS PORTFOLIO MANAGEMENT
PG Elective-II (Finance)

(Students must read textbook. Faculty are free to choose any other cases)

Course Aim: To understand the investment alternatives, process and portfolio management.

Learning Outcome: The objective of this course is to provide the conceptual and practical understanding of stock markets, equity & bond valuation, cash market, and also mutual funds.

1. a) Investment Environment in India, overview of Indian financial system, securities trading in stock markets, investment alternatives, the investment management process.

2. Portfolio Analysis: The returns and risks from investing- Markowitz portfolio Theory, Mean-variance approach, portfolio selection-efficient portfolios, The single index model-capital asset pricing model, arbitrage pricing theory.


4. a) Equity Valuation: Equity Analysis & Valuation, Balance sheet Analysis equity valuation models, intrinsic value & market price, The P/E Ratio & Earnings multiplier Approach, CAGR, Price/Book value, Price/ Sales ratio, Economic Value Added (EVA) and MVA.


Textbooks:


Journals: Vikalpa, IIMA, IIMB Review, Decision, IIMC, Vision, MDI.

Business Game: Stock-Trak: (Finance Simulation Game), TMH, 2013- You can play on any computer with internet (Rs.150/- per year-better buy and play).

Stock-Trak is the most comprehensive, Online investment simulation game for Finance students to trade on Stocks, bonds, mutual funds, options, futures, spots, future options and international stocks with virtual money. This game is created specifically for classroom use and students can play this game 24*7 to give them hands-on experience on Investments.

References:

2. ZVI Bodie, AlexKane, Alan J Marcus : Investments, TMH, 2012.
JNTUH COLLEGE OF ENGINEERING HYDERABAD

ENTERPRISE RESOURCE PLANNING
PG Elective – II (SYSTEMS)

(Students must read textbook. Faculty are free to choose any other cases)

Course Objectives
1. To provide students the foundations of ERP planning and system options
2. To provide framework of general and specialized modules of ERP
3. To provide students a risk-benefit analysis of ERP system

Learning Outcomes
1. Students understand a) integration of various ERP modules with each other and with Business Environment b) the issues in operation and implementation of a successful ERP system and c) how to face the challenges associated with the present and future ERP systems.

1. Introduction to ERP - Foundation for Understanding ERP systems-Buisiness benefits of ERP-The challenges of implementing ERP system-ERP modules and Historical Development. Case: Response to RFP for ban ERP system (Mary Sumner).


3 ERP system Installation Options - IS/IT Management results-Risk Identification analysis-System Projects- Demonstration of the system-Failure method-system Architecture & ERP (David L.Olson) Case: DataSolutions & Technology Knowledge (Mary Sumner).


Textbook:

References:
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. / MBA) IV Year II-Sem

STATISTICAL ANALYSIS LAB USING SPSS / EXCEL

Course aim: The course aims is to understand MS Excel for applying statistical tools learnt in RMSA.

Learning Outcome: The learning outcome is that the students should be able to:
- Analyse the data to draw inference for decision making.
- Understand application of statistical measures of central tendency.
- Understand application of ANOVA.
- Analyse trends.
- Test hypotheses.

Syllabus - PART A

About EXCEL
2. Getting started with excel: Opening a blank or new workbook, general organization.
4. Highlights and main functions: Data, review, view, add-ins.
5. Using the Excel help function.

General EXCEL Lessons
6. Customizing the Quick Access Toolbar.
7. Creating and Using Templates.
9. Formatting Data and Using the Right Mouse Click.
12. Manipulating Data, using Data Names and Ranges, Filters and Sort and Validation Lists.
13. Data from External Sources.
15. Basic Formulas and Use of Functions.

ADVANCED EXCEL LESSONS
19. Advanced Formulas and Functions.
20. Advanced Worksheet Features.

