ACADEMIC REGULATIONS
COURSE STRUCTURE AND
DETAILED SYLLABUS

COMPUTER SCIENCE & ENGINEERING

For

M. Tech. (Computer Science)
(Two Year Full Time Programme)

JNTUH COLLEGE OF ENGINEERING HYDERABAD
(Autonomous)
Kukatpally, Hyderabad – 500 085, Telangana, India.

2015
I – SEMESTER

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Advanced Database Engineering</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Advanced Data Structures and Algorithms</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Elective – I</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Elective – II</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Elective – III</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>Elective – IV</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>Computing Laboratory-I</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>Seminar</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Credits 28

II – SEMESTER

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Advanced Computer Networks</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Web Service and Service Oriented Architecture</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Elective – V</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Elective – VI</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Elective – VII</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>Elective – VIII</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>Computing Laboratory-II</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>Soft Skills Lab</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Credits 28

III – SEMESTER

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Comprehensive Viva Voce</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Project Phase -I</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Total Credits 16

IV – SEMESTER

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Project Phase-II & Dissertation</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Total credits 18
JNTUH COLLEGE OF ENGINEERING HYDERABAD
M.Tech. (Computer Science) – Full Time w.e.f. 2015-16

Elective- I
1. Mobile Computing,
2. Social Media and Web Mining
3. Operating System Design

Elective- II
1. Cloud Computing
2. Information Retrieval Systems
3. Embedded Systems

Elective- III
1. Computer Forensics
2. Scripting Languages
3. Natural Language Processing

Elective- IV
1. Software Architecture and Design Pattern
2. Pattern Recognition
3. Mobile Application Development

Elective- V
1. Information Security
2. Software Testing Methodologies
3. Software Project Management

Elective- VI
1. Research Methodologies
2. Software Design and Engineering
3. Speech Processing

Elective- VII
1. High Performance Computing
2. Adhoc & Sensor Networks
3. Advanced Algorithms

Elective- VIII
1. Cryptanalysis
2. Robotics
3. Bio Informatics
4. Big Data Analytics
JNTUH COLLEGE OF ENGINEERING HYDERABAD

M.Tech. I Year I-Sem (Computer Science) L T P C
4 0 0 4

ADVANCED DATABASE ENGINEERING

Prerequisites
- A course on “Data Base Management Systems

Objectives
- To Understand the significance of integrity constrains
- To Normalize the database schema
- To improve the query performance
- To gain knowledge about advanced databases and applications.

Outcomes
- Will be able to design a database for an organization.
- Will be able to construct and execute optimized queries
- Can apply proper security policies to data
- Can handle E-Commerce transactions
- Can apply object oriented features to DBMS

UNIT- I Relational Model
Constraints, update operations, transactions, and dealing with constraint violations.
Relational database design algorithms, MVDs and 4NF, JD and 5NF, inclusion dependencies, other dependencies and normal forms.

UNIT- II Query Processing & Optimization
Measures of Query Cost, Selection Operation, Sorting, Join Operation, Other Operations, Evaluation of Expressions

UNIT- III Object & Object-Relational Databases
Concepts of Object databases, Object database standards, languages and design.
Object-relational and Extended-Relational Systems.

UNIT – IV Security, Advanced Modelling
Database Security
Enhanced data models for advanced applications – active databases, temporal databases, spatial and multimedia databases, deductive databases.

UNIT – V
Advanced Transaction Processing - Transaction-Processing Monitors, Transactional Workflows, E-Commerce, Main-Memory Databases, Real-Time Transaction Systems, Long-Duration Transactions
Case studies: PostgreSQL, IBM DB2, Oracle, Microsoft SQL server.

Text Books:
References:
2. Introduction to Database Systems, C.J.Date Pearson Education
3. Oracle for Professionals, The X Team, S. Shah and V. Shah, SPD.
JNTUH COLLEGE OF ENGINEERING HYDERABAD

M.Tech. I Year I-Sem (Computer Science) L T P C
4 0 0 4

ADVANCED DATA STRUCTURES AND ALGORITHMS

Prerequisites

- A course on “Computer Programming & Data Structures”
- A course on “Design & Analysis of Algorithms”

Objectives

- Introduces the notations for analysis of the complexities of algorithms
- Introduces the amortized analysis
- Introduces the heap data structures such as leftist trees, binomial heaps, fibonacci and min-max heaps
- Introduces the randomized, approximation and non deterministic algorithms
- Introduces a variety of data structures such as disjoint sets, hash tables, search structures and digital search structures

Outcomes

- Ability to analyze the performance of algorithms
- Ability to select the data structures that efficiently model the information in a problem
- Ability to understand how the choice of data structures impact the performance of programs
- Can Design programs using a variety of data structures, including hash tables, search structures and digital search structures

UNIT-I

UNIT-II

UNIT-III

Search Structures- OBST, AVL trees, Red-Black trees, Splay trees, B-trees.

UNIT-IV

Digital Search Structures - Digital Search trees, Binary tries and Patricia, Multiway Tries, Suffix trees. Approximation Algorithms: Planar graph colouring, Job Scheduling, TSP.

UNIT-V

Text Books:

1. Fundamentals of Data structures in C++ Sahni, Horowitz, Mehatha, Universities Press.
2. Introduction to Algorithms, TH Cormen, PHI.

References:

1. Design methods and analysis of Algorithms, SK Basu, PHI.
MOBILE COMPUTING

Prerequisites:
- Computer Networks
- Distributed Systems / Distributed Operating Systems

Objectives:
- To make the student understand the concept of mobile computing paradigm, its novel applications and limitations.
- To understand the typical mobile networking infrastructure through a popular GSM protocol.
- To understand the issues and solutions of various layers of mobile networks, namely MAC layer, Network Layer & Transport Layer.
- To understand the database issues in mobile environments & data delivery models.
- To understand the ad hoc networks and related concepts.
- To understand the platforms and protocols used in mobile environment.

Outcomes:
- Able to think and develop new mobile applications.
- Able to develop new ad hoc network applications and/or algorithms.
- Able to understand & develop any existing or new protocol related to mobile environment.

UNIT I
Introduction
Mobile Communications, Mobile Computing – Paradigm, Promises/Novel Applications and Impediments and Architecture; Mobile and Handheld Devices, Limitations of Mobile and Handheld Devices.
GSM – Services, System Architecture, Radio Interfaces, Protocols, Localization, Calling, Handover, Security, New Data Services, GPRS, CSHSD, DECT.

UNIT –II
(Wireless) Medium Access Control (MAC)
Motivation for a specialized MAC (Hidden and exposed terminals, Near and far terminals), SDMA, FDMA, TDMA, CDMA, Wireless LAN/(IEEE 802.11)
Mobile Network Layer
IP and Mobile IP Network Layers, Packet Delivery and Handover Management, Location Management, Registration, Tunneling and Encapsulation, Route Optimization, DHCP.

UNIT –III
Mobile Transport Layer
Database Issues
Database Hoarding & Caching Techniques, Client-Server Computing & Adaptation, Transactional Models, Query processing, Data Recovery Process & QoS Issues.

UNIT IV
Data Dissemination and Synchronization
Communications Asymmetry, Classification of Data Delivery Mechanisms, Data Dissemination, Broadcast Models, Selective Tuning and Indexing Methods, Data Synchronization – Introduction, Software, and Protocols

UNIT V
Mobile Ad hoc Networks (MANETs)
Introduction, Applications & Challenges of a MANET, Routing, Classification of Routing Algorithms, Algorithms such as DSR, AODV, DSDV, Mobile Agents, Service Discovery.

Protocols and Platforms for Mobile Computing

Text Books:
Prerequisites:
- Web Mining

Objectives:
- The purpose of this course is to provide the students with knowledge of social media & web mining principles and techniques.
- This course is also designed to give an exposure of the frontiers of social media web mining (Face book, twitter)
- To introduce new technology for data analysis

Outcomes:
- Ability to understand social media and its data.
- Ability to apply mining technologies on twitter, facebook, LinkdIn and Googlet.
- Ability to apply web mining technologies, NLP concepts to summarize, mine data on webpages, blogs.
- Ability to Program using “R” and the tool Twitter ‘R’

UNIT-1: Social media mining, Fundamentals, new challenges, key concepts, Good Data vs Bad Data, understanding sentiments, Sentiment Analysis, Classification, supervised social media mining, unsupervised social media mining, human sensors under honest signals.

