ACADEMIC REGULATIONS
COURSE STRUCTURE AND
DETAILED SYLLABUS

MECHANICAL ENGINEERING

For

M. Tech. (Engineering Design)
(Three Year Part Time Programme)

JNTUH COLLEGE OF ENGINEERING HYDERABAD
(Autonomous)
Kukatpally, Hyderabad – 500 085, Telangana, India.

2016
1.0 Part-Time Post-Graduate Degree Programmes in Engineering & Technology (PTPGP in E & T):
JNTUH offers 3 Year (6 Semesters) Part-time Master of Technology (M.Tech.) Degree Programmes, under Choice Based Credit System (CBCS) at its Constituent Autonomous College - JNTUH College of Engineering Hyderabad with effect from the Academic Year 2016 - 17 onwards in the different branches of Engineering & Technology with different specializations.

2.0 Eligibility for Admission:
2.1 Admissions to the PTPGPs shall be made subject to the eligibility, qualifications and specializations prescribed by JNTUH College of Engineering Hyderabad, JNT University Hyderabad, for each Specialization under each M.Tech. Programme, from time to time.

2.2 Admission to the PTPGP shall be made either on the basis of the Merit Rank obtained by the qualifying candidate at an Entrance Test conducted by the Jawaharlal Nehru Technological University Hyderabad / on the basis of any other order of merit approved by the University, subject to reservations as prescribed by the Government from time to time.

2.3 Candidates seeking admission to programmes on a part time basis should be working in or around the place where the programme is being run after passing the qualifying examination.

2.4 The medium of instructions for all PG Programmes will be ENGLISH only.

3.0 M.Tech. Programme (PTPGP in E & T) Structure:
3.1 The M.Tech. Programmes in E & T of JNTUH-CEH are of Semester Pattern, with 6 Semesters constituting 3 Academic Years, each Academic Year having TWO Semesters (First/Odd and Second/Even Semesters). Each Semester shall be of 22 Weeks duration (inclusive of Examinations), with a minimum of 90 Instructional Days per Semester.

3.2 UGC/ AICTE specified Definitions/ Descriptions are adopted appropriately for various terms and abbreviations used in these PTPGP - Academic Regulations.
3.2.1 **Semester Scheme:**
Each Semester having - ‘Continuous Internal Evaluation (CIE)’ and ‘Semester End Examination (SEE)’. Choice Based Credit System (CBCS) and Credit Based Semester System (CBSS) as denoted are taken as ‘references’ for the present set of Regulations. The terms ‘SUBJECT’ or ‘COURSE’ imply the same meaning here, and refer to ‘Theory Subject’, or ‘Lab Course’, or ‘Design/ Drawing Subject’, or ‘Seminar’, or ‘Comprehensive Viva’, or ‘Project’, as the case may be.

3.2.2 **Credit Courses:**
All Subjects (or Courses) are to be registered by a student in a Semester to earn Credits. Credits shall be assigned to each Subject/ Course in a L: T: P: C (Lecture Periods: Tutorial Periods: Practicals Periods : Credits) Structure, based on the following general pattern …
- One hour/ Week/ Semester for Theory/ Lecture (L) Courses; and,
- Two hours/ Week/ Semester for Laboratory/ Practical (P) Courses or Tutorials (T).
Other student activities like Study Tour, Guest Lecture, Conference/ Workshop Participations, Technical Paper Presentations etc., and identified Mandatory Courses if any, will not carry Credits.

3.2.3 **Subject/ Course Classification:**
All Subjects/ Courses offered for the PTPGP are broadly classified as : (a) Core Courses (CoC), and (b) Elective Courses (EℓC).
- Core Courses (CoC) and Elective Courses (EℓC) are categorized as PS (Professional Subjects), which are further subdivided as – (i) PC (Professional/ Departmental Core) Subjects, (ii) PE (Professional/ Departmental Electives) , (iii) Seminar, (iv) Comprehensive Viva, and (v) Project Work (PW).

3.2.4 **Course Nomenclature:**
The Curriculum Nomenclature or Course-Structure Grouping for the M.Tech. Degree Programmes is as listed below …

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Broad Course Classification</th>
<th>Course Group/ Category</th>
<th>Courses Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>Core Courses (CoC)</td>
<td>PC- Professional Core</td>
<td>Includes core subjects related to the Parent Discipline/ Department/ Branch of Engg.</td>
<td>20</td>
</tr>
<tr>
<td>2)</td>
<td>Elective Courses (EℓC)</td>
<td>PE– Professional Electives</td>
<td>Includes Elective subjects related to the Parent Discipline/ Department/ Branch of Engg.</td>
<td>32</td>
</tr>
<tr>
<td>3)</td>
<td>Core Courses</td>
<td>Project Work</td>
<td>M.Tech. Project or PG Project or PG Major Project</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seminar</td>
<td>Seminar/ Colloquium based on core contents related to Parent Discipline/ Department/ Branch of Engg.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Comprehensive Viva-voce</td>
<td>Viva-voce covering all the PG Subjects and related aspects</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Communication Skills/ Soft Skills</td>
<td>Lab oriented</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Credits for PTPGP 90
4.0 Course Work:

4.1 A Student, after securing admission, shall pursue and complete the M.Tech. PTPGP in a minimum period of 3 Academic Years (6 Semesters), and within a maximum period of 6 Academic Years (starting from the Date of Commencement of I Year).

4.2 Each student shall Register for and Secure the specified number of Credits required for the completion of the PTPGP and Award of the M.Tech. Degree in respective Branch of Engineering with the chosen Specialization.

4.3 I &II Year is structured to provide typically 14 Credits (14 C) in each of the I and II Semesters, and III Year comprises of 34 Credits (34 C), totaling to 90 Credits (90 C) for the entire M.Tech. Programme.

5.0 Course Registration:

5.1 A ‘Faculty Advisor’ shall be assigned to each M.Tech. Programme with respective Specialization, who will advise the Students about the M.Tech. Programme Specialization, its Course Structure and Curriculum, Choice/ Option for Subjects/ Courses, based on his competence, progress, pre-requisites and interest.

5.2 A Student may be permitted to Register for Subjects/ Courses of ‘his CHOICE’ with a typical total of 14 Credits per Semester in I &II Year (Minimum being 10 C and Maximum being 18 C, and 16 Credits (inclusive of Project) per V Semester in III Year (Minimum being 16 C and Maximum being 30 C), 18 credits (inclusive of Project) per VI Semester in III Year (minimum being 18 C and maximum 32 C), based on his interest, competence, progress, and ‘PRE-REQUISITES’ as indicated for various Subjects/ Courses, in the Department Course Structure (for the relevant Specialization) and Syllabus contents for various Subjects/ Courses.

5.3 Choice for ‘additional Subjects/ Courses’ in any Semester (above the typical 14/16/18 Credit norm, and within the Maximum Permissible Limit of 16/30/32 Credits, during I&II/ III Years as applicable) must be clearly indicated in the Registration, which needs the specific approval and signature of the Faculty Advisor/ Counselor on hard-copy.

5.4 Dropping of Subjects/ Courses in any Semester of I Year or II year may be permitted, ONLY AFTER obtaining prior approval and signature from the Faculty Advisor (subject to retaining a minimum of 10 Credits), ‘within 15 Days of Time’ from the beginning of the current Semester.

6.0 Subjects/Courses to be offered

6.1 A typical Section(or Class) sanctioned strength for each semester shall be 30.

6.2 A Subject/Course may be offered to the students ONLY if Minimum of 15 (1/2 of Section Strength) opt for the same. The Maximum strength of a Section is limited to 45(30+1/2 of the Section Strength).
7.0 Attendance Requirements:

7.1 A Student shall be eligible to appear for the End Semester Examination (SEE) of any Subject, if he acquires a minimum of 75% of attendance in that Subject for that Semester.

7.2 A Student’s Seminar Report and Seminar Presentation shall be eligible for evaluation, only if he ensures a minimum of 75% of his attendance in Seminar Presentation Classes during that Semester.

7.3 Condoning of shortage of attendance up to 10% (65% and above, and below 75%) in each Subject or Seminar of a Semester may be granted by the College Academic Council on genuine and valid grounds, based on the Student’s representation with supporting evidence.

7.4 A stipulated fee per Subject/Seminar shall be payable towards condoning of shortage of attendance.

7.5 Shortage of Attendance below 65% in any Subject/Seminar shall in NO case be condoned.

7.6 A Student, whose shortage of attendance is not condoned in any Subject(s) or Seminar in any Semester, is considered as 'Detained in that Subject(s)/Seminar', and is not eligible to take End Examination(s) of such Subject(s) (and in case of Seminars, his Seminar Report or Presentation are not eligible for evaluation) in that Semester; and he has to seek Re-registration for those Subject(s)/Seminar in subsequent Semesters, and attend the same as and when offered.

8.0 Academic Requirements:

The following Academic Requirements have to be satisfied, in addition to the Attendance Requirements mentioned in Item No. 7.

8.1 A Student shall be deemed to have satisfied the Academic Requirements and earned the Credits allotted to each Subject/ Course, if he secures not less than 40% Marks (28 out of 70 Marks) in the End Semester Examination, and a minimum of 50% of Marks in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together; in terms of Letter Grades, this implies securing B Grade or above in that Subject.

8.2 A Student shall be deemed to have satisfied the Academic Requirements and earned the Credits allotted to - Seminar, and Comprehensive Viva-voce, if he secures not less than 50% of the total Marks to be awarded for each. The Student would be treated as failed, if he - (i) does not attend the Comprehensive Viva-voce as per the schedule given, or (ii) does not present the Seminar as required, or (ii) secures less than 50% of Marks (< 50 Marks) in -Seminar/ Comprehensive Viva-voce evaluations.

He may reappear for comprehensive viva where it is scheduled again; For seminar, he has to reappear in the next subsequent Semesters, as and when scheduled.

8.3 A Student shall - register for all Subjects covering 90 Credits as specified and listed in the Course Structure for the chosen PTPGP Specialization, put up all the Attendance and Academic requirements for securing 90 Credits obtaining a minimum of B Grade or above in each Subject, and ‘earn all 90
Credits securing \(\text{SGPA} \geq 6.0 \) (in each Semester) and final \(\text{CGPA} \) (i.e., \(\text{CGPA at the end of PTPGP} \) \(\geq 6.0 \), to successfully complete the PTPGP.

8.4 Marks and Letter Grades obtained in all those Subjects covering the above specified 90 Credits alone shall be considered for the calculation of final \(\text{CGPA} \), which shall be indicated in the Grade Card of III Year II Semester.

8.5 If a student registers for some more ‘extra Subjects’ (in the parent Department or other Departments/Branches of Engg.) other than those listed Subjects totaling to 90 Credits as specified in the Course Structure, the performances in those ‘extra Subjects’ (although evaluated and graded using the same procedure as that of the required 90 Credits) will not be taken into account while calculating the \(\text{SGPA} \) and \(\text{CGPA} \). For such ‘extra Subjects’ registered, % marks and Letter Grade alone will be indicated in the Grade Card, as a performance measure, subject to completion of the Attendance and Academic Requirements as stated in Items 7 and 8.1 – 8.4 above.

8.6 Students who fail to earn 90 Credits as per the specified Course Structure, and as indicated above, within 6 Academic Years from the Date of Commencement of their I Year, shall forfeit their seats in M.Tech. Programme and their admissions shall stand cancelled.