PART B – STATISTICAL TOOLS FOR EXECUTION USING EXCEL

I. Tabulation, bar diagram, Multiple Bar diagram, Pie diagram, Measure of central tendency: mean, median, mode, Measure of dispersion: variance, standard deviation, Coefficient of variation.
II. Correlation, regression lines.
III. t- test, F-test, ANOVA one way classification, chi square test, independence of attributes.
IV. Time series: forecasting Method of least squares, moving average method.
V. Inference and discussion of results.

Text

References:
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. / MBA) V Year I-Sem

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

STRATEGIC MANAGEMENT
PG CORE-V

(Students must read textbook. Faculty are free to choose any other cases)

Course Aim:
The aim of this subject is to enable the students develop a holistic perspective about Strategic management of an organization

Learning Outcome:
By reading the text and discussing the cases students should be able to understand how to scan internal and external environment of an organization, understand different types of strategies and structures, strategies of the competitors, turnaround strategies, global strategies and strategic control. With that knowledge they would be able to formulate strategies, change strategies if necessary and implement strategies. They will also be able to evaluate strategies and take corrective steps.

Unit-I:
Case:Bharti Airtel (Hitt & Irelandpage no 4).
Case: ITC Limited (Hitt & Ireland page no 30).

Unit-II:
Formulation of Strategic Actions: Business level strategy-Effectively managing relationships with Customers-the purpose of Business strategy. Competitive Rivalry and Dynamics - A Model of Competitive Rivalry-Competitor Analysis-Drivers of Competitive actions and responses-Competitive rivalry and dynamics.
Case:Bajaj Auto limited (Hitt & Ireland Page no 80).
Case: Coca cola Vs Pepsi in India (Hitt & Irelandpage. no108)

Unit-III:
Corporate level Strategy-Levels of Diversifications and reasons-Value creating diversifications. Strategic Acquisitions & Restructuring - Popularity of Mergers & Acquisitions strategies, problems in achieving Acquisition Success-Restructuring.
Case: Foster’s Group Diversification into the Wine Business (Hitt & IrelandPage 150)
Case: Merger and Acquisition Activity during a Global Crisis: Global and in India (Hitt & Ireland page 154) Focus : Troubles in the Godrej –P & G Alliance(Hitt & Irelandpage. no 223)

Unit-IV:
Global Strategy-Identifying International Opportunities and international Strategies-Strategic competitive Outcomes and risk in an international Environment. Corporate Implications for strategy-Strategic Alliances-corporate level cooperative strategy, Competitive risk with Cooperative strategies.
Case: Entry into India & China by Foreign Firms and Indian/Chinese Firms Reaching for Global markets (Hitt & Irelandpage. no 176).
Case: Using Cooperative Strategies at IBM (Hitt & Ireland page 206)

Unit-V:
Structure and Controls with Organizations-Organizational Structure and controls, Evolutionary Patterns of strategy and organizational structure. Leadership Implications for Strategy - Entrepreneurial Implications for Strategy. Fundamental principles of Ethics, Professional Ethics, Ethics of Finance & Accounting professionals, Cyber crimes, Ethics & Human rights
Case 1 CISCO’s Evolution of Strategy and Structure. (Hitt & Irelandpage. no 256)
Case 2 selecting a new CEO (Hitt & Irelandpage no 282)
Case 3 The Continuing innovation revolution at Amazon: The kindle and E-books(Hitt & Ireland page 304)
REFERENCES:

- Hitt & Ireland and Manikutty, "Strategic Management: A South Asian Perspective": Cengage Learning, 9e, 2012
- C.L. Bansal, Business and Corporate Laws, 1/e, Excel Books, 2006
Course Aim: The main aim of this course is a) to enable students to gain an insight into retailing industry and shopping environment. b) to familiarize them with concepts of Retailing through cases and motivate them to go for a career in retailing industry.

Learning outcome:
a. To enable the students to link Modern Retailing Concepts to cases and understand the present Retailing Trends.
b. To facilitate the students to be able to managing retail operations efficiently and effectively.