UNIT-4: Mining Web Pages: web content mining, web structure mining, web usage mining, Natural Language Processing to Understand Human Language, Summarize Blog Posts, Mining Mailboxes, Mining GitHub, Inspecting Software Collaboration Habits, Building Interest Graphs, Mining the Semantically Marked-Up Web: Extracting Micro formats, Inference over RDF.

Text Books:
2. Social Media Mining with R [Kindle Edition] NATHAN DANNEMAN RICHARD HEIMANN
JNTUH COLLEGE OF ENGINEERING HYDERABAD

M.Tech. I Year I-Sem (Computer Science) OPERATING SYSTEM DESIGN
Elective- I

Prerequisites
- A course on “Operating Systems”
- A course on “Computer Programming and Data Structures”
- A course on “Computer Organization and Architecture”

Objectives
- Provide an introduction to operating system concepts (i.e., processes, threads, scheduling, synchronization, deadlocks, memory management, file and I/O subsystems and protection)
- Introduce the issues to be considered in the design and development of operating system
- Introduce inter process communication and I/O Devices.

Outcomes
- Will be able to control access to a computer and the files that may be shared
- Demonstrate the knowledge of the components of computer and their respective roles in computing.
- Ability to recognize and resolve user problems with standard operating environments.
- Gain practical knowledge of how programming languages, operating systems, and architectures interact and how to use each effectively.
- Getting knowledge about Device drivers.

UNIT - I: PROCESSES AND SCHEDULING
Process States and System Call Interface; Life Cycle of a Process: Process Dynamics; Scheduler: working and implementation; Linux Process States and System Calls; Process Groups, Sessions, Foreground and Background Processes.

UNIT - II: INTERPROCESS COMMUNICATION AND SYNCHRONISATION
Signals, Pipes and Named Pipes (FIFOs); Threads and pthread library; Mutexes and Condition Variables; Semaphores; Producer-Consumer Problem and Solutions using mutexes, condition variables and semaphores.

UNIT - III: FILES AND FILE SYSTEMS
File and File Meta-data; File Naming Systems; File System Operations; File System Implementation; File System Structures; Booting an OS; File System Optimisation.

UNIT - IV: DEVICES AND DEVICE DRIVERS
Devices and Types of Devices; Terminal, Disk, SCSI, Tape and CD devices; Unification of Files and Devices; Device Drivers: Concepts and Implementation Details.

UNIT - V: RESOURCE MANAGEMENT AND SECURITY
Resource Management Issues; Types of Resources; Integrated Resource Scheduling; Queuing Models of Scheduling; Protection of Resources – hardware, software, and attacks; Security Policies.
Text Books:

Reference Books:
Prerequisites
- A course on “Computer Networks”
- A course on “Operating Systems”

Objectives
- This course provides an insight into cloud computing
- Topics covered include distributed system models, different cloud service models, service oriented architectures, cloud programming and software environments, resource management.

Outcomes
- Ability to understand various service delivery models of a cloud computing architecture.
- Ability to understand the ways in which the cloud can be programmed and deployed.
- Understanding cloud service providers.

UNIT I: Computing Paradigms

UNIT II: Cloud Computing Fundamentals

UNIT III: Cloud Computing Architecture and Management
Cloud architecture, Layer, Anatomy of the Cloud, Network Connectivity in Cloud Computing, Applications on the Cloud, Managing the Cloud, Managing the Cloud Infrastructure, Managing the Cloud application, Migrating Application to Cloud, Phases of Cloud Migration, Approaches for Cloud Migration.

UNIT IV: Cloud Service Models

UNIT V: Cloud Service Providers
EMC, EMC IT, Captiva Cloud Toolkit, Google Cloud Platform, Cloud Storage, Google Cloud Connect, Google Cloud Print, Google App Engine, Amazon Web Services, Amazon Elastic Compute Cloud, Amazon Simple Storage Service, Amazon Simple Queue, Service, Microsoft Windows Azure, Microsoft Assessment and Planning Toolkit, SharePoint, IBM Cloud Models, IBM Smart Cloud, SAP Labs, SAP HANA Cloud Platform, Virtualization Services Provided by SAP, Sales force, Sales Cloud, Service Cloud: Knowledge as a Service, Rack space, VMware, Manjra soft Aneka Platform
TEXT BOOKS:

REFERENCE BOOKS:
INFORMATION RETRIEVAL SYSTEMS
Elective- II

Prerequisites:
- Data Structures

Objectives:
- To learn the important concepts and algorithms in IRS
- To understand the data/file structures that are necessary to design, and implement information retrieval (IR) systems.

Outcomes:
- Ability to apply IR principles to locate relevant information large collections of data
- Ability to design different document clustering algorithms
- Implement retrieval systems for web search tasks.
- Design an Information Retrieval System for web search tasks.

UNIT I
Introduction:
Motivation, Basic Concepts, Past-Present and Future, the Retrieval Process
Modeling :

UNIT II
Retrieval Evaluation
Introduction, Retrieval Performance Evaluation, Reference Collections
Query languages
Introduction, Keyword-Based Querying, Pattern Matching, Structural Queries, Query Protocols
Query Operations
Introduction, User Relevance Feedback, Automatic Local Analysis, Automatic global Analysis
Text Operations
Introduction, Document Preprocessing, Document Clustering, Text Compression, Comparing text Compression Techniques

UNIT III
Indexing and Searching
Introduction, Inverted Files, Other Indices for Text, Boolean queries, Sequential Searching, Pattern Matching, Structural Queries, Compression
Searching the Web
Introduction, Challenges, Characterizing the Web, Search Engines, Browsing, Metasearches, Finding the Needle in the Haystack, Searching using Hyperlinks
UNIT IV
User Interfaces and Visualization

UNIT V
Multimedia IR: Models and Languages
Introduction, Data Modeling, Query Languages
Multimedia IR: Indexing and Searching

Text Books
1. Modern Information Retrieval By Yates and Neto Pearson Education.

Reference:
JNTUH COLLEGE OF ENGINEERING HYDERABAD

M.Tech. I Year I-Sem (Computer Science) L T P C
4 0 0 4

EMBEDDED SYSTEMS
Elective -II

Prerequisites:
- Assembly language and C programming language.
- Sequential Logic Concepts
- Basic Computer Organization

Objectives:
- To introduce the students to the modern embedded systems and to show how to understand and program such systems using a concrete platform built around.
- To introduce RTOS and its applications.

Course Outcomes:
Students are able to
- Ability to describe the differences between the general computing system and the embedded system, also recognize the classification of embedded systems..
- Ability to design the real time embedded systems using the concepts of RTOS.
- Ability to analyze various examples of embedded systems
- Ability to develop programs in C/C++ for embedded systems.

UNIT - 1 : INTRODUCTION TO EMBEDDED SYSTEMS
Definition and Classification - Overview of Processors and Hardware units in an embedded system - Software embedded into the system - Exemplary Embedded Systems - Embedded Systems on a Chip (SoC) and the use of VLSI designed circuits.