8.7 When a Student is detained due to shortage of attendance in any Subject(s)/Seminar in any Semester, no Grade Allotment will be done for such Subject(s)/Seminar, and \(\text{SGPA/ CGPA} \) calculations of that Semester will not include the performance evaluations of such Subject(s)/Seminar in which he got detained. However, he becomes eligible for re-registration of such Subject(s)/Seminar (in which he got detained) in the subsequent Semester(s), as and when next offered, with the Academic Regulations of the Batch into which he gets readmitted, by paying the stipulated fees per Subject. In all these re-registration cases, the Student shall have to secure a fresh set of Internal Marks (CIE) and End Semester Examination Marks (SEE) for performance evaluation in such Subject(s), and subsequent \(\text{SGPA/ CGPA} \) calculations.

8.8 A Student eligible to appear in the End Semester Examination in any Subject, but absent at it or failed (failing to secure B Grade or above), may reappear for that Subject at the supplementary examination (SEE) as and when conducted. In such cases, his Internal Marks (CIE) assessed earlier for that Subject/ Course will be carried over, and added to the marks to be obtained in the supplementary examination (SEE), for evaluating his performance in that Subject.

9.0 Evaluation - Distribution and Weightage of Marks:

9.1 The performance of a Student in each Semester shall be evaluated Subject-wise (irrespective of Credits assigned) with a maximum of 100 Marks for Theory or Practicals or Seminar or Drawing/Design or Comprehensive Viva-voce etc; however, the M.Tech. Project Work (Major Project) will be evaluated for 200 Marks.

9.2 a) For Theory Subjects, CIE Marks shall comprise of - Mid-Term Examination Marks (for 25 Marks), and Assignment Marks (for 5 Marks).
b) During the Semester, there shall be 2 Mid-Term examinations. Each Mid-Term examination shall be for 25 Marks (with 120 minutes duration). The better performance out of these two Mid-Term Examinations shall be considered for the award of 25 Marks.

9.3 For Practical Subjects, there shall be a Continuous Internal Evaluation (CIE) during the Semester for 30 Internal Marks, and 70 Marks are assigned for Lab./Practicals End Semester Examination (SEE). Out of the 30 Marks for Internals, day-to-day work assessment in the laboratory shall be evaluated for 20 Marks; and the performance in an internal Lab./Practical Test shall be evaluated for 10 marks. The SEE for Lab./Practicals shall be conducted at the end of the Semester by the concerned Lab. Teacher and another faculty member of the same Department as assigned by the Head of the Department.

9.4 There shall be a Seminar Presentation in II Year I(III) Semester or II(IV) Semester. For the Seminar, the Student shall collect the information on a specialized topic, prepare a Technical Report and submit to the Department at the time of Seminar Presentation. The Seminar Presentation (along with the Technical Report) shall be evaluated by Two Faculty Members assigned by Head of the Department, for 100 Marks. There shall be no SEE or External Examination for Seminar.

9.5 Each Student shall appear for a Comprehensive Viva-Voce at the end of the V Semester (III Year I Semester). The Comprehensive Viva-Voce shall be conducted by a Committee, consisting of three senior faculty members of Department nominated by the Head of the Department, and the performance evaluation shall be for 100 Marks. There are no Internal Marks for the Comprehensive Viva-Voce.

9.6 a) Every PTPGP Student shall be required to execute his M.Tech. Project, under the guidance of the Supervisor assigned to him by the Head of Department. The PTPGP Project shall start immediately after the completion of the II Year II(IV) Semester, and shall continue through III Year I (V) and II (IV) Semesters. The Student shall carry out the literature survey, select an appropriate topic and submit a Project Proposal within 6 weeks (immediately after his II Year II Semester (IV) End Examinations), for approval by the Project Review Committee (PRC). The PRC shall be constituted by the Head of Department, and shall consist of the Head of Department, Project Supervisor, and a Senior Faculty Member of the Department. The Student shall present his Project Work Proposal to the PRC (PRC-I Presentation), on whose approval he can ‘REGISTER for the PG Project’. Every Student must compulsorily register for his M.Tech. Project Work, within the 6 weeks of time-frame as specified above. After Registration, the Student shall carry out his work, and continually submit ‘a fortnightly progress report’ to his Supervisor throughout the Project period. The PRC will monitor the progress of the Project Work and review, through PRC-II and PRC-III Presentations – one at the end of the III Year I (V) Semester, and one before the submission of M.Tech. Project Work Report/ Dissertation.

b) After PRC-III presentation, the PRC shall evaluate the entire performance of the Student and declare the Project Report as ‘Satisfactory’ or ‘Unsatisfactory’. Every Project Work Report/ Dissertation (that has been declared ‘satisfactory’) shall undergo ‘Plagiarism Check’ as per the University/ College norms to ensure content plagiarism below a specified level of 30%, and to become acceptable for submission. In case of
unacceptable plagiarism levels, the student shall resubmit the Project Work Report, after carrying out the necessary modifications/additions to his Project Work/Report as per his Supervisor's advice, within the specified time, as suggested by the PRC.

c) If any Student could not be present for PRC-II at the scheduled time (after approval and registration of his Project Work at PRC-I), his submission and presentation at the PRC-III time (or at any other PRC specified dates) may be treated as PRC-II performance evaluation, and delayed PRC-III dates for him may be considered as per PRC recommendations. Any Student is allowed to submit his M.Tech. Project Dissertation ‘only after completion of 40 weeks from the date of approval/registration’ of his Project, and after obtaining all approvals from the PRC.

d) A total of 200 Marks are allotted for the M.Tech. Project Work, (out of which 100 Marks are allotted for internal evaluation and 100 Marks for external evaluation). For internal Evaluation of 100 marks, Project Supervisor shall evaluate for 60 marks based on the continuous Internal Evaluation (CIE) of the student’s performance and combined PRC-I, II & III performance evaluation will be for 40 marks (to be awarded by PRC, as SEE).

9.7 a) The Student shall be allowed to submit his Project Dissertation, only on the successful completion of all the prescribed PG Subjects (Theory and Labs.), Seminar, Comprehensive Viva-voce etc. (securing B Grade or above), and after obtaining all approvals from PRC. In such cases, the M.Tech. Dissertations will be sent to an External Examiner nominated by the Principal of the College, on whose ‘approval’, the Student can appear for the M.Tech. Project Viva-voce Examination, which shall be conducted by a Board, consisting of the PG Project Supervisor, Head of the Department, and the External Examiner who adjudicated the M.Tech. Project Work and Dissertation. The Board shall jointly declare the Project Work Performance as ‘satisfactory’, or ‘unsatisfactory’; and in successful cases, the External Examiner shall evaluate the Student’s Project Work presentation and performance for 100 Marks (SEE).

b) If the adjudication report of the External Examiner is ‘not favourable’, then the Student shall revise and resubmit his Dissertation after one Semester, or as per the time specified by the External Examiner and/or the PRC. If the resubmitted report is again evaluated by the External Examiner as ‘not favourable’, then that Dissertation will be summarily rejected. Subsequent actions for such Dissertations may be considered, only on the specific recommendations of the External Examiner and/or PRC.

c) In cases, where the Board declared the Project Work Performance as ‘unsatisfactory’, the Student is deemed to have failed in the Project Viva-voce Examination, and he has to reappear for the Viva-voce Examination as per the Board recommendations. If he fails in the second Viva-voce Examination also, he will not be considered eligible for the Award of the Degree, unless he is asked to revise and resubmit his Project Work by the Board within a specified time period (within 6 years from the date of commencement of his I Year I Semester).
10.0 Re-Admission / Re-Registration:

10.1 Re-Admission for Discontinued Students:
Students who have discontinued the M.Tech. Degree Programme due to any reasons whatsoever, may be considered for ‘Readmission’ into the same Degree Programme (with same specialization) with the Academic Regulations of the Batch into which he gets readmitted, with prior permission from the concerned authorities, subject to Item 4.1.

10.2 Re-Registration for Detained Students:
When any Student is detained in a Subject(s)/ Seminar due to shortage of attendance in any Semester, he may be permitted to re-register for the same Subject in the ‘same category’ (Core or Elective Group) or equivalent Subject if the same Subject is not available, as suggested by the Board of Studies of that Department, as when offered in the subsequent Semester(s), with the Academic Regulations of the Batch into which he seeks re-registration, with prior permission from the concerned authorities, subject to Item 4.1.

11.0 Grading Procedure:

11.1 Marks will be awarded to indicate the performance of each student in each Theory Subject, or Lab/Practicals, or Seminar, or Project, etc., based on the % marks obtained in CIE + SEE (Continuous Internal Evaluation + Semester End Examination, both taken together) as specified in Item 6 above, and a corresponding Letter Grade shall be given.

11.2 As a measure of the student’s performance, a 10-point Absolute Grading System using the following Letter Grades (UGC Guidelines) and corresponding percentage of marks shall be followed:

<table>
<thead>
<tr>
<th>% of Marks Secured (Class Intervals)</th>
<th>Letter Grade (UGC Guidelines)</th>
<th>Grade Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>80% and above (≥ 80%, ≤ 100%)</td>
<td>O (Outstanding)</td>
<td>10</td>
</tr>
<tr>
<td>Below 80% but not less than 70%</td>
<td>A+ (Excellent)</td>
<td>9</td>
</tr>
<tr>
<td>(≥ 70%, < 80%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Below 70% but not less than 60%</td>
<td>A (Very Good)</td>
<td>8</td>
</tr>
<tr>
<td>(≥ 60%, < 70%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Below 60% but not less than 55%</td>
<td>B+ (Good)</td>
<td>7</td>
</tr>
<tr>
<td>(≥ 55%, < 60%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Below 55% but not less than 50%</td>
<td>B (above Average)</td>
<td>6</td>
</tr>
<tr>
<td>(≥ 50%, < 55%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Below 50%</td>
<td>F (FAIL)</td>
<td>0</td>
</tr>
<tr>
<td>(≤ 50%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>Ab</td>
<td>0</td>
</tr>
</tbody>
</table>

11.3 A student obtaining F Grade in any Subject shall be considered ‘failed’ and is required to reappear as ‘Supplementary Candidate’ in the Semester End Examination (SEE), as and when offered. In such cases, his Internal Marks (CIE Marks) in those Subjects will remain the same as those he obtained earlier.

11.4 A Letter Grade does not imply any specific % of Marks.

11.5 A student earns Grade Point (GP) in each Subject/ Course, on the basis of the Letter Grade obtained by him in that Subject/ Course (excluding Mandatory non-credit
Courses). Then the corresponding ‘Credit Points’ (CP) are computed by multiplying the Grade Point with Credits for that particular Subject/ Course.

Credit Points (CP) = Grade Point (GP) x Credits …. For a Course

11.6 The Semester Grade Point Average (SGPA) is calculated by dividing the Sum of Credit Points (∑CP) secured from ALL Subjects/ Courses registered in a Semester, by the Total Number of Credits registered during that Semester. SGPA is rounded off to TWO Decimal Places. SGPA is thus computed as

\[
SGPA = \frac{\sum_{i=1}^{N} C_i \times G_i}{\sum_{i=1}^{N} C_i} \quad \text{.... For each Semester,}
\]

where ‘i’ is the Subject indicator index (takes into account all Subjects in a Semester), ‘N’ is the no. of Subjects ‘REGISTERED’ for the Semester (as specifically required and listed under the Course Structure of the parent Department), \(C_i\) is the no. of Credits allotted to the \(i^{th}\) Subject, and \(G_i\) represents the Grade Points (GP) corresponding to the Letter Grade awarded for that \(i^{th}\) Subject.