1. **Introduction to Retail Management** - Meaning of Retail & Retailing, History, types, functions, utilities, theories of retailing, e-tailing, structure of Indian retail industry, retailing in Asia, global retailing, retailing in Europe, service retailing, FDI retailing, Rural marketing, ethics in retailing.
   Case: The Classic story. (Aditya page no 283)
   Case: The Panwallah. (Aditya Prakash page no 287)

2. **Understanding Shoppers & Shopping** - Shopping Environment, shopping in a Socio Cultural Contest, shopping process shopping behaviour, demographics of Indian shoppers, psychographic profile of Indian shoppers, lifestyle of Indian shoppers, shopping patterns in India.
   Case: Multinational Fast Food Chains in India. Retail Management (Suja Nair page no 474)
   Case: Changing Indian Consumers. (Aditya page no 258)
   Case: Tanishq. (Suja Nair page no 440)

3. **Delivering Value through Retail Functions** - Classification of formats, ownership-based, store based, non-store based, other retail formats, Value Based Model of store format choice, attribute based model of store format choice, the competitive market place, Marketing Structure, the demand side of retailing, non price decisions, types of competition, evolution of retail competition, future changes in retail competition.
   Case: Nirula’s. (Suja Nair Page no 448)
   Case: Hot Breads. (Suja Nair page no 452)
   Case: McDonalds India. (Suja Nair page no 459)
   Case: Automobile and Niche Marketing (Dr. Harjit Singh page no 417)

   Case: Café Coffee Day. (Suja Nair page no 434)
   Case: Shoppers stop. (Suja Nair page no 470)

5. **Retail Buying & Managing Retail Operations** - objectives of buying, organization buying, retail buying behaviour, models of buying behaviour, buyer-responsibilities, merchandising & assortment plans-merchandise plan, merchandise plan for basic stocks retail buying groups, negotiations in retail, contract in retail, store layout & design, merchandise display-fixtures, positioning of merchandise, materials & finishes – floors, interior walls, ceilings, lightings, music, graphics-exterior signage, interior signage, layouts for e-tailers.
   Case: Godrej and Boyee’s. (Suja Nair page no 466)
Textbook


References:
5. Dr. Harjit Singh, Retail Management a global perspective text and cases, S.Chand, 2011.
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. / MBA) V Year I-Sem

SERVICES MARKETING
PG Elective-IV (Marketing)

(Students must read textbook. Faculty are free to choose any other cases)

Course Aim:
To facilitate the students about the concepts of Services Marketing through cases.

Learning Objective: The objective of the course is to provide a deeper insight into the Marketing Management of companies offering Services as product. The students will be able to understand the characteristics of services, understand consumer behaviour in services, align service design and standards, delivering service, managing services promises.

   Case 1: The United Indian Bank (Govind Apte Page no 55-56)
   Case 2: Online air travel: Expedia, Orbitz and Travelocity lead the pack (John E.G.Bateson Page no 82-83)

2. Focus on the Consumer: Consumer behaviour in services, Consumer expectations in service, consumer perceptions of service, Understanding Consumer Requirements-listening to customers through research, building customer relationships, service recovery.
   Case 1: The Crestwood Inn, (John E.G.Bateson Page no 320-321)
   Case 2: Population growth and the urban poor (Vinnie Jauhari, Kirti Dutta Page no 106-108)

3. Aligning Service Design and Standards: Service innovation and design-challenges, types of service innovations, stages in service innovation and development, service blueprinting, high performance service innovations, new Service Development Processes, Customer defined service standards-factors, types, and development, Physical Evidence and the Services cape.
   Case 1: Physical evidence a case of KF. (Vinnie Jauhari Page 236-238).
   Case 2: IT Trainers Limited. (Govind Apte Page no 186).

4. Delivering and Performing Service: Employee’s roles in service delivery, customer’s roles in service delivery, delivering service through intermediaries and electronic channels, managing demand and capacity.
   Case 2: Total Assurance Ltd. (Govind Apte Page 207-208).