UNIT - 2 : DEVICES AND BUSES FOR DEVICES NETWORK

UNIT - 3 : PROGRAMMING CONCEPTS AND EMBEDDED PROGRAMMING IN C, C++

UNIT - 4 : REAL TIME OPERATING SYSTEMS - PART - 1
Definitions of process, tasks and threads - Clear cut distinction between functions - ISRs and tasks by their characteristics - Operating System Services- Goals - Structures- Kernel - Process Management - Memory Management - Device Management - File System Organisation and Implementation - I/O Subsystems - Interrupt Routines Handling in RTOS, REAL TIME OPERATING SYSTEMS : RTOS Task scheduling models - Handling of task scheduling and latency and deadlines as performance metrics - Co-operative Round Robin Scheduling - Cyclic Scheduling with Time Slicing (Rate Monotonics Co-operative
Scheduling) - Preemptive Scheduling Model strategy by a Scheduler - Critical Section Service by a Preemptive Scheduler - Fixed (Static) Real time scheduling of tasks - INTER PROCESS COMMUNICATION AND SYNCHRONISATION - Shared data problem - Use of Semaphore(s) - Priority Inversion Problem and Deadlock Situations - Inter Process Communications using Signals - Semaphore Flag or mutex as Resource key - Message Queues - Mailboxes - Pipes - Virtual (Logical) Sockets - Remote Procedure Calls (RPCs).

UNIT - 5 : REAL TIME OPERATING SYSTEMS - PART - 2
Study of Micro C/OS-II or Vx Works or Any other popular RTOS - RTOS System Level Functions - Task Service Functions - Time Delay Functions - Memory Allocation Related Functions - Semaphore Related Functions - Mailbox Related Functions - Queue Related Functions - Case Studies of Programming with RTOS - Understanding Case Definition - Multiple Tasks and their functions - Creating a list of tasks - Functions and IPCs - Exemplary Coding Steps.

TEXT BOOKS

REFERENCES
JNTUH COLLEGE OF ENGINEERING HYDERABAD

M.Tech. I Year I-Sem (Computer Science) L T P C
 4 0 0 4

COMPUTER FORENSICS
Elective – III

Prerequisites: Nil

Objectives:
- To understand the cyberspace
- To gain knowledge on fundamentals of computer forensics
- To understand the evidence capturing process
- To understand the preservation of digital evidence

Outcomes:
- Ability to understand the computer forensics evidence, capture and data recovery
- Ability to understand the current computer forensics tools
- Ability to apply forensics tools in the event of cyber crime.

TEXT BOOKS:

REFERENCES:
JNTUH COLLEGE OF ENGINEERING HYDERABAD

M.Tech. I Year I-Sem (Computer Science) L T P C

4 0 0 4

SCRIPTING LANGUAGES
Elective- III

Prerequisites

A course on “Computer Programming and Data Structures”
A course on “Object Oriented Programming Concepts”

Objectives

This course provides an introduction to the script programming paradigm
Introduces scripting languages such as Perl, PHP and Python.
Learning TCL

Outcomes

Comprehend the differences between typical scripting languages and application
programming languages. Acquire programming skills using scripting languages.
Gain knowledge of the strengths and weakness of Perl, PHP, TCL and Python; and
select an appropriate language for solving a given problem
Ability to design web pages using advanced features of PHP.

UNIT – I Introduction to PERL and Scripting
Scripts and Programs, Origin of Scripting, Scripting Today, Characteristics of Scripting
Languages, Uses for Scripting Languages, Web Scripting, and the universe of Scripting
Languages. PERL- Names and Values, Variables, Scalar Expressions, Control Structures,
arrays, list, hashes, strings, pattern and regular expressions, subroutines.

UNIT – II Advanced perl
Finer points of looping, pack and unpack, filesystem, eval, datastructures, packages,
modules, objects, interfacing to the operating system, Creating Internet ware applications,
Dirty Hands Internet Programming, security Issues.

UNIT – III PHP Basics
PHP Basics- Features, Embedding PHP Code in your Web pages, Outputting the data to the
browser, Datatypes, Variables, Constants, expressions, string interpolation, control structures
PHP and Web Forms, Files, PHP Authentication and Methodologies- Hard Coded, File
Based, Database Based, IP Based, Login Administration, Uploading Files with PHP,
Sending Email using PHP, PHP Encryption Functions, the Mcrypt package, Building Web
sites for the World.

UNIT - IV TCL
TCL Structure, syntax, Variables and Data in TCL, Control Flow, Data Structures,
input/output, procedures, strings, patterns, files, Advance TCL- eval, source, exec and
uplevel commands, Name spaces, trapping errors, event driven programs, making
applications internet aware, Nuts and Bolts Internet Programming, Security Issues, C
Interface.
Tk
Tk-Visual Tool Kits, Fundamental Concepts of Tk, Tk by example, Events and Binding,
Perl-Tk.
UNIT – V Python
Introduction to Python language, python-syntax, statements, functions, Built-in-functions and Methods, Modules in python, Exception Handling.

TEXT BOOKS:
1. The World of Scripting Languages , David Barron,Wiley Publications.

REFERENCE BOOKS:
1. Open Source Web Development with LAMP using Linux Apache,MySQL,Perl and PHP,J.Lee and B.Ware(Addison Wesley) Pearson Education.
2. Programming Python,M.Lutz,SPD.
4. PHP 5.1,I.Bayross and S.Shah,The X Team,SPD.
5. Core Python Programming,Chun,Pearson Education.
7. Perl by Example,E.Quigley,Pearson Education.
8. Programming Perl,Larry Wall,T.Christiansen and J.Orwant, O'Reilly, SPD.
9. Tcl and the Tk Tool kit,Ousterhout,Pearson Education.
10. PHP and MySQL by Example,E.Quigley,Prentice Hall(Pearson).
12. PHP Programming solutions,V.Vaswani,TMH.
JNTUH COLLEGE OF ENGINEERING HYDERABAD

M.Tech. I Year I-Sem (Computer Science) L T P C
 4 0 0 4

NATURAL LANGUAGE PROCESSING
Elective- III

Prerequisites:
- data structures, finite automata and probability theory

Objectives:
- Introduce to some of the problems and solutions of NLP and their relation to linguistics and statistics.

Outcomes:
- Show sensitivity to linguistic phenomena and an ability to model them with formal grammars.
- Understand and carry out proper experimental methodology for training and evaluating empirical NLP systems
- Able to manipulate probabilities, construct statistical models over strings and trees, and estimate parameters using supervised and unsupervised training methods.
- Able to design, implement, and analyze NLP algorithms
- Able to design different language modeling Techniques.

UNIT I : Finding the Structure of Words
Words and Their Components, Issues and Challenges, Morphological Models
Finding the Structure of Documents
Introduction, Methods, Complexity of the Approaches, Performances of the Approaches

UNIT II: Syntax
Parsing Natural Language, Treebanks: A Data-Driven Approach to Syntax, Representation of Syntactic Structure, Parsing Algorithms, Models for Ambiguity Resolution in Parsing, Multilingual Issues

UNIT III: Semantic Parsing

UNIT IV :
Predicate-Argument Structure, Meaning Representation
Recourse, Systems, Software.

UNIT V : Language Modeling

Text Books:
1. Multilingual natural Language Processing Applications : From Theory to Practice – Daniel M. Bikel and Imed Zitouni, Pearson Publication

Reference:
1. Speech and Natural Language Processing - Daniel Jurafsky & James H Martin, Pearson Publications
JNTUH COLLEGE OF ENGINEERING HYDERABAD

M.Tech. I Year I-Sem (Computer Science) L T P C

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS
Elective - IV

Pre Requisite:
- A course On “Software Engineering”

Objectives:
- To understand the concept of patterns and the Catalog.
- To discuss the Presentation tier design patterns and their affect on: sessions, client access, validation and consistency.
- To understand the variety of implemented bad practices related to the Business and Integration tiers.
- To highlight the evolution of patterns.

Outcomes:
- Ability to add functionality to designs while minimizing complexity
- Understand what design patterns really are, and are not
- Learn specific design patterns.
- Able to design patterns to keep code quality high without overdesign.

UNIT I
Envisioning Architecture

Creating an Architecture
Quality Attributes, Achieving qualities, Architectural styles and patterns, designing the Architecture, Documenting software architectures, Reconstructing Software Architecture.

UNIT II
Analyzing Architectures
Architecture Evaluation, Architecture design decision making, ATAM, CBAM.

UNIT III
Moving from one system to many
Software Product Lines, Building systems from off the shelf components, Software architecture in future.