11.7 The Cumulative Grade Point Average (CGPA) is a measure of the overall cumulative performance of a student over all Semesters considered for registration. The CGPA is the ratio of the Total Credit Points secured by a student in ALL registered Courses in ALL Semesters, and the Total Number of Credits registered in ALL the Semesters. CGPA is rounded off to TWO Decimal Places. CGPA is thus computed from the 1 Year second Semester onwards, at the end of each Semester, as per the formula

\[
CGPA = \frac{\sum_{i=1}^{M} C_i \times G_i}{\sum_{i=1}^{M} C_i} \quad \text{for all } S \text{ Semesters registered (ie., upto and inclusive of S Semesters, } S \geq 1 \text{),}
\]

where ‘M’ is the TOTAL no. of Subjects (as specifically required and listed under the Course Structure of the parent Department) the Student has ‘REGISTERED’ from the 1st Semester onwards upto and inclusive of the Semester \(S\) (obviously \(M > N\)), ‘j’ is the Subject indicator index (takes into account all Subjects from 1 to \(S\) Semesters), \(C_j\) is the no. of Credits allotted to the \(j^{th}\) Subject, and \(G_j\) represents the Grade Points (GP) corresponding to the Letter Grade awarded for that \(j^{th}\) Subject. After registration and completion of I Year I Semester however, the SGPA of that Semester itself may be taken as the CGPA, as there are no cumulative effects.

11.8 For Merit Ranking or Comparison Purposes or any other listing, ONLY the ‘ROUNDED OFF’ values of the CGPAs will be used.

11.9 For Calculations listed in Item 11.5 – 11.8, performance in failed Subjects/ Courses (securing F Grade) will also be taken into account, and the Credits of such Subjects/ Courses will also be included in the multiplications and summations. However, Mandatory Courses will not be taken into consideration.

11.10 A student shall be declared successful or ‘passed’ in a Semester, only when he gets a \(SGPA \geq 6.00\) (at the end of that particular Semester); and a student shall be declared successful or ‘passed’ in the entire PGP, only when gets a \(CGPA \geq 6.00\); subject to the condition that he secures a \(GP \geq 6\) (B Grade or above) in every registered Subject/ Course in each Semester (during the entire PGP) for the Degree Award, as required.

11.11 After the completion of each Semester, a Grade Card or Grade Sheet (or Transcript) shall be issued to all the Registered Students of that Semester, indicating the Letter
Grades and Credits earned. It will show the details of the Courses Registered (Course Code, Title, No. of Credits, Grade Earned etc.), Credits earned, SGPA, and CGPA.

11.12 Passing Standards:

11.12.1 A Student shall be declared successful or ‘passed’ in a Semester, only when he gets a SGPA ≥ 6.00 (at the end of that particular Semester); and a Student shall be declared successful or ‘passed’ in the entire PGP, only when gets a CGPA ≥ 6.00; subject to the condition that he secures a GP ≥ 6 (B Grade or above) in every registered Subject/Course in each Semester (during the entire PGP), for the Award of the Degree, as required.

11.12.2 After the completion of each Semester, a Grade Card or Grade Sheet (or Transcript) shall be issued to all the Registered Students of that Semester, indicating the Letter Grades and Credits earned. It will show the details of the Courses Registered (Course Code, Title, No. of Credits, Grade Earned), Credits earned, SGPA, and CGPA etc.

12.0 Declaration of Results:

12.1 Computation of SGPA and CGPA are done using the procedure listed in 11.5 – 11.8.

12.2 For Final % of Marks equivalent to the computed CGPA, the following formula may be used ..

% of Marks = (CGPA – 0.5) x 10

13.0 Award of Degree and Class:

13.1 A Student who registers for all the specified Subjects/Courses as listed in the Course Structure, satisfies all the Course Requirements, and passes the examinations prescribed in the entire PTPG Programme (PTPGP), and secures the required number of 90 Credits (with GP ≥ 6.0), shall be declared to have ‘QUALIFIED’ for the award of the M.Tech. Degree in the chosen Branch of Engineering and Technology with specialization as he admitted.

13.2 Award of Class

After a student has satisfied the requirements prescribed for the completion of the program and is eligible for the award of M. Tech. Degree, he shall be placed in one of the following four classes based on the % CGPA:

<table>
<thead>
<tr>
<th>Class Awarded</th>
<th>CGPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Class with Distinction</td>
<td>≥ 7.75</td>
</tr>
<tr>
<td>First Class</td>
<td>$6.75 \leq \text{CGPA} < 7.75$</td>
</tr>
<tr>
<td>Second Class</td>
<td>$6.00 \leq \text{CGPA} < 6.75$</td>
</tr>
</tbody>
</table>

13.3 A student with final CGPA (at the end of the PTPGP) < 6.00 will not be eligible for the Award of Degree.
14.0 Withholding of Results:

14.1 If a Student has not paid fees to University/College at any stage, or has pending dues against his name due to any reason whatsoever, or if any case of indiscipline is pending against him, the result of the Student may be withheld, and he will not be allowed to go into the next higher Semester. The Award or issue of the Degree may also be withheld in such cases.

15.0 Transitory Regulations:

15.1 A Student - who has discontinued for any reason, or who has been detained for want of attendance as specified, or who has failed after having undergone PTPGP, may be considered eligible for readmission to the same PTPGP with same set of Subjects/Courses (or equivalent Subjects/Courses as the case may be), and same Professional Electives (or from same set/category of Electives or equivalents as suggested), as and when they are offered (within the time-frame of 6 years from the Date of Commencement of his I Year I Semester).

16.0 Student Transfers:

16.1 There shall be no Branch/Specialization transfers after the completion of Admission Process.

16.2 There shall be no transfer among the Constituent Colleges and Units of Jawaharlal Nehru Technological University Hyderabad.

17.0 Scope:

i) Where the words “he”, “him”, “his”, occur in the write-up of regulations, they include “she”, “her”, “hers”.

ii) Where the words “Subject” or “Subjects”, occur in these regulations, they also imply “Course” or “Courses”.

iii) The Academic Regulations should be read as a whole, for the purpose of any interpretation.

iv) In case of any doubt or ambiguity in the interpretation of the above regulations, the decision of the Vice-Chancellor/Principal is final.

v) The College may change or amend the Academic Regulations, and/or Course Structure, and/or Syllabi at any time, and the changes or amendments made shall be applicable to all Students with effect from the dates as notified by the University/College.
MALPRACTICES RULES:

<table>
<thead>
<tr>
<th>Nature of Malpractices</th>
<th>Punishment</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the candidate:</td>
<td></td>
</tr>
<tr>
<td>1 (a) Possesses or keeps accessible in examination hall, any paper, note book, programmable calculators, Cell phones, pager, palm computers or any other form of material concerned with or related to the subject of the examination (theory or practical) in which he is appearing but has not made use of (material shall include any marks on the body of the candidate which can be used as an aid in the subject of the examination)</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject only.</td>
</tr>
<tr>
<td>1 (b) Gives assistance or guidance or receives it from any other candidate orally or by any other body language methods or communicates through cell phones with any candidate or persons in or outside the exam hall in respect of any matter.</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject only of all the candidates involved. In case of an outsider, he will be handed over to the police and a case is registered against him.</td>
</tr>
<tr>
<td>2 Has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the subject of the examination (theory or practical) in which the candidate is appearing.</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted to appear for the remaining examinations of the subjects of that Semester/year. The Hall Ticket of the candidate is to be cancelled.</td>
</tr>
<tr>
<td>3 Impersonates any other candidate in connection with the examination.</td>
<td>The candidate who has impersonated shall be expelled from examination hall. The candidate is also debarred and forfeits the seat. The performance of the original candidate who has been impersonated, shall be cancelled in all the subjects of the examination (including practicals and project work) already appeared and shall not be allowed to appear for examinations of the remaining subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat. If the imposter is an outsider, he will be handed over to the police and a case is registered against him.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>Smuggles in the Answer book or additional sheet or takes out or arranges to send out the question paper during the examination or answer book or additional sheet, during or after the examination.</td>
</tr>
<tr>
<td>5</td>
<td>Uses objectionable, abusive or offensive language in the answer paper or in letters to the examiners or writes to the examiner requesting him to award pass marks.</td>
</tr>
<tr>
<td>6</td>
<td>Refuses to obey the orders of the Chief Superintendent / Assistant – Superintendent / any officer on duty or misbehaves or creates disturbance of any kind in and around the examination hall or organizes a walk out or instigates others to walk out, or threatens the officer-in-charge or any person on duty in or outside the examination hall of any injury to his person or to any of his relations whether by words, either spoken or written or by signs or by visible representation, assaults the officer-in-charge, or any person on duty in or outside the examination hall or any of his relations, or indulges in any other act of misconduct or mischief which result in damage to or destruction of property in the examination hall or any part of the College campus or engages in any other act which in the opinion of the officer on duty amounts to use of unfair means or misconduct or has the tendency to disrupt the orderly conduct of the examination. In case of students of the college, they shall be expelled from examination halls and cancellation of their performance in that subject and all other subjects the candidate(s) has (have) already appeared and shall not be permitted to appear for the remaining examinations of the subjects of that semester/year. The candidates also are debarred and forfeit their seats. In case of outsiders, they will be handed over to the police and a police case is registered against them.</td>
</tr>
<tr>
<td>7</td>
<td>Leaves the exam hall taking away answer script or intentionally tears of the script or any part thereof inside or outside the examination hall.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>semester/year. The candidate is also debarred for two consecutive semesters from class work and all examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Possess any lethal weapon or firearm in the examination hall.</td>
</tr>
<tr>
<td>9</td>
<td>If student of the college, who is not a candidate for the particular examination or any person not connected with the college indulges in any malpractice or improper conduct mentioned in clause 6 to 8.</td>
</tr>
<tr>
<td>10</td>
<td>Comes in a drunken condition to the examination hall.</td>
</tr>
<tr>
<td>11</td>
<td>Copying detected on the basis of internal evidence, such as, during valuation or during special scrutiny.</td>
</tr>
<tr>
<td>12</td>
<td>If any malpractice is detected which is not covered in the above clauses 1 to 11 shall be reported to the College / University for further action to award suitable punishment.</td>
</tr>
</tbody>
</table>
19. GENERAL:

- **Credit**: A unit by which the course work is measured. It determines the number of hours of instructions required per week. One credit is equivalent to one hour of teaching (lecture or tutorial) or two hours of practical work/field work per week.

- **Credit Point**: It is the product of grade point and number of credits for a course.

- The Academic Regulations should be read as a whole for the purpose of any interpretation.

- The University/College reserves the right of altering the Academic Regulations and/or Syllabus/Course Structure, as and when necessary. The modifications or amendments may be applicable to all the candidates on rolls, as specified by the University/College.

- Wherever the words ‘he’ or ‘him’ or ‘his’ occur in the above regulations, they will also include ‘she’ or ‘her’ or ‘hers’.