5. Managing Service Promises: Integrated services marketing communications-need for coordination, five categories of strategies to match service promises with delivery, Pricing of Services-three key ways that service prices are different for customers, approaches to pricing services, pricing strategies that link to the four value definitions.

Textbook

   Journal : MICA Communications Review – A Marketing Communications Journal, Mudra Institute of Communications, Ahmedabad.
References

12. Dr. B. Balaji, Services Marketing and Management, S.Chand, 2012.
Course Aim: To enable the student understand the Global Markets, formulate of Global Marketing Strategies and Implement.

Learning Objective: The objective of the course is to provide a deeper insight into the global marketing management, environment of global markets, assessing global market opportunities, developing and implementing global marketing strategies.

   Case: 1 Starbucks—going Global fast. (Philip, John, Prashant Text)

   Case: 1 IKEA Catalogue. (Svend & Madhurima - Pearson page no 242)
   Case: 2 Mc. Donalds and obesity. (Philip John Prashant Text)

   Case: 1 Reliance Entertainment (Svend & Madhurima, Pearson page no 312)
   Case: 2 Mahindra & Mahindra (Svend & Madhurima, Pearson page no 356)
   Case: 3. IMAX corporation (Svend & Madhurima, Pearson page no 412)

   Case: 1 Harley-Davidson: Price level (Svend & Madhurima, Pearson page no 510)
   Case: 2 Mc Donalds Great Britain—the Turnaround (Text page no 793)

5. Implementing Global marketing strategies: Negotiation with customers and selection method, E-Marketing channels organization & controlling of the global marketing programme.
   Case: 1 NTT DOCOMO (Svend & Madhurima, Pearson page no 709)

Textbook


References

4. Dr. Gajender Sharma- International Marketing-1st edition-Excel Books-2010
COMPENSATION & REWARD MANAGEMENT
PG Elective – III (HR)

(Students must read textbook. Faculty are free to choose any other cases)

Course Aim:
It enables the student understand the concepts issues and challenges of compensation and reward management.

Learning Outcome:
The student understands how to design the compensation for various levels of jobs in the organization, designing the compensation for special groups. Government and legal issues in compensation design.

   Case: So you want to lead an orchestra (George T Milkovich page no 72)
   Case: Job Evaluation at whole foods (George T Milkovich page no 125)

2. Defining Competitiveness, Designing pay levels, Mix and pay structures, pay for performance. The Evidence pay for performance plans.
   Case: Burger Boy(George T Milkovich page no 249)
   Case: Incentives in the club House(George T Milkovich page no 279)

   Case: Merit pay: Making policies and practices that work (George T Milkovich page no 319)

4. Compensation of Special Groups, Union role in wage and Salary administration. International pay systems.
   Case: Compensation of special groups (George T Milkovich page no 443)
   Case: Coke and IBM(George T Milkovich page no 491)

5. Government and legal issues in compensation Public sector pay Management: Making it work.
   Case: Communicating by copier(George T Milkovich page no 575)

Textbook:

References:
 MANAGEMENT OF CHANGE  
PG Elective – IV (HR)  
(Student must read textbook. Faculty are free to choose any other cases)

Course Aim:
The course enables the student to understand the concept of change management. This will help them to emerge as leaders in the organizations.

Learning Outcome:
The student understands the need to bring change, how to design change in the organizations, role of leadership in change management, change communication and resistance to change and the role of HR in change management.

1. Managing Change Conundrums, Organizational change classifications, History and organizational change. The role of paradigms and perspectives. External and Internal change contexts.
   Case: Changing times at Factory Bank (Mark Hughes page no 70)  

2. Organizational design and change, strategic level change, Group and team level change, and Individual level change. Organizational Structure. Organizational Culture and Management of Change.
   Case: Restructuring at Flexco (Adrian page no 57)  
   Case: Cultural change at Dupont Nylon (Adrian page no 65)  

3. The leadership of Change, Change communication, resistance to change, Organizational learning, power, politics and Organizational change. Ethics and Managing Change, Change Agents and Agency.
   Case: Funding crisis at Musicians in the community (Mark Hughes page no 221)  