UNIT IV
Patterns
Pattern Description, Organizing catalogs, role in solving design problems ,Selection and usage.

Creational and Structural patterns
Abstract factory, builder, factory method, prototype, singleton, adapter, bridge, composite, façade, flyweight, Proxy.

UNIT V
Behavioral patterns
Chain of responsibility, command, Interpreter, iterator, mediator, memento, observer, state, strategy, template method, visitor.
Case Studies
A-7E – A case study in utilizing architectural structures, The World Wide Web - a case study in interoperability, Air Traffic Control – a case study in designing for high availability, Celsius Tech – a case study in product line development

Text Books:

Reference Books:
2. Software architecture, David M. Dikel, David Kane and James R. Wilson, Prentice Hall PTR, 2001
5. Design Patterns in Java, Steven John Metsker & William C. Wake, Pearson education, 2006
JNTUH COLLEGE OF ENGINEERING HYDERABAD

M.Tech. I Year I-Sem (Computer Science) L T P C
PATTERN RECOGNITION 4 0 0 4
Elective- IV

Prerequisites
- Students are expected to have knowledge basic linear algebra, basic probability theory and basic programming techniques;
- A course on “Computational Mathematics”
- A course on “Computer Oriented Statistical Methods”

Objectives
- This course introduces fundamental concepts, theories, and algorithms for pattern recognition and machine learning.
- Topics include: Pattern Representation, Nearest Neighbor Based Classifier, Bayes Classifier, Hidden Markov Models, Decision Trees, Support Vector Machines, Clustering, and an application of hand-written digit recognition.

Outcomes
- Understand the theory, benefits, inadequacies and possible applications of various machine learning and pattern recognition algorithms
- Identify and employ suitable machine learning techniques in classification, pattern recognition, clustering and decision problems.

UNIT-II: Nearest Neighbor Based Classifier: Nearest Neighbor Algorithm, Variants of the NN Algorithm use of the Nearest Neighbor Algorithm for Transaction Databases, Efficient Algorithms, Data Reduction, Prototype Selection. Bayes Classifier: Bayes Theorem, Minimum Error Rate Classifier, Estimation of Probabilities, Comparison with the NNC, Naïve Bayes Classifier, Bayesian Belief Network.

UNIT-V: Clustering: Why is Clustering Important, Hierarchical Algorithms, Partitional Clustering, Clustering Large Data Sets. An Application-Hand Written Digit Recognition: Description of the Digit Data, Pre-processing of Data, Classification Algorithms, Selection of Representative Patterns, Results.
TEXT BOOK:

REFERENCES:
MOBILE APPLICATION DEVELOPMENT
Elective-IV

Prerequisites

- Computer Networks
- Mobile Computing

Objectives

- Understanding architectures of J2ME as well as Android
- Ability to develop applications for current and emerging mobile computing devices
- Ability to develop mobile applications using J2ME as well as Android

Outcomes

- Ability to understand the components and structure of mobile development frameworks (using J2ME and Android) and learn how and when to apply the different components to develop a working system.
- Ability to describe and work within the capabilities and limitations of mobile computing devices
- Ability to design and implement own user interfaces
- Design, implement and deploy mobile applications

UNIT I: Introduction to Mobile Technology & J2ME Overview

UNIT II: J2ME Architecture, Development Environment and User Interface

J2ME User Interfaces, Display Class, The Palm OS Emulator, Command Class, Item Class, Exception Handling

High-Level Display: Screens: Screen Class, Alert Class, Form Class, Item Class, List Class, TextBox Class, Ticker Class

Low-Level Display: Canvas: The Canvas, User Interactions, Graphics, Clipping Regions, Animation

UNIT III: J2ME Data Management System & Networking

Record Management System: Record Storage, Writing and Reading Records, Record Enumeration, Sorting Records, Searching Records, Record Listener

JDBC Objects: The Concept of JDBC, JDBC Driver Types, JDBC Packages, Overview of the JDBC Process, Database Connection, statement Objects, Result set, Transaction Processing, Metadata, Data Types, Exceptions

JDBC and Embedded SQL: Model Programs, Tables, Indexing, Inserting Data into Tables, Selecting Data from a Table, Metadata, Updating Tables, Deleting Data from a Table, Joining Tables, Calculating Data, Grouping and Ordering Data, Subqueries, VIEWs.
Generic Connection Framework: The Connection, Hypertext Transfer Protocol, Communication, Management Using HTTP Commands, Session Management, Transmit as a Background Process

UNIT IV: Introduction to Android

UNIT V: Android Development
Building User Interfaces, Intents and Broadcast Receivers, Using Internet Resources, Files, Saving State and Preferences, Databases and Content providers.

TEXT BOOKS:

REFERENCE BOOKS:
JNTUH COLLEGE OF ENGINEERING HYDERABAD

M.Tech. I Year I-Sem (Computer Science)

L T P C
0 0 4 2

COMPUTING LABORATORY-I

Prerequisites
¬ A course on “Computer Programming & Data Structures” and “Advanced Data Base Engineering”.

Objectives
¬ Introduces the basic concepts of abstract data types (ADTs).
¬ Introduces a variety of data structures such as hash tables, search trees, tries, heaps, graphs, B-trees.
¬ To understand the basic concepts of relational database.
¬ To master the basics of mySQL and construct queries using mySQL.
¬ Topics include datamodels, database design, relational model, relational algebra, transaction control, concurrency control, storage structures and access techniques.

Outcomes
¬ Ability to select the data structures that efficiently model the information in a problem.
¬ Ability to assess efficiency trade-offs among different data structure implementations or combinations.
¬ Design programs using a variety of data structures, including binary and general tree structures, search trees, tries, heaps and B-trees.
¬ Understand the fundamentals of Relational database design and normal forms
¬ Master the basics of mySQL for retrieval and management of data.
¬ Ability to understand the basics of transaction processing and concurrency control.
¬ Ability to handle the database storage structures and access techniques

Experiments for ADS:
1. Write a program to implement the Randomized n-Queens problem
2. Write a program to implement the Randomized Quick sort
3. Write a program to implement the Optimal Binary Search Tree
4. Write a program to implement the operations of AVL trees
5. Write a program to implement the operations of Leftist tree
6. Write a program to implement the operations of Fibonacci Heap
7. Write a program to implement the Operations of Digital Search trees
8. Write a program to implement the Operations of Binary Tries

Experiments for DBE:
1. Payroll processing system - Database design using E-R model
2. Applying Normalization techniques on Payroll processing systems.
3. Integrity constraints enforcement, High level language extension with Triggers on Payroll processing systems
4. Implement query processing algorithms: nested loop join, merge join, hash join, hybrid hash join.
5. Implement Dynamic programming algorithm for join order optimization.
6. Image storage and retrieval in MySQL database
7. Transaction Processing activities – application program development – concurrent executions
JNTUH COLLEGE OF ENGINEERING HYDERABAD

M.Tech. I Year I-Sem (Computer Science) L T P C
0 0 4 2

SEMINAR

Prerequisites
- None.

Objectives
- To comprehend the technical topic of the presentation
- To deliver confidently technical work to a team of people

Outcomes
- Ability to analyze the selected topic, organize the content and communicate to audience in an effective manner
- Ability to practice the learning by self study
JNTUH COLLEGE OF ENGINEERING HYDERABAD

M.Tech. I Year II-Sem (Computer Science)

ADVANCED COMPUTER NETWORKS

Prerequisites:
- Data Communication, Basic Networking Principles

Objective:
- This course aims to provide advanced background on relevant computer networking topics to have a comprehensive and deep knowledge in computer networks.

Outcomes:
- Understanding of holistic approach to computer networking
- Ability to understand the computer networks and their application
- Ability to design simulation concepts related to packet forwarding in networks.