- Wherever the word ‘Subject’ occurs in the above regulations, it implies the ‘Theory Subject’, ‘Practical Subject’ or ‘Lab.’ and ‘Seminar’.

- In case of any ambiguity or doubt in the interpretations of the above regulations, the decision of the Vice-Chancellor will be final.

I Semester

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Advanced Mechanics of Machinery</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Elective – I</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Elective – II</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Kinematics and Dynamics Lab</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

II Semester

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Advanced Mechanics of Solids</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Elective – III</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Elective – IV</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Soft Skills Lab</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

III Semester

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Advanced Machine Design</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Elective – V</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Elective – VI</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Advanced Computer Aided Design and Analysis Lab</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

IV Semester

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Finite Element and Boundary Element Methods</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Elective – VII</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Elective – VIII</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Seminar</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

V Semester

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Comprehensive Viva voce</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Project Phase- I</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

VI Semester

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Project Phase - II & Dissertation</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>
Elective -1
1. Mechanical Behavior of Engineering Materials
2. Computational Methods
3. Computer Simulation of Machines.

Elective -2
2. Micro Controllers and Applications
3. Applied Tribology

Elective -3
1. Theory of Elasticity
3. Computer Aided Manufacturing

Elective -4
1. Optimization Techniques & Applications
2. Instrumentation and Control systems
3. Design for Manufacturing and Assembly

Elective-5
1. Industrial Robotics
2. Neural Networks And Fuzzy Logics
3. Advanced Tool Design

Elective-6
1. Vibration Analysis of Mechanical Systems
2. Random Vibrations
3. Vehicle Dynamics

Elective-7
1. Experimental Stress Analysis
2. Fracture Mechanics
3. Advanced Finite Element and Mesh less Methods

Elective-8
1. Advanced Mechanics of Composite Materials
2. Nano Composites Design and Synthesis
3. Design For Process and Product Development
ADVANCED MECHANICS OF MACHINERY

Prerequisite: Kinematics of machinery

Course Objectives: The course is intend to
- Fundamentals of plane and spatial mechanism
- Advanced kinematics of plane motion of mechanisms
- Synthesis of plane mechanisms- various methods
- Manipulator Kinematics for several types of robot arms: (a) Direct kinematics (b) Inverse kinematics

Course outcomes: After completing this course, the student should be able to
- Understand the kinematic analysis of rolling bodies based on graphical, geometrical and analytical methods.
- Design of mechanisms by using graphically and analytically by involving function generator, rigid body guidance and path generation(Coupler curve) methods

Unit – I:
Advanced Kinematics of plane motion- I: Introduction to plane motion. The Inflection circle, Euler – Savary Equation, Analytical and graphical determination of d1, Bobillier’s Construction , Collineation axis , Hartmann’s Construction, Inflection circle for the relative motion of two moving planes, Application of the Inflection circle to kinematic analysis.

Unit – II:
Advanced Kinematics of plane motion - II: Polode curvature, Hall’s Equation, Polode curvature in the four bar mechanism, coupler motion, relative motion of the output and input links, Determination of the output angular acceleration and its Rate of change, Freudenstein’s collineation –axis theorem, Carter –Hall circle, The circling – point curve for the Coupler of a four bar mechanism.

Unit – III:
Introduction to Synthesis-Graphical Methods - I: The Four bar linkage ,Guiding a body through Two distinct positions, Guiding a body through Three distinct positions, The Roto center triangle , Guiding a body through Four distinct positions, Burmester’s curve.

Unit – IV:

Unit – V:

Text Books:

Reference Books:
MECHANICAL BEHAVIOUR OF ENGINEERING MATERIALS
(Elective - I)

Prerequisite: Physical metallurgy

Course Objectives: To know the concepts and principles of various failures in materials.

Course outcomes: After completing this course, the student should be able to

- Understand the different modes of failures like fracture, fatigue and creep of ductile and brittle materials

UNIT-I:
Griffiths analysis: Concept of energy release rate, G and fracture energy, R. Modification for ductile materials, loading conditions. Concept of R curves.

UNIT-II:
Linear Elastic Fracture Mechanics (LEFM): Three loading modes and the state of stress ahead of the crack tip, stress concentration factor, stress intensity factor and the material parameter, the critical stress intensity factor.

UNIT-III:

UNIT-IV:
Fatigue: definition of terms used to describe fatigue cycles, High Cycle Fatigue, Low Cycle Fatigue, mean stress R ratio, strain and load control. S-N curves. Goodman's rule and Miners rule. Micro mechanisms of fatigue damage, fatigue limits and initiation and propagation control leading to a consideration of factors enhancing fatigue resistance. Total life and damage tolerant approaches to life prediction.

UNIT-V:

Text Books

References:
JNTUH COLLEGE OF ENGINEERING HYDERABAD

M.Tech. (PTPG) I-Sem (Engineering Design) L T P C
 4 0 0 4

COMPUTATIONAL METHODS
(Elective - I)

Prerequisites: Mathematics I & II
Course Objectives: The course is intend to teach students how to apply computational methodologies to solve engineering problems when no closed-form or analytical solution may not exist. Transformations between time and frequency domains Fourier transforms, FFT and Laplace transforms need to be taught. Because numerical methods cannot be solved by hand calculator (Except for simple cases) algorithms and computer programs to implement for some of the numerical methods will be taught.

Course outcomes: After doing this, student should be able to

• Have a Idea of accuracy & precision rounding off & truncation errors and their propagation
• Apply numerical techniques for solving linear algebraic equations, non-linear equations and differentiation and integration with due idea of above said concept
• Understand the interpolation methods, transformation techniques and regression Methods

Unit I:
Approximations and Errors: Accuracy and precision, definitions of round off and truncation errors, error propagation.
Linear Algebraic Equations: Formulations and solution of linear algebraic equations, Gauss elimination, LU decomposition, iteration methods (Gauss-Jacobi and Gauss-Siedel), convergence of iteration methods
Eigen values and Eigenvectors: Geometric meaning of Eigenvalues and Eigenvectors, Characteristic equation and determination of Eigenvalues and Eigenvectors, Power Method, Inverse Power Method, Similarity Transformations, Givens rotation method, Householder Transformation

Unit II:
Solution of non-linear equations: Bisection meted, Fixed point iteration, Newton Raphson method, Solution of a set of non-linear equations
Interpolation methods: Newton's divided difference, interpolation polynomials, Lagrange interpolation polynomials

Unit III:
Differentiation and integration: High accuracy differentiation formulae, extrapolation, derivatives of unequally spaced data, Gauss quadrature and integration
Transform techniques: Continuous Fourier series, frequency and time domains, Laplace transform, Fourier integral transform, Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT)

Unit IV:
Regression methods: Linear and non-linear regression, multiple linear regression, general linear least squares
Statistical methods: Statistical representation of data, modeling and analysis of data, test of hypotheses
Unit V:

Ordinary Differential Equations: Initial and boundary value problems, Eigen value problems. Euler Method, Modified Euler Method, Runge-Kutta Methods, Adams Bashforth Moulton Methods

Partial Differential Equations: Classification of PDEs, Solution to Elliptic and Parabolic equations

Text Books:

Reference Books:

JNTUH COLLEGE OF ENGINEERING HYDERABAD

M.Tech. (PTPG) I-Sem (Engineering Design)
COMPUTER SIMULATIONS OF MACHINES
(Elective- I)

Prerequisite: Kinematics of machinery

Course Objectives: The course is propose to
- Impart how to simulate the mechanisms in dynamic and kinematic mode.
- understand the numerical solutions of non linear algebraic equations.
- understand the kinematic simulations using simulink.
- Introduce the simulating the dynamics of slider on inclined plane
- Understand the mechanisms of two link planar robot

Course outcomes: After completing this course, the student should be able to
Understand and apply the simulation methodologies for different mechanical systems

UNIT I:

UNIT II:
Solutions of the Position Problem: Overview, Numerical Solutions of Nonlinear algebraic Equations, The Position Problem of a Four-Bar Linkage, Mat lab Solution of the position of a Four-Bar Linkage.

UNIT III:
Kinematic Simulations Using Simulink: What is a Kinematic Simulation, Velocity Solution via Kinematic Simulation, Acceleration Solution via Kinematic Simulation, The Consistency Check, Kinematic Simulation of a Four-Bar Mechanism.

UNIT IV:
Introducing Dynamics: Simulating the slider on inclined plane, Adding the Pendulum, Assembling the Matrix Equation, Creating a Dynamic Simulation, Setting Initial conditions and Running Simulation

UNIT V:
Two-Link Planar Robot: Overview, Vector Equations, Dynamic Equations, The Simultaneous Constraint matrix, Dynamic Simulation, Robot Coordinate Control.

Text Books:
2. CAD/CAM – Ibrahim zeid, TMH.
3. Mat Lab – Raj Kumar Bansal etal , Pearson Education
GEOMETRIC MODELING
(Elective - II)

Prerequisite: CAD/CAM

Course Objectives: The course is intend to
- Making the student understand how graphics created in computer world is the main goal of this course.
- Learn modeling curves (B-spline and Bezier)
- Learn modeling Bezier and B-spline surfaces
- Learning how to rescale, transmit (shift), shear (skew), and rotate different graphical objects is another goal.
- Familiarity with advanced techniques such as subdivision and reconstruction
- Mastery of object construction and manipulation methods including lofting, surface of revolution, boundary representation, cell decomposition and tabularization.

Course outcomes:
After completing this course, the student should be able to
- Understand the background of mathematical equations used for development of modeling software modules to develop the various structural related applications

Unit – I:
Introduction: Definition, Explicit and implicit equations, parametric equations.
Cubic Splines: Algebraic and geometric form of cubic spline, tangent vectors, parametric space of a curve, blending functions, four point form, reparametrization, truncating and subdividing of curves. Graphic construction and interpretation, composite pc curves.

Unit – II:
Bezier Curves: Bernstein basis, equations of Bezier curves, properties, derivatives.
B-Spline Curves: B-Spline basis, equations, knot vectors, properties and derivatives.

Unit – III:
Surfaces: Bicubic surfaces, Coon’s surfaces, Bezier surfaces, B-Spline surfaces, surfaces of revolutions, Sweep surfaces, ruled surfaces, tabulated cylinder, bilinear surfaces, Gaussian curvature.

Unit – IV:
Transformations: 2-D and 3D
Solids: Tricubic solid, Algebraic and geometric form.

Unit – V:
Solid modeling concepts: Wire frames, Boundary representation, Half space modeling, spatial cell, cell decomposition, classification problem.

Text Books:
1. CAD/CAM by Ibrahim Zeid, Tata McGraw Hill.
2. CAD/CAM concepts and Applications, Alavala, PHI

References:
JNTUH COLLEGE OF ENGINEERING HYDERABAD

M.Tech. (PTPG) I-Sem (Engineering Design)

MICRO CONTROLLERS AND APLICATIONS
(Elective - II)

Prerequisite: None

Course Objectives: The main purpose of this course is

• To provide sufficient detailed knowledge of a microcontroller so that students can
 breadboard and program a microcontroller and demonstrate its function in a real-time
 application.