   Case: Recruitment and Selection at Unicol (Adrian page no 117)  
   Case: Reward Management at Midland Main Line - Strategic Reward Management (Adrian page no 191)  

   Case: Downsizing at Energy Co (Adrian page no 268)  
   Case: Evaluating a possible change to training methods at telesales Incorporated (Adrian page no 300)  

Textbook:

References:
JNTUH COLLEGE OF ENGINEERING HYDERABAD

IDP (B.Tech. CSE & M.Tech. / MBA) V Year I-Sem

PERFORMANCE MANAGEMENT
PG Elective - V (HR)

(Students must read textbook. Faculty are free to choose any other cases)

Course Aim:
To give an understanding about performance management and reward system linked with performance.

Learning Outcome:
The students can understand the importance of performance Management, Performance Appraisals, Reward System, and other performance related concepts.

   Case: Performance Management at Network Solutions,Inc (Herman Aguinis page no 26)
   Case: Performance Management at the University of Ghana (Herman Aguinis page no 48)

   Case: Accountabilities, Objectives and Standards (Herman Aguinis page no 113)
   Case: Evaluating the appraisal form used by a Grocery Retailer ((Herman Aguinis page no 145)

   Case: Implementation of 360 degree feed back system at Ridge intellectual (Herman Aguinis page no 204)
   Case: Was Robert Eaton A Good Coach (Herman Aguinis page no 233)

   Case: Possible Illegal Discrimination at Tractors,Inc. (Herman Aguinis page no 265)
   Case: Team Performance Management at Duke University Health systems. (Herman Aguinis page no 283)

5. Relevant Performance related concepts: Bench marking, Six Sigma, Competency Mapping, Balance Score card, Coaching and Mentoring Pygmalion effect, Job Analysis.
   Case: BHEL,EVA Incentive Schemes: (B D Singh page no 589)
   Case: The TCS Approach and experience(B D Singh page no 601)
   Case: NTPC Performance Management System(B D Singh page no 632)
   Case: Performance Management system(PMS) at Bharti Telecom(B D Singh page no 663)

Textbook.

Reference
Aim:
To develop an understanding of the role of financial strategy, in the investing, financing and resource allocation decisions with in an organization. To develop an understanding of the various strategies that are in use to trade off risk and return

Learning Outcome:
To explain the role and nature of investment and financial strategies and its relationship to maximization of wealth/shareholders value. To examine various risk models in capital budgeting. To evaluate the motives for financial implications of mergers and acquisitions and lease financing. To discuss the impact of general and specific inflation on financial and investment strategy decisions.


2. Types of Investments and disinvestments: Project abandonment decisions, Evidence of IRR. Multiple IRR, Modified IRR, Pure, simple and mixed investments. Lorie Savage Paradox. Adjusted NPV and impact of inflation on capital budgeting decisions.

3. Critical analysis of appraisal techniques: Discounted pay back, post pay back, surplus life and surplus pay back, Bail-out pay back, Return on Investment, Equivalent Annual Cost, Terminal Value, single period constraints, multi-period capital constraint and an unresolved problem, NPV mean variance analysis, Hertz Simulation and Hillier approaches. Significance of information and data bank in project selections.


5. Financing Decisions: Mergers and Acquisitions Basic Issues, Strategy, Diversification and Mergers and Acquisitions, Theories of Mergers, Types of Mergers, Cost of Mergers, Government guidelines for Takeover, Problems on Mergers & Acquisitions and cases

Textbooks:

References:
1. Prasanna Chandra: Financial Management, 8/e, TMH, 2012
JNTUH COLLEGE OF ENGINEERING HYDERABAD
IDP (B.Tech. CSE & M.Tech. / MBA) V Year I-Sem

INTERNATIONAL FINANCIAL MANAGEMENT
PG Elective – IV (Finance)

(Students must read textbook. Faculty are free to choose any other cases)

Course Aim:
To give an understanding about MNC Financial Management.