Unit-I

Unit-II
Data-link protocols: Ethernet, Token Ring and Wireless (802.11). Wireless Networks and Mobile IP: Infrastructure of Wireless Networks, Wireless LAN Technologies, IEEE 802.11 Wireless Standard, Cellular Networks, Mobile IP, Wireless Mesh Networks (WMNs), Multiple access schemes

Unit-III

Unit-IV

Unit-V
The Web and HTTP, File Transfer: FTP, Electronic Mail in the Internet, Domain Name System (DNS), P2P File Sharing, Socket Programming with TCP and UDP, Building a
Simple Web Server
Creating simulated networks and passing packets through them using different routing techniques. Installing and using network monitoring tools.

Text books:

References:
WEB SERVICES AND SERVICE ORIENTED ARCHITECTURE

Pre-requisites:
- The course assumes a reasonable comfort and background about Information Technology and Management Information Systems.

OBJECTIVES:
- To gain understanding of the basic principles of service orientation
- To learn service oriented analysis techniques
- To learn technology underlying the service design
- To learn the concepts such as SOAP, registering and discovering services.

Outcomes:
At the end of this course, students are expected to gain the following learning:
- Get the foundations and concepts of service based computing
- Advocate the importance and means of technology alignment with business
- Understanding the basic operational model of web services,
- Gain the knowledge of key technologies in the service oriented computing arena
- Apply and practice the learning through a real or illustrative project/case study.

UNIT - I
Evolution and Emergence of Web Services – Evolution of distributed computing. Core distributed computing technologies – client/server, CORBA, JAVA RMI, Micro Soft DCOM, MOM, Challenges in Distributed Computing, role of J2EE and XML in distributed computing, emergence of Web Services and Service Oriented Architecture (SOA). Introduction to Web Services – The definition of web services, basic operational model of web services, tools and technologies enabling web services, benefits and challenges of using web services.

UNIT -II
Web Service Architecture – Web services Architecture and its characteristics, core building blocks of web services, standards and technologies available for implementing web services, web services communication, basic steps of implementing web services. Describing Web Services – WSDL introduction, non functional service description, WSDL 1.1 Vs WSDL 2.0, WSDL document, WSDL elements, WSDL binding, WSDL tools, WSDL port type, limitations of WSDL.

UNIT III

UNIT – IV
Registering and Discovering Services : The role of service registries, Service discovery, Universal Description, Discovery, and Integration, UDDI Architecture, UDDI Data Model,
Interfaces, UDDI Implementation, UDDI with WSDL, UDDI specification, Service Addressing and Notification, Referencing and addressing Web Services, Web Services Notification.

UNIT - V

Text Books:
2. Developing Java Web Services, R. Nagappan, R. Skoczylas, R.P. Sriganesh, Wiley India.
3. Developing Enterprise Web Services, S. Chatterjee, J. Webber, Pearson Education.

Reference Books:
1. XML, Web Services, and the Data Revolution, F.P.Coyle, Pearson Education.
3. Java Web Services, D.A. Chappell & T. Jewell, O'Reilly, SPD.
INFORMATION SECURITY
Elective- V
Prerequisites
⇓ A Course on “Computer Networks and a course on Mathematics

Objectives
⇓ To understand the fundamentals of Cryptography
⇓ To understand various key distribution and management schemes
⇓ To understand how to deploy encryption techniques to secure data in transit across data networks
⇓ To apply algorithms used for secure transactions in real world applications

Outcomes
⇓ Demonstrate the knowledge of cryptography, network security concepts and applications.
⇓ Ability to apply security principles in system design.

UNIT I
Security Attacks (Interruption, Interception, Modification and Fabrication), Security Services (Confidentiality, Authentication, Integrity, Non-repudiation, access Control and Availability) and Mechanisms, A model for Internetwork security. Classical Encryption Techniques, DES, Strength of DES, Differential and Linear Cryptanalysis, Block Cipher Design Principles and Modes of operation, Blowfish, Placement of Encryption Function, Traffic Confidentiality, key Distribution, Random Number Generation.

UNIT II

UNIT III

UNIT IV

UNIT V
TEXT BOOKS:

REFERENCE BOOKS:
SOFTWARE TESTING METHODOLOGIES
Elective-V

Prerequisites
✚ A course on “Software Engineering”

Objectives
✚ To provide knowledge of the concepts in software testing such as testing process, criteria, strategies, and methodologies.
✚ To develop skills in software test automation and management using latest tools.

Outcomes
✚ Ability to design and develop the best test strategies in accordance to the development models
✚ Acquire skills to perform dataflow testing, domain testing, logic testing.

UNIT-I:
Introduction:- Purpose of testing, Dichotomies, model for testing, consequences of bugs, taxonomy of bugs
Flow graphs and Path testing:- Basics concepts of path testing, predicates, path predicates and achievable paths, path sensitizing, path instrumentation, application of path testing.

UNIT-II:
Transaction Flow Testing:-transaction flows, transaction flow testing techniques.
Dataflow testing:- Basics of data flow testing, strategies in data flow testing, application of dataflow testing.
Domain Testing:-domains and paths, nice & ugly domains, domain testing, domains and interfaces' testing, domain and interface testing, domains and testability.

UNIT-III:
Paths, Path products and Regular expressions:- path products & path expression, reduction procedure, applications, regular expressions & flow anomaly detection.
Logic Based Testing:- overview, decision tables, path expressions, kv charts, specifications.

UNIT-IV:
State, State Graphs and Transition testing:- state graphs, good & bad state graphs, state testing, Testability tips.

UNIT-V:
Graph Matrices and Application:-Motivational overview, matrix of graph, relations, power of a matrix, node reduction algorithm, building tools. (Student should be given an exposure to a tool like JMeter or Win-runner).

Text Books:
References:
1. The craft of software testing - Brian Marick, Pearson Education.
2. Software Testing Techniques – SPD(Oreille)
JNTUH COLLEGE OF ENGINEERING HYDERABAD

M.Tech. I Year II-Sem (Computer Science)
SOFTWARE PROJECT MANAGEMENT
Elective-V

Prerequisites

A course on “Software Engineering”

Objectives

To develop skills in software project management

The topics include-software economics; software development life cycle; artifacts of the process; workflows; checkpoints; project organization and responsibilities; project control and process instrumentation;

Outcomes

Gain knowledge of software economics, phases in the life cycle of software development, project organization, project control and process instrumentation.

Analyze the major and minor milestones, artifacts and metrics from management and technical perspective.

Design and develop software products using conventional and modern principles of software project management.

UNIT I

Conventional Software Management: The waterfall model, conventional software Management performance.

UNIT II

Improving Software Economics: Reducing Software product size, improving software processes, improving team effectiveness, improving automation, Achieving required quality, peer inspections. The old way and the new: The principles of conventional software Engineering, principles of modern software management, transitioning to an iterative process.

UNIT III

Life cycle phases: Engineering and production stages, inception, Elaboration, construction, transition phases.

UNIT IV

Checkpoints of the process: Major mile stones, Minor Milestones, Periodic status assessments. Iterative Process Planning: work breakdown structures, planning guidelines, cost and schedule estimating, Iteration planning process, Pragmatic planning.

UNIT V
Future Software Project Management: modern Project Profiles, Next generation Software economics, modern process transitions.
Case Study: The command Center Processing and Display system- Replacement (CCPDS-R).

TEXT BOOKS:

REFERENCE BOOKS:
2. Software Project Management, Joel Henry, Pearson Education.
JNTUH COLLEGE OF ENGINEERING HYDERABAD

M.Tech. I Year II-Sem (Computer Science)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

RESEARCH METHODOLOGIES
Elective- VI

Prerequisite: NIL

Objective:

- Introduces research paper writing and publication skills.

Outcome:

Gain the sound knowledge of the following important elements:

- Ability to distinguish research methods
- Ability to write and publish a technical research paper.
- Ability to review papers effectively

UNIT I
Introduction, Technical Research Paper Writing and Publication

UNIT II
Research Paper Search

UNIT III
Research Ethics, Research Methods in Computer Science and Engineering, Research Methods for Software Engineering, Research Methods (deductive methods and proofs)

UNIT IV
Paper Publishing and Reviewing, Measured-based research methods in Computer Engineering

UNIT V
Preparation & Presentation of a scientific paper

Reference:

Web Resources
SOFTWARE DESIGN AND ENGINEERING
Elective-VI

Prerequisite:
- Software Engineering

Objectives:
- To develop in students the knowledge, understanding, skills and values to solve problems through the creation of software solutions
- To design and experiment with software prototypes
- To elicit, analyze and specify software requirements through a productive working relationship with project stakeholders.
- To build solutions using different technologies, architectures and life-cycle approaches.
- The context of different organizational structures.