Course outcomes: After completing this course, the student will be able to

• Comprehend the architecture and instruction set of microcontrollers.
• Outline the knowledge on real time control interrupts & timers.
• Design control peripherals and high power devices.
• Analyze real time operating system for MCUs & MCU based industrial applications.
• Comprehend the architecture of 16 bit (8096/80196) & ARM microcontrollers.

UNIT-I: Overview of Architecture & Microcontroller Resources
Architecture of a microcontroller – Microcontroller resources – Resources in advanced and
next generation microcontrollers – 8051 microcontroller – Internal and External memories –
Counters and Timers – Synchronous serial-cum asynchronous serial communication -
Interrupts.

UNIT-II 8051-Microcontrollers Instruction Set
Basic assembly language programming – Data transfer instructions – Data and Bit-
manipulation instructions – Arithmetic instructions – Instructions for Logical operations on the
test among the Registers, Internal RAM, and SFRs – Program flow control instructions –
Interrupt control flow.

UNIT-III: Real Time Control
INTERRUPTS: Interrupt handling structure of an MCU – Interrupt Latency and Interrupt
deadline – Multiple sources of the interrupts – Non-maskable interrupt sources – Enabling or
disabling of the sources – Polling to determine the interrupt source and assignment of the
priorities among them – Interrupt structure in Intel 8051.

TIMERS: Programmable Timers in the MCU’s – Free running counter and real time control –
Interrupt interval and density constraints.

UNIT-IV: Systems Design
Digital And Analog Interfacing Methods:
Switch, Keypad and Keyboard interfacing – LED and Array of LEDs – Keyboard-cum-
Display controller (8279) – Alphanumeric Devices – Display Systems and its interfaces –
Printer interfaces – Programmable instruments interface using IEEE 488 Bus – Interfacing
with the Flash Memory – Interfaces – Interfacing to High Power Devices – Analog input
interfacing – Analog output interfacing – Optical motor shaft encoders – Industrial control –
Industrial process control system – Prototype MCU based Measuring instruments – Robotics
and Embedded control – Digital Signal Processing and digital filters.

UNIT-V: Real Time Operating System For Microcontrollers:
Real Time operating system – RTOS of Keil (RTX51) – Use of RTOS in Design – Software
development tools for Microcontrollers.16-BIT MICROCONTROLLERS: Hardware – Memory

Text Books:

Reference Books:
6. Microprocessors, Nilesh B. Bahadure, PHI Learning PVT. Ltd.
JNTUH COLLEGE OF ENGINEERING HYDERABAD

M.Tech. (PTPG) I-Sem (Engineering Design) L T P C
 4 0 0 4

APPLIED TRIBOLOGY
(Elective - II)

Prerequisite: Design of machine members
Course Objectives: The course is intend to
• Design of surfaces in contact is a critical problem for mechanical engineering.
• This is an interdisciplinary course which deals with fundamentals of surface contact, friction, wear and lubrication.
• The Topics in this course include description and modeling of engineering surfaces, popular surface contact theories, major modes of friction, wear, lubrication and adhesion.

Course outcomes: After completing this course, the student should be able to
• Understand the different types of lubrications and relevant theories used in supporting elements.
• Understand the failure mechanisms in different types of supporting elements.

Unit – I
Selection of rolling element bearings: Nominal life, static and dynamic capacity - Equivalent load, probabilities of survival - cubic mean load - bearing mounting details, pre loading of bearings, conditioning monitoring using shock pulse method.

Unit – II

Unit – III

Unit – IV
Dry rubbing Bearings: porous metal bearings and oscillatory journal bearings – qualitative approach only.
Lubrication: Choice of lubricants, types of oil, Grease and solid lubricants - additives - lubrication systems and their selection – selection of pump, filters, piping design - oil changing and oil conservation.

Unit – V
Failure of Tribological components: Failure analysis of plain bearings, rolling bearings, gears and seals, wear analysis using soap and Ferrography.

Text Books:

References:
KINEMATICS AND DYNAMICS LABORATORY

(A Minimum of 10 experiments are to be conducted)

Experiments:

1. Determination of damped natural frequency of vibration of the vibrating system with different viscous oils.
2. Determination of steady state amplitude of a forced vibratory system.
4. Determination of the magnitude and orientation of the balancing mass in dynamic balancing.
5. Field balancing of the thin rotors using vibration pickups.
6. Determination of the magnitude of gyroscopic couple, angular velocity of precession and representation of vectors.
7. Determination of natural frequency of given structure using FFT analyzer.
8. Diagnosis of a machine using FFT analyzer.
10. Inverse Kinematic analysis of a robot.
11. Trajectory planning of a robot in joint space scheme.
ADVANCED MECHANICS OF SOLIDS

Prerequisite: Applied Mechanics, mechanics of solids

Course outcomes: After completing this course, the student should be able to
- Determine the point of location of applied load to avoid twisting in thin sections used in aerospace applications.
- Understand the concept of distinguish between neutral and centroidal axes in curved beams.
- Understanding the analogy models developed for analyzing the non circular bars subjected to torsion, and also analyzing the stresses developed between rolling bodies and stress in three dimensional bodies.

Unit –I:
Shear center: Bending axis and shear center-shear center for axi-symmetric and unsymmetrical sections.
Unsymmetrical bending: Bending stresses in Beams subjected to Nonsymmetrical bending, Deflection of straight beams due to nonsymmetrical bending.

Unit –II:

Unit –III:
Torsion : Linear elastic solution Prandtl elastic membrane (Soap-Film) Analogy; Narrow rectangular cross Section, Hollow thin wall torsion members, Multiply connected Cross Section.

Unit –IV:
Contact stresses: Introduction, problem of determining contact stresses, Assumptions on which a solution for contact stresses is based; Expressions for principal stresses; Method of computing contact stresses, Deflection of bodies in point contact; Stresses for two bodies in contact over narrow rectangular area (Line contact) Loads normal to area, Stresses for two bodies in line contact, Normal and Tangent to contact area.

Unit –V:
Introduction to Three Dimensional Problems: Uniform stress stretching of a prismatical bar by its own weight twist of circular shafts of constant cross section, pure bending of plates.

Textbook:

References:
1. Advanced strength of materials by Den Hortog J.P.
3. Strength of materials & Theory of structures (Vol I & II) by B.C Punmia
4. Strength of materials by Sadhu singh
THEORY OF ELASTICITY
(Elective - III)

Prerequisite: Mechanics of solids

Course outcomes: After completing this course, the student should be able to
- Analyse the stresses and strains for two dimensional and three dimensional elements.
- Understand the equilibrium and compatibility conditions.
- Solve the problems on Torsion for different shaped bars.

UNIT-I

UNIT-II
Two dimensional problems in rectangular co-ordinates-solution by polynomials - saint-vanant's principle-determination of displacements-bending of simple beams-application of corier series for two dimensional problems-gravity loading.

UNIT-III
Two dimensional problems in polar coordinates - stress distribution symmetrical about an axis - pure bending of curved bars - strain components in polar coordinates – displacements - displacement for symmetrical stress distribution - simple symmetric and asymmetric problems - general solution of two-dimensional problem in polar coordinates - application of general solution in polar coordinates.

UNIT-IV

UNIT- V
Torsion of Prismatic Bars - torsion of prismatic bars - bars with elliptical cross sections - other elementary solution - membrane analogy - torsion of rectangular bars-solution of torsional problems by energy method - use of soap films in solving torsion problem - hydro dynamical analogies - torsion of shafts, tubes, bars etc.

Text Books:
1. Theory of Elasticity by Timeshanko, McGrawhill Publications

References:
PLASTIC DEFORMATION OF METALS
(Elective- III)

Prerequisite: Metallurgy

Course outcomes: After completing this course, the student should be able to

- Understand the different mechanisms of metal forming and related mathematical theories.
- Understanding different metal forming methods and related flow stress relations

UNIT - I:
Fundamentals of Metal Forming: Classification of forming processes, mechanisms of metal forming: slab method, Upper and lower bound analysis, Deformation energy method and finite element method temperature of metal working, hot working, cold working, friction and lubricants.

UNIT - II:
Rolling of metals: Rolling processes, forces and geometrical relationship in rolling, simplified analysis, rolling load, rolling variables, theories of cold and hot rolling, problems and defects in rolling, torque and power calculations, Problems.

UNIT - III:
Forging: Classification of forging processes, forging of plate, forging of circular discs, open die and closed-die forging, forging defects, and powder metallurgy forging. problems on flow stress, true strain and forging load.
Press tool design: Design of various press tools and dies like piercing dies, blanking dies, compound dies and progressive blanking dies, design of bending, forming and drawing dies.

UNIT - IV:
Extrusion: Classification, Hot Extrusion, Analysis of Extrusion process, defects in extrusion, extrusion of tubes, production of seamless pipes. Problems on extrusion load.

UNIT - V:
Sheet Metal forming: Forming methods, Bending, stretch forming, spinning and Advanced techniques of Sheet Metal Forming, Forming limit criteria, defect in formed parts. Advanced Metal forming processes: HERF, Electromagnetic forming, residual stresses, in-process heat treatment and computer applications in metal forming. problems on Blanking force, Blank diagram in Cup Diagram, Maximum considering shear.

Text Books:
2. Principles of Metal Working / Sunder Kumar

References:
1. Principles of Metal Working processes / G.W. Rowe
2. ASM Metal Forming Hand book.
JNTUH COLLEGE OF ENGINEERING HYDERABAD

M.Tech. (PTPG) II-Sem (Engineering Design)

COMPUTER AIDED MANUFACTURING
(Elective - III)

Prerequisite: none

Course outcomes: After completing this course, the student should be able to
• To familiarize the components of computer aided manufacturing and to introduce CNC machines and computer aided process planning.
• CNC machines and its constructional features and part programming
• Basics of concepts of FMS GT, computer aided inspection, Automated material handling systems and Computer aided production planning.

Unit – I

Unit – II
Numerical control machines: Introduction- basic components of an NC system - the NC procedure - NC coordinate system, NC motion control system - application of numerical control- Economics of Numerical control.
NC part programming: Introduction – NC coding system, manual part programming, part programming with APT, NC part programming using CAD/CAM, manual data input.

Unit – III
Computer controls in NC: NC controllers’ technology - Computer Numerical Control (CNC), Direct Numerical control (DNC).

Unit – IV
Group Technology: Part families, parts classification and coding, production flow analysis, Composite part concept, Machine cell design, benefits of GT.
Flexible Manufacturing Systems: Components of FMS, FMS Work stations, Material Handling Systems, and Computer Control system, FMS layout configurations and benefits of FMS.

Unit – V
Computer aided planning systems: Approaches to Computer aided Process Planning (CAPP) - Generative and Retrieval CAPP systems, benefits of CAPP, Material Requirement Planning (MRP), mechanism of MRP, benefits, and Capacity Planning, Adaptive control machining systems, adaptive control optimization system, adaptive control constraint system, applications to machining processes, computer process monitoring, hierarchical structure of computers in manufacturing, and computer process control.

Text books:
2. CAD / CAM Concepts and Applications, Alavala, PHI.