Learning Outcome:
The objective of the course is to provide students with a broad view of International Monetary Systems and its understanding to enable a global manager to do business in a global setting. The prerequisite for the course is Financial Accounting and Analysis and Financial Management.

1. International Financial Management: An overview, Importance, nature and scope, International Business Methods, Recent changes and challenges in IFM

2. International Flow of Funds: Balance of Payments (BoP), Fundamentals of BoP, Accounting components of BOP, Factors affecting International Trade flows, Agencies that facilitate International flows. Indian BoP Trends. International Monetary System: Evolution, Gold Standard, Bretton Woods’s system, the flexible exchange rate regime, evaluation of floating rates, the current exchange rate arrangements, the Economic and Monetary Union (EMU).


Textbooks:

References:
7. Reid. W.Click& Joshua D.Coval, PHI 2012
Aim:
To give an understanding about the derivatives in stock, commodity and Forex markets.

Learning Outcome:
The objective of this course is to make students efficient in the area of Derivatives, giving them the knowledge of basics in Derivatives, Future Markets, Option Strategies, etc.


   (b) **Basic Option Strategies**, Advanced Option Strategies, Trading with Options, Hedging with Options, Currency Options.

4. **Commodity Market Derivatives-** Introduction, Types, Commodity Futures and Options, Swaps. Commodity Exchanges- MCX, NCDEX- Role, Functions & Trading. (Refer : M.Ranganatham & R.Madhumathi)

5. **Swaps** – Concept and Nature, Evolution of Swap Market, Features of Swaps, Major types of Swaps, Interest Rate Swaps, Currency Swaps, Commodity Swaps, Equity Index Swaps, Credit Risk in Swaps, Credit Swaps, using Swaps to Manage Risk, Pricing and Valuing Swaps.

**Textbooks:**

**References:**
E-BUSINESS
PG Elective – III (SYSTEMS)

(Students must read textbook. Faculty are free to choose any other cases)

Course Aim:
It enables the student understand the concepts of Electronic Business.

Learning Outcome:
The student understands E-Business, its Models, E-Business plans, E-Business Application and Securing E-Business

   Case: Barnes & Noble nad Amazon. Com (Ref 1- Kulkarni).

   Case: B2C model at Aradhana Tours. ( Ref 1 Kulkarni)

   Case” FLOP (ref 1 :Kulkarni)

   Case Nokia ( Ref 1 Kulkarni)

   Case: Asmi Agencies-e-market ( Ref 1 Kulkarni)

Textbook:

Reference
Course Aim:
It enables the student to understand Cyber crime, Tools and methods used in cyber crime and Cyber Security.

Learning Outcome:
The student understands the cyber crimes. Computer forensic system, and Cyber Security.


2. Tools and methods used in cyber crime-Proxy servers and Anonymizers-Phishing-Password cracking-Key loggers and Spywares-Virus and worms-Trojan Horse and Backdoors-Steganography-SQL Injection-Buffer overflow-Attacks on wireless network.

3. Understanding computer forensic-Historical background of cyber forensic-Forensic analysis of e-mail-Digital forensic life cycle-Network forensic-Setting up a computer forensic Laboratory-Relevance of the OSI 7 Layer model to computer Forensic-Computer forensic from compliance perspectives.


Textbook:

Reference:
Course Aim:
It enables the student understand the concepts of Information System and Control.

Learning Outcome:
The student understands the audit standards, Audit Process, Computer assistance Audit tools, Managing Audit tools and Strategy and Standards for Auditing.

1. Audit and review the role of Information Technology-Audit standards-Importance of audit standard independence- AICPA proannouncements- The need for IT audit function- role of the IT auditor-Legal implications.
   Cases.

   Cases.

   Cases.

   Cases.

   Cases.

Textbook:
• Sandra Senft & fredrick “ Information Technology Control and Audit ” CRC Press, 2012.

Reference:
• D P Dube, V P Gulati, Information System Audit and Assurance – Includes case studies and chekists from the banking industry, TMH, 2008.