Outcomes:
- Understanding of the historical developments that have led to current practices in software design and development, and of emerging trends and technologies in this field.
- Acquiring and applying the skills in designing and developing software solutions.
- Acquiring and using the skills required to schedule a software project.

UNIT I
Process models: The waterfall model, Incremental process models, Evolutionary process models, Specialized process models, The Unified process.
Software Requirements: Functional and non-functional requirements, User requirements, System requirements, Interface specification, the software requirements document.
Requirements engineering process: Feasibility studies, Requirements elicitation and analysis, Requirements validation, Requirements management.

UNIT II
Software Design
The nature of the design process, transferring design knowledge, constraints upon the design process and product, recording design decisions, designing with others, context for design, economic factors, assessing design qualities, quality attributes of the design product, assessing the design process. Representing abstract ideas, design view points, the architecture concept, design methods, design patterns, design representations, rationale for design methods.
Design Processes and Strategies: The role of strategy in design methods, describing the design process – The D – Matrix, design by top-down decomposition, design by composition, organizational influences upon design.

UNIT III
Designing with objects and components
Designing with objects: Design practices for object-oriented paradigm, Object-oriented paradigm, Object-oriented frame works, Hierarchical object oriented design process and heuristics, the fusion method, the unified process.

Component - based design: The component concept, designing with components, designing components, COTS.

User Interface design The Golden rules, Interface analysis and design models, user and task analysis, analysis of display content and work environment, applying interface design issues, design evaluation.

UNIT IV Concepts Of Software Projects
Project Management: The management spectrum: people, product, process and project, W5HH principle, Critical practices

Metrics for Process and Projects: Process metrics, project metrics, size-oriented metrics, function-oriented metrics, Object-oriented and use-case metrics, metrics for software quality, integrating metrics with in software process.

UNIT V Project Scheduling and Management
Project Scheduling: Basic concepts, project scheduling, defining a task set and task network, timeline charts, tracking the schedule, tracking the progress for an OO project, Earned value analysis.

Risk Management: Reactive Vs. Proactive risk strategies, software risks, risk identification, risk projection, risk refinement, risk mitigation and monitoring, the RMMM plan.

Text Books:

Reference Books:
Prerequisites

- A course on "Computer Oriented Statistical Methods"
- Generally, a basic knowledge of linear algebra, and probability and statistics and programming experience in one high-level language is required.

Objectives

- The aim of the course is to make the students to understand the basic characteristics of the speech signal with regard to the production and perception of speech by humans.
- To describe the basic techniques and practical aspects of speech analysis.
- To make the students to understand different speech processing applications such as speech recognition and speaker recognition.

Outcomes

- Ability to understand and describe the mechanisms of speech production.
- Ability to determine the speech sounds from the acoustic characteristics.
- Ability to analyze the speech signal in time and frequency domains, and in terms of the parameters of a source-filter model.
- Ability to design a simple speech processing system that recognizes a limited number of isolated words; and a simple speaker recognition system.

UNIT IV: Automatic Speech & Speaker Recognition: Basic Pattern Recognition Approaches, Parametric Representation of Speech, Evaluating the Similarity of Speech Patterns, Isolated Digit Recognition System, Continuous Digit Recognition System

Hidden Markov Model (HMM) For Speech: Hidden Markov Model (HMM) for Speech Recognition, Viterbi algorithm, Training and Testing using HMMS.

UNIT V: Speaker Recognition: Recognition techniques, Features that Distinguish Speakers,

TEXT BOOKS:

REFERENCE BOOKS:
JNTUH COLLEGE OF ENGINEERING HYDERABAD

M.Tech. I Year II-Sem (Computer Science)

HIGH PERFORMANCE COMPUTING
Elective- VII

Prerequisites
- Computer Organization & Architecture
- Operating System Programming

Objectives
- To Improve the system performance
- To learn various distributed and parallel computing architecture
- To learn different computing technologies

Outcomes
- Understanding the concepts in grid computing
- Ability to set up cluster and run parallel applications
- Ability to understand the cluster projects and cluster OS
- Understanding the concepts of pervasive computing & quantum computing.

Unit I

Unit II

Unit III:

Unit IV
Device Connectivity; Java For Pervasive Devices; Application Examples.

Unit V
Classical Vs Quantum Logic Gates; One, Two & Three Qubit Quantum Gates; Fredkin & Toffoli Gates; Quantum Circuits; Quantum Algorithms.

Text Book:
1. “Selected Topics In Advanced Computing” Edited By Dr. P. Padmanabham And Dr. M.B. Srinivas, 2005 Pearson Education.

References:
2. J. Burkhardt et.al: ‘pervasive computing‘ Pearson Education
3. Marivesar:’ Approaching quantum computing’, pearson Education.
4. Raj kumar Buyya:‘High performance cluster computing’, pearson Education.
6. A networking approach to Grid Computing , Minoli , Wiley
JNTUH COLLEGE OF ENGINEERING HYDERABAD

M.Tech. I Year II-Sem (Computer Science) L T P C
ADHOC & SENSOR NETWORKS
Elective-VII

Prerequisites
- Computer Networks
- Distributed Systems / Distributed Operating Systems / Advanced Operating Systems
- Mobile Computing

Objectives
- To understand the concepts of sensor networks
- To understand the MAC and transport protocols for adhoc networks
- To understand the security of sensor networks
- To understand the applications of adhoc and sensor networks

Outcomes
- Understanding the state of the art research in emerging subject of ad hoc and wireless sensor networks (ASN)
- Ability to solve the issues in real-time application development based on ASN
- Ability to conduct further research in the ASN domain

UNIT I
Introduction to Ad Hoc Networks - Characteristics of MANETs, Applications of MANETs and Challenges of MANETs.
Routing in MANETs - Criteria for classification, Taxonomy of MANET routing algorithms, Topology-based routing algorithms-Proactive: DSDV, WRP; Reactive: DSR, AODV, TORA; Hybrid: ZRP; Position-based routing algorithms-Location Services-DREAM, Quorum-based, GLS; Forwarding Strategies: Greedy Packet, Restricted Directional Flooding-DREAM, LAR; Other routing algorithms-QoS Routing, CEDAR.

UNIT II
Data Transmission - Broadcast Storm Problem, Rebroadcasting Schemes-Simple-flooding, Probability-based Methods, Area-based Methods, Neighbour Knowledge-based: SBA, Multipoint Relaying, AHBP. Multicasting: Tree-based: AMRIS, MAODV; Mesh-based: ODMRP, CAMP; Hybrid: AMRRoute, MCEDAR and Geocasting: Data-transmission Oriented-LBM; Route Creation Oriented-GeoTORA, MGR.

UNIT III
TCP over Ad Hoc TCP protocol overview, TCP and MANETs, Solutions for TCP over Ad hoc Basics of Wireless, Sensors and Applications Applications, Classification of sensor networks, Architecture of sensor network, Physical layer, MAC layer, Link layer.

UNIT IV
Data Retrieval in Sensor Networks Routing layer, Transport layer, High-level application layer support, Adapting to the inherent dynamic nature of WSNs, Sensor Networks and mobile robots.
UNIT V

Text Books:
JNTUH COLLEGE OF ENGINEERING HYDERABAD

M.Tech. I Year II-Sem (Computer Science)

L T P C
4 0 0 4

ADVANCED ALGORITHMS
Elective-VII

Prerequisites
¬ A course on “Computer Programming & Data Structures”
¬ A course on “Advanced Data Structures & Algorithms”

Objectives
¬ Introduces the recurrence relations for analyzing the algorithms
¬ Introduces the graphs and their traversals.
¬ Describes major algorithmic techniques (divide-and-conquer, greedy, dynamic programming, Brute Force, Transform and Conquer approaches) and mention problems for which each technique is appropriate;
¬ Describes how to evaluate and compare different algorithms using worst-case, average-case and best-case analysis.
¬ Introduces string matching algorithms
¬ Introduces linear programming.