References:
3. CAD/CAM/CIM, Radhakrishnan and Subramanian, New Age Publishers
OPTIMIZATION TECHNIQUES & APPLICATIONS
(Selective-IV)

Prerequisite: Operations Research

Course outcomes: After completing this course, the student should be able to
- Learn various optimization techniques
- Develop an optimization model for a given problem
- Solve the model using suitable optimization technique.
- Analyze the sensitivity of a solution to different variables.
- Use and develop optimization simulation software for various industrial problems

UNIT-I:
Single Variable Non-Linear Unconstrained Optimization:

UNIT-II:

UNIT-III:
Simulation—Introduction—Types—steps—applications: inventory & queuing—Advantages and disadvantages

UNIT-IV:
Integer Programming—Introduction—formulation—Gomory cutting plane algorithm—Zero or one algorithm, branch and bound method
Stochastic Programming: Basic concepts of probability theory, random variables—distributions—mean, variance, correlation, co variance, joint probability distribution. Stochastic linear programming: Chance constrained algorithm.

UNIT-V:
Geometric Programming: Posynomials—Arithmetic—Geometric inequality—unconstrained
G.P—constrained G.P(≤ type only)

TEXT BOOKS:
2. Optimization for Engineering Design, Kalyanmoy Deb, PHI

REFERENCE BOOKS:
1. S.D. Sharma / Operations Research
2. Operation Research / H.A. Taha / TMH
3. Optimization in operations research / R.L. Rardin
JNTUH COLLEGE OF ENGINEERING HYDERABAD

M.Tech. (PTPG) II-Sem (Engineering Design)
L T P C
4 0 0 4

INSTRUMENTATION AND CONTROL SYSTEMS
(Elective - IV)

Prerequisite: Thermodynamics.

Course outcomes: After completing this course, the student should be able to
- Know general configuration of instrument, static and dynamics characteristics.
- Calibration analysis
- Know various properties to be measured
- Know various instruments for measuring above said properties
- Do calibrate the instrument when use it for measuring the given property.

UNIT – I

UNIT-II

UNIT – III

UNIT – IV:

UNIT-V:
Control system and their classification: Introduction - Classification of control systems - Transfer function, block diagrams, system stability-Routh stability - Hurwitz stability.
Hydraulic and Pneumatic controls systems: Functional operation of - proportional control- Proportional plus integral control - Proportional plus derivative control- Proportional plus derivative plus integral control - Hydraulic control systems – Pneumatic control systems.

Text Books:
1. Principles of Industrial Instrumentation and control systems, Alavala, Cengage Learning
2. Mechanical Measurements and controls by D.S.Kumar

References:
JNTUH COLLEGE OF ENGINEERING HYDERABAD

M.Tech. (PTPG) II-Sem (Engineering Design) L T P C
4 0 0 4

DESIGN FOR MANUFACTURE AND ASSEMBLY
(Elective - IV)

Prerequisite: Production technology

Course outcomes: After completing this course, the student should be able to
- Understand how a design can be made suitable for various manufacturing processes.
- To study the various factors influencing the manufacturability of components
- To study the use of tolerances in manufacturing
- Application of this study to machining, casting and joining processes

UNIT I:

UNIT II:
MACHINING PROCESS: Overview of various machining processes – general design rules for machining - Dimensional tolerance and surface roughness – Design for Machining ease – Redesigning of components for machining ease with suitable examples, General design recommendations for machined parts.
METAL CASTING: Appraisal of various casting processes, Selection of casting process, General design considerations for casting – casting tolerances – Use of Solidification Simulation in casting design – Product design rules for sand casting.

UNIT III
FORGING – Design factors for Forging – Closed die forging design – parting lines of dies – Drop forging die design – General design recommendations

UNIT IV:

UNIT V:
DESIGN FOR ASSEMBLY : General design guidelines for Manual Assembly - Development of Systematic DFA Methodology - Assembly Efficiency - Classification System for Manual handling- Classification System for Manual Insertion and Fastening - Effect of part symmetry on handling time - Effect of part thickness and size on handling time - Effect of weight on handling time - Effect of symmetry , Further design guidelines.
Text books:

Reference books:
3. Product Design/ Kevin Otto and Kristin Wood/ Pearson Education
JNTUH COLLEGE OF ENGINEERING HYDERABAD

M.Tech. (PTPG) II-Sem (Engineering Design)

L T P C
0 0 4 2

SOFT SKILLS LAB
(Activity-based)

Course Objectives
- To improve the fluency of students in English
- To facilitate learning through interaction
- To illustrate the role of skills in real-life situations with case studies, role plays etc.
- To train students in group dynamics, body language and various other activities which boost their confidence levels and help in their overall personality development
- To encourage students develop behavioral skills and personal management skills
- To impart training for empowerment, thereby preparing students to become successful professionals

Learning Outcomes
- Developed critical acumen and creative ability besides making them industry-ready.
- Appropriate use of English language while clearly articulating ideas.
- Developing insights into Language and enrich the professional competence of the students.
- Enable students to meet challenges in job and career advancement.

INTRODUCTION
Definition and Introduction to Soft Skills – Hard Skills vs Soft Skills – Significance of Soft/Life/Self Skills – Self and SWOT Analysis and

1. Exercises on Productivity Development
 - Effective/ Assertive Communication Skills (Activity based)
 - Time Management (Case Study)
 - Creativity & Critical Thinking (Case Study)
 - Decision Making and Problem Solving (Case Study)
 - Stress Management (Case Study)

2. Exercises on Personality Development Skills
 - Self-esteem (Case Study)
 - Positive Thinking (Case Study)
 - Emotional Intelligence (Case Study)
 - Team building and Leadership Skills (Case Study)
 - Conflict Management (Case Study)

3. Exercises on Presentation Skills
 - Netiquette
 - Importance of Oral Presentation – Defining Purpose- Analyzing the audience- Planning Outline and Preparing the Presentation- Individual & Group Presentation- Graphical Organizers- Tools and Multi-media Visuals
 - One Minute Presentations (Warming up)
 - PPT on Project Work- Understanding the Nuances of Delivery- Body Language – Closing and Handling Questions – Rubrics for Individual Evaluation (Practice Sessions)

4. Exercises on Professional Etiquette and Communication
 - Role-Play and Simulation- Introducing oneself and others, Greetings, Apologies, Requests, Agreement & Disagreement….etc.
 - Telephone Etiquette
 - Active Listening
• Group Discussions (Case study)- Group Discussion as a part of Selection Procedure- Checklist of GDs
• Analysis of Selected Interviews (Objectives of Interview)
• Mock-Interviews (Practice Sessions)
• Job Application and Preparing Resume
• Process Writing (Technical Vocabulary) – Writing a Project Report- Assignments

5. Exercises on Ethics and Values
Introduction — Types of Values - Personal, Social and Cultural Values - Importance of Values in Various Contexts
• Significance of Modern and Professional Etiquette – Etiquette (Formal and Informal Situations with Examples)
• Attitude, Good Manners and Work Culture (Live Examples)
• Social Skills - Dealing with the Challenged (Live Examples)
• Professional Responsibility – Adaptability (Live Examples)
• Corporate Expectations

Note: Hand-outs are to be prepared and given to students.
Training plan will be integrated in the syllabus.
Topics mentioned in the syllabus are activity-based.

SUGGESTED SOFTWARE:
The following software from ‘train2success.com’
 o Preparing for being Interviewed
 o Positive Thinking
 o Interviewing Skills
 o Telephone Skills
 o Time Management
 o Team Building
 o Decision making

SUGGESTED READING:
12. The Hindu Speaks on Education by the Hindu Newspaper
Prerequisite: Design of machine elements

Course Objectives: The course is intend to
- To design machine components which are subjected to fluctuating loads.
- To distinguish different design criterions and their procedure to carry out the required design steps for designing mechanical components.
- To design machine components/parts based on creep criterions.

Course outcomes: After completing this course, the student should be able to
- Ability to analyze behaviour of mechanical elements under different loads
- Understand the design of different transmission elements of automobile
- Ability to analyze mechanical elements critically.

Unit- I
Shafts and Axles:

Unit- II
Rope drive:
Fibre ropes, rope drives for power transmission, fibrous Ropes used in Hoisting Tackle, Wire Ropes, Materials, Wire Rope Construction, Applications of Ropes, properties of various types of Ropes, Approximate wire Diameters and Effective Cross-section of Ropes: Fiber cores for steel wire ropes, Working loads, Friction and Efficiency wire rope, sheaves and Drum, rope fasteners, Selection of wire rope, design procedure.

Unit- III
Chain drives:
Types of Chain drives, construction of Chains, Roller Chains, Silent Chains, selection of a chain, Design of the chain Drive, Good design practice.

Unit- IV
Gear drives:
Design calculations for helical gears, Definitions, double helical , Gear tooth proportions, Design calculations, forces acting in a Bevel gear, Worm gear drives, worm wheel, designation of a worm gear drive, Materials, efficiency of Drive, Heat Dissipation, Design of worm Gearing, Forces on worm gears, advantages and disadvantages of worm gear drives.

Unit- V
Power screws:
Function, Types of Power screws , Multiple threads, Comparison of square and trapezoidal threads, Power screw drive, Efficiency of screws, square threads, Trapezoidal Threads, stresses in screws design calculations, design procedure, other types of screws, differential and compounds screws , ball baring screws.

Text books:

References:
1. Machine Design by Schaum series
2. Mechanical Engineering design by J.E. Shigley
JNTUH COLLEGE OF ENGINEERING HYDERABAD

M.Tech. (PTPG) III-Sem (Engineering Design)

INDUSTRIAL ROBOTICS
(Elective - V)

Prerequisite: none
Course Objectives: The course is intend
• To impart knowledge on robot configurations, components, sensors and actuators used in robotics.
• To develop programming techniques for industrial robots, kinematic and dynamic analysis for simple planner robots, robot cell design and applications.
Course outcomes: After completing this course, the student should be able to
• Understand the with the automation and brief history of robot and applications.
• To familiarized with the kinematic motions of robot and good knowledge about robot end effectors and their design concepts.
• Write Programming methods & various Languages of robots.

UNIT I
Control System And Components: basic concept and modals controllers control system analysis, robot actuators and feedback components (sensors): Internal & External Sensors, Positions sensors, velocity sensors - Desirable features, tactile, proximity and range sensors, uses sensors in robotics, Power Transmission Systems.

UNIT II:
Motion Analysis and Control: Manipulator kinematics, position representation Homogeneous transformation, D-H Notation, D-H Transformation Matrix, Forward & Inverse transformations, problems on planar & spatial manipulators, Differential Kinematics, Jacobian Formulation, problems, manipulator path control: Slew, Joint Interpolated & Straight line motions, trajectory planning: Joint space scheme, Cartesian space scheme, Cubic Polynomial fit without and with via point, blending.

UNIT III:
Robot Dynamics: Lagrange – Euler & Newton - Euler formulations, problems on two link planar manipulators, configuration of robot controller.
End Effectors: Grippers-types, operation, mechanism, force analysis, tools as end effectors consideration in gripper selection and design.
Machine Vision: Functions, Sensing and Digitizing-imaging, Devices, Lighting techniques, Analog to digital single conversion, Image storage, Image processing and Analysis-image data reduction, Segmentation feature extraction. Object recognition, training the vision system, Robotics application.

UNIT IV:
Robot Programming: Lead through programming, Robot programming as a path in space, Motion interpolation, WAIT, SINGNAL AND DELAY commands, Branching capabilities and Limitations.
Robot Languages: Textual robot languages, Generation, Robot language structures, Elements and functions.
UNIT V:
Robot Cell Design and Control: Robot cell layouts-Robot centered cell, In-line robot cell, Considerations in work cell design, Work cell control, Inter locks, Error detection, Work cell controller.