Outcomes
¬ Ability to analyze the performance of algorithms
¬ Ability to choose appropriate data structures and algorithm design methods for a specified application
¬ Ability to understand how the choice of data structures and the algorithm design methods impact the performance of programs

Unit- I
Classification of algorithms, Algorithm Specifications,
Mathematical analysis of Recursive Algorithms: – Introduction to recurrence equations, formulation of recurrence equations, Techniques for solving recurrence equations, Solving recurrence equations, Solving Recurrence Equations using polynomial reduction, Divide and conquer recurrences

Unit- II
Graphs:– Graph representations, Graph traversals

Unit-III
Divide and Conquer approach:- Multiplication of long integers, Strassen’s matrix multiplication, Fourier Transform
Greedy algorithms:- Coin change problem, Scheduling problems, knapsack problem, optimal storage on tapes, optimal tree problems, optimal graph problems

Unit- IV
Transform and Conquer approach :: Matrix operations- Gaussian Elimination method, LU decomposition, Crout’s method of decomposition
Dynamic Programming:- Computing binomial coefficients, Multistage graph problem, Transitive Closure and Warshall algorithm, Floyd warshall all pairs shortest path problem, TSP, Flow shop scheduling algorithm

Unit-V
String algorithms:- Basic string algorithms, Longest Common Subsequences, Naive String Matching algorithm, Rabin Karp, KMP, Harspool algorithm
Linear Programming, Graphical method for solving LPP, Simplex method, Minimization problems, Principle of Duality, Max Flow problem

TEXT BOOKS:
1. Design and Analysis of Algorithms, S.Sridhar, OXFORD University Press

REFERENCES :
3. Design and Analysis of algorithms, Aho, Ullman and Hopcroft, Pearson education
JNTUH COLLEGE OF ENGINEERING HYDERABAD

M.Tech. I Year II-Sem (Computer Science)

L T P C
4 0 0 4

CRYPTANALYSIS
Elective- VIII

Prerequisites

A Course on “Computer Networks, Mathematics”

Objectives

To understand the importance of cryptanalysis in our increasingly computer-driven world.
To understand the fundamentals of Cryptography.
To understand the Lattice-based cryptanalysis and elliptic curves and pairings.
To understand birthday-based algorithms for functions and attacks on stream ciphers.
To apply the techniques for secure transactions in real world applications.

Outcomes

Ability to apply cryptanalysis in system design to protect it from various attacks.
Ability to identify and investigate vulnerabilities and security threats and the mechanisms to counter them.
Ability to analyze security of cryptographic algorithm against brute force attacks, birthday attacks.

UNIT-I

A bird’s – eye view of modern Cryptography: Preliminaries, Defining Security in Cryptography

Monoalphabetic Ciphers: Using Direct Standard Alphabets, The Caesar Cipher, Modular arithmetic, Direct Standard alphabets, Solution of direct standard alphabets by completing the plain component, Solving direct standard alphabets by frequency considerations, Alphabets based on decimations of the normal sequence, Solution of decimated standard alphabets, Monoalphabets based on linear transformation.

Polyalphabetic Substitution: Polyalphabetic ciphers, Recognition of polyalphabetic ciphers, Determination of number of alphabets, Solution of individual alphabets if standard, Polyalphabetic ciphers with a mixed plain sequences, Matching alphabets, Reduction of a polyalphabetic cipher to a monoalphabetic ciphers with mixed cipher sequences.

UNIT- II

Transposition: Columnar transposition, Solution of transpositions with Completely filled rectangles, Incompletely filled rectangles, Solution of incompletely filled rectangles – Probable word method, Incompletely filled rectangles general case, Repetitions between messages ; identical length messages.

Sieve algorithms: Introductory example: Eratosthenes’s sieve, Sieving for smooth composites.

UNIT- III

Brute force Cryptanalysis: Introductory example: Dictionary attacks, Brute force and the DES Algorithm, Brute force as a security mechanism, Brute force steps in advanced cryptanalysis, Brute force and parallel computers.

The birthday paradox: Sorting or not?: Introductory example: Birthday attacks on modes of operation, Analysis of birthday paradox bounds, Finding collisions, Application to discrete logarithms in generic groups.
UNIT- IV
Birthday-based algorithms for functions: Algorithmic aspects, Analysis of random functions, Number-theoretic applications, A direct cryptographic application in the context of blockwise Security, Collisions in hash functions.
Attacks on stream ciphers: LFSR-based key stream generators, Correlation attacks, Noisy LFSR model, Algebraic attacks, Extension to some non-linear shift registers, The cube attack.

UNIT-V
Lattice-based cryptanalysis: Direct attacks using lattice reduction, Coppersmith’s small roots attacks.
Elliptic curves and pairings: Introduction to elliptic curves, The Weil pairing, the elliptic curve factoring method.

Text Books:
2. “Algorithmic Cryptanalysis" by Antoine joux, CRC Press’

References:
2. Cryptanalysis of Number Theoretic Ciphers, Sameul S. Wag staff, Champan & Hall/CRC
JNTUH COLLEGE OF ENGINEERING HYDERABAD

M.Tech. I Year II-Sem (Computer Science)

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

ROBOTICS
Elective- VIII

Prerequisites:
atism oriented programming

Objectives:
 Covers the theory of AI and robotics from the hierarchical to the hybrid
 deliberative/reactive paradigm for organizing intelligence.
 Inclusion sensing and programming techniques for reactive behaviors, in order to permit
 a class to get covers, the coordination and control of teams of multi-agents.
 Covers architectures that provide examples of how to transfer the principles of the
 paradigm into a coherent, reusable implementation on a single robot or teams of robots.
 Focuses on navigation, a critical ability for a robot that claims to be mobile

Outcomes:
 Enables students to embark on a serious robot project.
 Ability to integrate the sensor with robots.
 Ability to design an appropriate path planning and navigation of Robot.

UNIT-I:
From Teleoperation To Autonomy: How Can a Machine Be Intelligent? What Can Robots Be Used For? A Brief History of Robotics, Teleoperation, The Seven Areas of AI.

UNIT-II:
Designing a Reactive Implementation : Behaviors as Objects in OOP, Steps in Designing a Reactive Behavioral System, Case Study.

UNIT-III:
Multi-agents: Heterogeneity, Control, Cooperation, Goals, Emergent Social Behavior.
UNIT-IV:
Topological Path Planning: Landmarks and Gateways, Relational Methods, Associative Methods, Case Study of Topological Navigation with a Hybrid Architecture. Metric Path Planning, Configuration Space, Cspace Representations, Graph Based Planners, Wavefront Based Planners, Interleaving Path Planning and Reactive Execution.

UNIT-V:

Text Books:
1. Introduction to AI Robotics, Robin R. Murphy, 2000

Reference Books:
1. The Robotics Primer By Maja J. Mataric, MIT Press.
BIO-INFORMATICS
Elective- VIII

Prerequisites
- A course on “Database Management Systems”
- A course on “Data Warehousing and Data Mining”
- A course on “Computer Programming and Data Structures”

Objectives
- To impart the knowledge of theoretical and practical concepts of bioinformatics.
- To develop skills in designing biological database and retrieving.
- To apply appropriate sequence analysis methods for analyzing bio-molecular sequences.

Outcomes
- Demonstrate the knowledge on concepts of biological databases, Genomes and Proteome.
- Ability to analyze biological database management system.
- Ability to select and apply appropriate techniques and tools to manage the biological data.

UNIT I

UNIT II

UNIT III

UNIT IV

UNIT V

TEXT BOOKS

REFERENCE BOOKS
BIG DATA ANALYTICS
Elective- VIII

Prerequisites
- Data Mining

Objectives
- The purpose of this course is to provide the students with the knowledge of Big data Analytics principles and techniques.
- This course is also designed to give an exposure of the frontiers of Big data Analytics

Outcomes
- Ability to explain the foundations, definitions, and challenges of Big Data and various Analytical tools.
- Ability to program using HADOOP and Map reduce, NOSQL
- Ability to understand importance of Big Data in Social Media and Mining.

Unit I
Big Data Analytics: What is big data, History of Data Management; Structuring Big Data; Elements of Big Data; Big Data Analytics; Distributed and Parallel Computing for Big Data; Big Data Analytics: What is Big Data Analytics, What Big Data Analytics Isn’t, Why this sudden Hype Around Big Data Analytics, Classification of Analytics, Greatest Challenges that Prevent Business from Capitalizing Big Data; Top Challenges Facing Big Data; Why Big Data Analytics Important; Data Science; Data Scientist; Terminologies used in Big Data Environments; Basically Available Soft State Eventual Consistency (BASE); Open source Analytics Tools;

Unit- II
Understanding Analytics and Big Data: Comparing Reporting and Analysis, Types of Analytics; Points to Consider during Analysis; Developing an Analytic Team; Understanding Text Analytics; Analytical Approach and Tools to Analyze Data: Analytical Approaches; History of Analytical Tools; Introducing Popular Analytical Tools; Comparing Various Analytical Tools.

Unit III
Understanding MapReduce Fundamentals and HBase: The MapReduce Framework; Techniques to Optimize MapReduce Jobs; Uses of MapReduce; Role of HBase in Big Data Processing; Storing Data in Hadoop: Introduction of HDFS, Architecture, HDFC Files, File system types, commands, org.apache.hadoop.io package, HDF, HDFS High Availability; Introducing HBase, Architecture, Storing Big Data with HBase, Interacting with the Hadoop Ecosystem; HBase in Operations-Programming with HBase; Installation, Combining HBase and HDFS;

Unit IV
Big Data Technology Landscape and Hadoop: NoSQL, Hadoop; RDBMS versus Hadoop; Distributed Computing Challenges; History of Hadoop; Hadoop Overview; Use Case of Hadoop; Hadoop Distributors; HDFC (Hadoop Distributed File System), HDFC Daemons, read, write, Replica Processing of Data with Hadoop; Managing Resources and Applications with Hadoop YARN.
Unit V
Social Media Analytics and Text Mining: Introducing Social Media; Key elements of Social Media; Text mining; Understanding Text Mining Process; Sentiment Analysis, Performing Social Media Analytics and Opinion Mining on Tweets; Mobile Analytics: Introducing Mobile Analytics; Define Mobile Analytics; Mobile Analytics and Web Analytics; Types of Results from Mobile Analytics; Types of Applications for Mobile Analytics; Introducing Mobile Analytics Tools;

TEXT BOOKS
1. BIG DATA and ANALYTICS, Seema Acharya, Subhasinin Chellappan, Wiley publications.
3. BUSINESS ANALYTICS 5e, BY Albright |Winston

REFERENCE BOOKS:
2. Lariss T. Moss, Shaku Atre, “ Business Intelligence Roadmap”, Addison-Wesley It Service.
Advanced Computer Networks Lab Experiments:

Prerequisites:
Data communication, Basic networking principles

Objective:
1. Understand and analyze the existing protocols
2. Understand the use of network packet capturing tools

Outcome:
Ability of acquiring the practical exposure to existing protocols

1. Implement the IP fragmentation and reassembly algorithm.
2. Implement the IP forwarding algorithm.
3. Implement the simplest sliding window protocol of TCP.
4. Connect two systems using a switch and configure private IP addresses to the systems and ping them from each other. Using Wireshark, capture packets and analyze all the header information in the packets captured.
5. Install Telnet on one of the systems connected by a switch and telnet to it from the other system. Using Wireshark, capture the packets and analyze the TCP 3-way Handshake for connection establishment and tear down.
6. Start packet capture in wireshark application and then open your web browser and type in an URL of website of your choice. How long did it take from when the HTTP GET message was sent until the HTTP OK reply was received for the webpage you visited in your web browser.
SOFT SKILLS LAB
(Activity-based)

Course Objectives
- To improve the fluency of students in English
- To facilitate learning through interaction
- To illustrate the role of skills in real-life situations with case studies, role plays etc.
- To train students in group dynamics, body language and various other activities which boost their confidence levels and help in their overall personality development
- To encourage students develop behavioral skills and personal management skills
- To impart training for empowerment, thereby preparing students to become successful professionals

Learning Outcomes
- Developed critical acumen and creative ability besides making them industry-ready.
- Appropriate use of English language while clearly articulating ideas.
- Developing insights into Language and enrich the professional competence of the students.
- Enable students to meet challenges in job and career advancement.

INTRODUCTION
Definition and Introduction to Soft Skills – Hard Skills vs Soft Skills – Significance of Soft/Life/Self Skills – Self and SWOT Analysis and

1. Exercises on Productivity Development
 - Effective/Assertive Communication Skills (Activity based)
 - Time Management (Case Study)
 - Creativity & Critical Thinking (Case Study)
 - Decision Making and Problem Solving (Case Study)
 - Stress Management (Case Study)

2. Exercises on Personality Development Skills
 - Self-esteem (Case Study)
 - Positive Thinking (Case Study)
 - Emotional Intelligence (Case Study)
 - Team building and Leadership Skills (Case Study)
 - Conflict Management (Case Study)

3. Exercises on Presentation Skills
 - Netiquette
 - Importance of Oral Presentation – Defining Purpose- Analyzing the audience- Planning Outline and Preparing the Presentation- Individual & Group Presentation- Graphical Organizers- Tools and Multi-media Visuals
 - One Minute Presentations (Warming up)
 - PPT on Project Work- Understanding the Nuances of Delivery- Body Language – Closing and Handling Questions – Rubrics for Individual Evaluation (Practice Sessions)

4. Exercises on Professional Etiquette and Communication
 - Role-Play and Simulation- Introducing oneself and others, Greetings, Apologies, Requests, Agreement & Disagreement…etc.
• Telephone Etiquette
• Active Listening
• Group Discussions (Case study)- Group Discussion as a part of Selection Procedure- Checklist of GDs
• Analysis of Selected Interviews (Objectives of Interview)
• Mock-Interviews (Practice Sessions)
• Job Application and Preparing Resume
• Process Writing (Technical Vocabulary) – Writing a Project Report-Assignments

5. Exercises on Ethics and Values
Introduction — Types of Values - Personal, Social and Cultural Values - Importance of Values in Various Contexts
• Significance of Modern and Professional Etiquette – Etiquette (Formal and Informal Situations with Examples)
• Attitude, Good Manners and Work Culture (Live Examples)
• Social Skills - Dealing with the Challenged (Live Examples)
• Professional Responsibility – Adaptability (Live Examples)
• Corporate Expectations

Note: Hand-outs are to be prepared and given to students.
Training plan will be integrated in the syllabus.
Topics mentioned in the syllabus are activity-based.

SUGGESTED SOFTWARE:
The following software from 'train2success.com'
- Preparing for being Interviewed
- Positive Thinking
- Interviewing Skills
- Telephone Skills
- Time Management
- Team Building
- Decision making

SUGGESTED READING:
12. The Hindu Speaks on Education by the Hindu Newspaper
PROJECT PHASE-II & DISSERTATION

Prerequisites
None.

Objectives
To identify a problem, analyse, design and code
To demonstrate with sufficient case studies

Outcomes
At the end of the course the student will be able to:
Ability to Synthesize and apply prior knowledge to designing and implementing solutions to open-ended computational problems while considering multiple realistic constraints.
Ability to design and develop the software with SE practices and standards
Ability to analyze database, network and application design methods
Ability to evaluate the various validation and verification methods
Ability to practice CASE tools for solving case studies
Ability to analyzing professional issues, including ethical, legal and security issues, related to computing projects.