TEXT BOOKS:
1. Introduction to Robotics Mechanics & Control/ John J.Craig/Pearson
2. Industrial robotics / Mikell P.Groover / McGraw Hill.

REFERENCE BOOKS:
2. Robot Analysis/Lung Wen Tsai/John Wiley & Sons
JNTUH COLLEGE OF ENGINEERING HYDERABAD

M.Tech. (PTPG) III-Sem (Engineering Design)
NEURAL NETWORKS AND FUZZY LOGICS
(Elective-V)

L T P C
4 0 0 4

Prerequisites: None

Course Objectives: The course is intended to
• To cater the knowledge of Neural Networks and Fuzzy Logic Control and use these for controlling real time systems.

Course outcomes: After completion of this course, the student should be able to
• Learn concepts of neural networks and fuzzy logics
• Understand the topology of multi-layer perceptron, recurrent neural networks and
• Fuzzification & Defuzzification.
• understand the basic structure and operation of Fuzzy logic control systems

UNIT-V
Basic structure and operation of Fuzzy logic control systems; Design methodology and stability analysis of fuzzy control systems; Applications of Fuzzy controllers. Applications of fuzzy theory.

Text Books:
JNTUH COLLEGE OF ENGINEERING HYDERABAD

M.Tech. (PTPG) III-Sem (Engineering Design) L T P C
4 0 0 4

ADVANCED TOOL DESIGN
(Elective - V)

Prerequisite: Production technology

Course Objectives: The course is intend to

• Describe tool design methods and punch and die manufacturing techniques
• Select material for cutting tools and gages;
• classify various cutting tools and gages and identify their nomenclature
• Describe the principles of clamping, drill jigs and computer aided jig design
• Design fixtures for milling, boring, lathe, grinding, welding;
• identify fixtures and cutting tools for NC machine tools
• Explain the principles of dies and moulds design

Course Outcomes: At the end of the course the students will be able to

• Develop the conceptual design, manufacturing framework and systematic analysis of design problems on the machine tools apply the design procedures for different types of design problems such as gear box design, guide way
• Design, shaft loading and its associated parts, rolling bearings, die design and jigs and fixtures and so on.

UNIT I:

Design of Cutting Tools: Single point cutting tools, Milling cutters, Drills, Selection of carbide steels.

UNIT II:
Determination of shank size for single point carbide tools, determining the insert thickness for carbide tools.

Design of Jigs and Fixtures: Basic principles of location and clamping; Locating methods and devices. Jigs – Definition, Types.

UNIT III:
General considerations in the design of Drill jigs, Drill bushing, Methods of Construction. Fixtures – Vice fixtures, Milling, Boring, Lathe Grinding fixtures.

UNIT IV:
Cutting action in Punch and die operations. Die clearance, Types of Die construction. Die design fundamentals – Blanking and piercing die construction, pilots, stripper and pressure pads presswork material, Strip layout, Short run tooling for piercing.

UNIT V:
Design of Sheet Metal Bending, Forming and Drawing Dies: Bending dies, Drawing dies, Forming dies, Drawing operations, Variables that effect metal flow during drawing. Determination of blank size, Drawing force, single and double action draw dies.

Text Books:
JNTUH COLLEGE OF ENGINEERING HYDERABAD

M.Tech. (PTPG) III-Sem (Engineering Design) | L T P C
| 4 0 0 4

VIBRATION ANALYSIS OF MECHANICAL SYSTEMS
(Elective-VI)

Prerequisite: None

Course Objectives: The course is intended to
- Prepare the student to understand the fundamentals of vibrations of various physical models for single and multi degree freedom systems
- Make the student apply numerical methods to various physical systems and their response to vibrations.
- Exposure to vibration measurement of industrial equipment using instruments

Course Outcomes: At the end of the course the students will be able to
- Study the vibrations in machine elements and how to control them.
- Ability to analyze the mathematical model of linear vibratory system to determine its response
- Obtain linear mathematical models of real life engineering systems
- Determine vibratory responses of single and multi degree of freedom systems to harmonic, periodic and non-periodic excitation

Unit-I
Fundamentals of Vibration: Basic concepts of Vibration, Vibration, Elementary parts of vibrating systems, Degree of freedom.

Free Vibration of Single Degree of Freedom Systems:

Unit-II
Forced Vibration of Single Degree of Freedom Systems:
Introduction, Response of an Undamped system under harmonic force, Total response, Beating Phenomenon. Response of a Damped System under Harmonic Force- Total Response, Quality Factor and Bandwidth, Response of a Damped system under the Harmonic Motion of the base, Fore Transmitted, Relative Motion.

Unit-III

Unit-IV

Unit-V
Determination of Natural Frequencies and Mode Shapes: Introduction, Dunkerley’s formula, Rayleigh’s Method- Properties of Rayleigh’s Quotient, Computation of the Fundamental Natural Frequency, Fundamental Frequency of Beams and

Text books:
2. Elements of Vibration Analysis by Meirovitch.

References:
1. Mechanical Vibrations by G.K. Groover.
2. Vibrations by W.T. Thomson
5. Mechanical Vibrations – V.Ram Murthy.
RANDOM VIBRATIONS
(Elective - VI)

Prerequisites: Probability & Statistics, Kinematic of machinery and Dynamics of machinery.
Course Objectives: The course is intend
- To introduce the fundamental ideas of random vibrations.
- To deal in some depth with digital spectral analysis, which involves the measurement and analysis of random vibrations.

Course outcomes: After completing this course, students should be able to
- Apply tools from probabilistic modeling to analyze dynamic systems while accounting for variability and uncertainties that are inevitably present in real engineered systems.
- Classify random excitations as stationary or non-stationary.
- Discuss important properties of random processes.
- Define and compute power spectral density functions.
- Compute auto-and cross-correlation functions, and relate them to power spectral.
- Density functions. Describe the dynamic response of a multi-degree-of-freedom system to a stochastic excitation.
- Quantify the distributions of peak loads and peak responses from a system subject to stochastic excitation.

UNIT I
PROBABILITY THEORY:
Random Vibrations - Probability distribution and density functions - Excreted values - Conditional probability - Characteristic and log characteristic functions - Chebycshev inequality - Functions of random variables.

UNIT II
RANDOM PROCESSES - I:
Concept of stationary and ergodicity - Evolutionary nonstationary process - Auto and cross correlation and covariance Functions - Mean square limit, differentiability and inerrability - Spectral decomposition.

UNIT III
RANDOM PROCESSES - II:

UNIT IV
RANDOM VIBRATIONS - I:
Response of linear single and multi - degree of freedom systems to stationary excitation - Response of continuous systems - Normal mode method.

UNIT V
RANDOM VIBRATIONS - II:
Level crossing, peak and envelop statistics - First excursion and fatigue.
Text Books:

References:
Prerequisite: Automobile Engineering
Course Objectives: The course is intend
- To understand the fundamentals of dynamics of different vehicle tyres,
- To impart the design of suspension and mechanisms of steering
Course Outcomes: At the end of the course the students will be able to
- The focus of Automotive System Dynamics is to introduce the fundamentals of vehicle dynamics and the performance indices and evaluation criteria of vehicles, to analyze the influence of vehicle configuration and design parameters on vehicle performance.

UNIT I:

UNIT II:
Three dimensional Mechanisms, Multi-Body Systems Design, Introduction to 3D vehicle design.

UNIT III:
Suspension Design: Computer models using Bond Graph Technology, Drive train dynamics, vehicle performance

UNIT IV:

UNIT V:
Wheeled Vehicle Handling – Handling control loop, vehicle transfer function, Kinematic behavior of vehicles with rigid wheels and with complaint tyres: Neutral steer point, static margin, over and under-steer. Solution with two degree of freedom in the steady state: Stability factor, characteristic and critical speeds. Tracked Vehicle Handling – Analysis of sprocket torques and speeds, required to skid steer a tracked vehicle. Extension of theory to include three degrees of freedom.

Text Books:

References:
1. Vehicle stability – Dean Karnopp, Dekker Mechanical Engineering
4. Fundamental of Vehicle Dynamics- Gillespie T.D, SAE USA.
ADVANCED COMPUTER AIDED DESIGN AND ANALYSIS LABORATORY

Prerequisite: none

Course Objectives: The course is intend to
- Understand and draw part drawings with appropriate tolerances using CAD software package.
- Practice the students to generate 3D models, surface and assembly modeling using modeling software package
- Train the students in static and transient, thermal analysis using FEA packages

Course Outcomes: At the end of the course the students will be able to
- Students should be able to use CATIA and Pro-E and software for modeling, tolerance & GD&T analysis of a product.
- Students should be able to use CATIA software to model a consumer product and industrial robot.
- Students should be able to carry out structural, Harmonic and fracture analysis using FEA software.

Note: Conduct any Ten exercises from the list given below:
1. Two-dimensional drawing using CAD software.
2. Three-dimensional drawing using CAD software.
3. Various Dimensioning and tolerancing techniques on typical products using CAD software.
4. Assembly and animation of simple assemblies like screw jack, bolt-nut mechanism, etc.
5. Truss analysis using FEA software.
7. Frame analysis using FEA software.
8. Buckling analysis of columns using FEA software.
9. Harmonic analysis using FEA software.
10. Fracture analysis using FEA software.
11. Analysis of laminated composites using FEA software.
12. Couple-field analysis using FEA software.
13. Modal Analysis
14. Transient dynamic analysis.
15. Spectrum analysis
FINITE ELEMENT AND BOUNDARY ELEMENT METHODS

Prerequisite: none

Course Objectives: The course is intend
- To equip the students with the Finite Element Analysis fundamentals.
- To enable the students to formulate the design problems into FEA.
- To introduce basic aspects of finite element technology, including domain discretization,
 polynomial interpolation, application of boundary conditions, assembly of global arrays,
 and solution of the resulting algebraic systems.
- To introduce basic concepts of framing dynamic problems in FEA
- To keep track of the moving boundary at different instants of time.

Course Outcomes: After completing this course, the student should be able to
- Understand the background of mathematical equations used for development of
 modeling software modules to develop the various structural related applications
- Identify mathematical model for solution of common engineering problems.
- Solve structural, thermal, fluid flow problems.
- Use professional-level finite element software to solve engineering problems in Solid
 mechanics, fluid mechanics and heat transfer.

UNIT - I
Introduction to FEM: basic concepts, application of FEM, general description, One
Dimensional problems: Stiffness equations for a axial bar element in local co-ordinates
using Potential Energy approach and Virtual energy principle - Stiffness equations for a
truss bar element oriented in 2D plane - Finite Element Analysis of Trusses – Plane Truss
elements – methods of assembly.
Analysis of beams: Hermite shape functions – Element stiffness matrix – Load vector –
Problems.

UNIT - II
2-D problems: CST - Stiffness matrix and load vector - Isoparametric element
representation – Shape functions – convergence requirements – Problems. Two
dimensional four noded isoparametric elements - Numerical integration.

UNIT - III
Scalar field problems: 1-D Heat conduction – 1D fin elements – 2D heat conduction
analysis of thin plates – Composite slabs - problems.
Dynamic Analysis: Dynamic equations – Lumped and consistent mass matrices – Eigen
Values and Eigen Vectors – mode shapes – modal analysis for bars and beams.

UNIT - IV
Boundary Element Method: Potential Problems: Introduction, boundary Element
Approach-Fundamental solution, Another form of boundary integral equation, Volume
integral of ∆²ω at source point. Numerical Implementation - Determination of Ci, Final
Relation, Consideration of internal heat generation (body force term), Three-dimensional
analysis, tackling kernel singularity, Axi-Symmetric kernel, Mixed boundary condition.
Analyzing Time Domain (Transient Case) – Three dimensional formulation, Numerical
implementation. Illustrative Examples – Temperature distribution in cutting tool, Thermal
design of blast furnace bottom, Laser heating and hardening.
UNIT - V
Boundary Element Formulation for Electrostatic Problems: Introduction, Basic Relation-Boundary condition, other relations. Boundary Integral Relation, Fundamental solution, Discretization and Matrix Formulation – Determination of term C(p)m. Determination of stresses, Other cases, Illustrative Examples – Loose - fit , loaded pin in hole, Cam- tappet contact problem.

Text Book:
3. Finite Element Methods, Alavala, PHI.

References:
1. Introduction to finite elements in engineering – Tirupathi K. Chandrupatla and Ashok D. Belagundu.
EXPERIMENTAL STRESS ANALYSIS
(ELECTIVE - VII)

Prerequisite: none
Course Objectives: The course is intend
 • To Provides knowledge about different experimental stress analysis techniques. These
 are very much needed to validate the design outputs.
Course Outcomes: At the end of the course the students will be able to
 • Know the working principle of strain gauges and do the model analysis using different
 theorems.
 • Know the concepts of photo elasticity and its applications.
 • Use the various Non-destructive testing methods.

UNIT-I
Strain Gauges - Mechanical and optical strain gauges – Description and operation –
Electrical resistance- Inductance and capacitance gauges – Detailed treatment on resistant
 gauges – Measurement of static and dynamic strains – Strain rosettes – Effect of transverse
strains – Use of strain recorders and load cells.

UNIT-II
Model Analysis - Structural similitude – Use of models – Structural and dimensional analysis
– Buckingham Pi Theorem – Muller Breslau’s principle for indirect model analysis – Use of
Begg’s and Eney’s deformeters – Moment indicators – Design of models for direct and
indirect analysis.

Unit-III
Two dimensional photo elasticity - Stress optic law – Introduction to polariscope – Plane and
 circular polariscope – Compensators and model materials – Material and model fringe value
– Calibration of photo elastic materials – Isochromatic and isoclinic fringes – Time edge
effects.

Unit-IV
Three dimensional photo elasticity - Introduction – Stress freezing techniques – Stress
separation techniques – Scattered light photo elasticity – Reflection polariscope.

Unit-V
Miscellaneous Methods - Brittle coating method – Birefringence techniques – Moire fringe
method – Non-destructive testing – Ultrasonic pulse velocity technique – Rebound hammer

Text books:
1. Experimental stress analysis by Dally and Riley, Mc Graw-Hill

References:
1. Experimental stress analysis by Sadhu singh, Danapathi rai publications
FRACTURE MECHANICS
(Elective - VII)

Prerequisite: none

Course Objectives: The course is intended to
- provide an understanding of fundamental principles and assumptions, and to give a basis for analysis and evaluation of structures from a fracture mechanics point of view.
- also explore fatigue, creep deformation, creep-fatigue interactions.

Course Outcomes: At the end of the course the students will be able to
- predict material failure for any combination of applied stresses.
- estimate failure conditions of a structure.
- determine the stress intensity factor for simple components of simple geometry.
- predict the likelihood of failure of a structure containing a defect.

UNIT I:

UNIT II:

UNIT III:
Physical Aspects of Fatigue:

UNIT IV:
Static Aspects of Fatigue Behaviour:
Low cycle and high cycle fatigue - Coffin-Manson’s Relation – Transition Life – Cyclic strain hardening and softening – Analysis of load histories – Cycle counting techniques – Cumulative damage – Miner’s theory, other theories.

UNIT V:

Text Books:

References:

ADVANCED FINITE ELEMENT AND MESH LESS METHODS
(Elective-VII)

Prerequisite: Solid State physics and FEM

Course Objectives: The course is intend to systematically explores and establishes the theory, principles, and procedures that lead to mesh-free methods. Course in Mesh Free and Other Advanced finite element gives basic understanding and application of a class of emerging numerical methods.

Course Outcome:
- To perform complete FE formulations for engineering analysis
- To write codes for a finite element model
- To use commercial FEA software to solve engineering problems
- To apply finite element methods in design engineering components or systems
- To Learn meshfree method types, meshfree shape functions, weak form types
- Have the ability to be able to solve problems by using meshfree methods
- to solve a problem by writing a computer code containing meshfree method

Advanced Finite Element

Unit-I
Bending of Plates and Shells: Review of Elasticity Equations-Bending of Plates and Shells-Finite Element Formulation of Plate and Shell Elements-Conforming and Non Conforming Elements - Co and C1 Continuity Elements-Application and Examples.

Non-Linear Problems
Introduction-Iterative Techniques-Material non-Linearity-ElastoPlasticity-Plasticity-Visco plasticity-Geometric Non linearity-large displacement Formulation-Application in Metal Forming Process and contact problems

Unit-II
Dynamic Problem
Direct Formulation - Free, Transient and Forced Response - Solution Procedures-Subspace Iterative Technique -Houbolt, Wilson, Newmark - Methods – Examples

Unit-III
Fluid Mechanics and Heat Transfer

MESHLESS METHODS
Unit-IV
Overview on Meshless Methods and Their Applications: Approximation Function, Numerical Implementation, Applications

Unit-V

Meshless Analysis of Plasticity: Constitutive Relations, Return Mapping Algorithm, J2 Flow Theory, Meshless Analysis of High-Speed Impact/Contact Problem, Incremental Plasticity and Slow Crack Growth Problem.

Text Books:

4. G.R Liu, Meshfree Methods: Moving beyond the Finite element method, CRC press
Prerequisite: none

Course Objectives: The course is intend to understand the mechanics of composite materials. This understanding will include concepts such as anisotropic material behavior strength theories, micro mechanics and the analysis of laminated composites. The students will undertake a design project involving application of fiber reinforced composites.

Course Outcomes: At the end of the course the students will be able to

- understanding of types, manufacturing processes, and applications of composite materials.
- basic understanding of linear elasticity with emphasis on the difference between isotropic and anisotropic material behavior.
- Ability to analyze problems on macro and micro mechanical behavior of lamina
- Ability to analyze problems on macro mechanical behavior of laminate
- An ability to predict the loads and moments that cause an individual composite layer and a composite laminate to fail and to compute hygro thermal loads in composites.
- An ability to compute the properties of a composite laminate with any stacking sequence.
- An ability to use the ideas developed in the analysis of composites towards using composites in aerospace design.

UNIT-I
Introduction to Composite Materials: Introduction, Classification Polymer Matrix Composites, Metal Matrix Composites, Ceramic Matrix Composites, Carbon–Carbon Composites, Fiber-Reinforced Composites and nature-made composites, and applications.

UNIT-II

Manufacturing methods: Autoclave, tape production, moulding methods, filament winding, man layup, pultrusion, RTM.

UNIT-III

UNIT-IV
UNIT-V

Text Books:

References:
JNTUH COLLEGE OF ENGINEERING HYDERABAD

M.Tech. (PTPG) IV-Sem (Engineering Design) L T P C
NANO COMPOSITES DESIGN AND SYNTHESIS 4 0 0 4
(Selective - VIII)

Prerequisite: none

Course Objectives:
The course is intend to cover nano composites, reinforcing nanostructures dispersed in various matrix materials like polymers, ceramics, metals, etc.. The subject covers mainly the synthesis methods, modeling and evaluation of nano composites.

Course Outcomes: At the end of the course the students will be able to
- To synthesize and evaluate nanostructure reinforce matrix material
- To understand the importance of various nanomaterial matrix
- To discuss various application including aerospace applications

Unit-I:
Introduction to Nano composites, Composites Material, Mechanical properties of Nano composite material: stress-strain relationship, toughness, strength, plasticity.

Unit-II:
Ceramic-Metal Nanocomposites, ceramic based nanoporous composite, metal mat nanocomposites, Polymer-based nano composites carbon nanotube based nanocomposites and Natural nano bicomposites, Biomimetic nanocomposites and Biologically inspired nanocomposites; Nano composites for hard coatings; DLC coatings; Thin film nanocomposite ; Modeling of nanocomposites.

Unit-III:
Synthesis methods for various nanocomposite materials: sputtering, mechanical alloying, sol-gel synthesis, thermal spray synthesis etc.

Unit-IV:
Nano Indentation, Types of indentation: OLIVER & Pharr, Joslin- Oliver, Vickers indenter process.

Unit-V:
Processing of polymer Nanocomposites, properties of nanocomposites, Salt infiltrator Powder mixing, Intrusion method, exfoliation & interaction, Gel-casting impregnation techniques: Hot melt impregnation, solution impregnation.

Text Books:
2. Introduction to Nano Technology by Charles. P.Poole Jr and Frank j.Owens, Wiley India Pvt Ltd.

Reference Books
1. Encyclopedia of Nanotechnology by H.S. Nalwa
JNTUH COLLEGE OF ENGINEERING HYDERABAD

M.Tech. (PTPG) IV-Sem (Engineering Design) L T P C
4 0 0 4

DESIGN FOR PROCESS AND PRODUCT DEVELOPMENT
(Effective - VIII)

Prerequisite: none

Course Objectives: The course is at providing the basic concepts of product design, product features and its architecture so that student can have a basic knowledge in the common features a product has and how to incorporate them suitably in product.

Course Outcomes: At the end of the course the students will be able to
- Should know types of customer needs, need gathering methods
- Establish the product function and constraints and modeling process
- Should know environmental objectives global issues, Regional and Local issues and DFE Methods
- Should develop physical models and know design of experiment principles
- Should design the product for robustness.

Unit- I

Unit- II

Unit- III

Unit- IV
Environmental Objectives, global issues, Regional and Local issues. Basic DFE Methods; Design Guidelines, application. Life cycle assessment, weighted sum assessment methods. Life cycle assessment method. Techniques to reduce environmental impact - design to minimize material usage, design for disassembly design for recyclability and design for remanufacturing design for high - impact material reduction design for energy efficiency.

Unit- V
Physical Models and Experimentation: Design of experiments - basic of designed experiments, basic method - two factorial experiments, extended method – interactions, Design of experiments: Reduced tests and fractional experiments, full factorial inefficiencies,
orthogonality, base design method, Higher dimensions fractional factorial designs. Statistical analysis of experiments - degrees of freedom, correlation coefficient.

Design for Robustness: Quality design theory, general robust design model, robust design model construction. Basic method: Taguchi’s method, noise variable matrix, design variable matrix, experimental matrix, single to noise ratios, selection of a target design, parameter design and the Taguchi philosophy. Advantage analysis - Probability Theory Sizing the variation, general robust design Problem formulation.

Text Books:
1. Integrated product and process design and development by Edward B. Magrab, Satyandra K Gupta et al, CRC Press, 2nd Edition