JNTUH COLLEGE OF ENGINEERING

VISION
To be recognized as one of the top 10 institutes in the country offering technical education, sustaining and improving its repute of UG programmes, expanding need based PG and research programmes with global outlook, synergising teaching and research for societal relevance

MISSION
1. To identify technological advancements and build the right level of skills at the right time contributing to the industrial and national growth.
2. To identify and keep abreast with the state of the art technology maintaining its legacy of striving for excellence in higher education.
3. To promote world class research of local relevance to society.
4. With a research community of professors, research fellows and research centres, expand the scale and multidisciplinary character of its research activities.
5. With a global outlook strive for collaborations to network with International Universities and National Institutes of Research and Higher Learning.
METALLURGICAL ENGINEERING DEPARTMENT

VISION

To impart quality education in Metallurgical Engineering and constantly pursuing excellence by upgrading knowledge skills and attitude useful to Industry, Academic and Society.

MISSION

1. To produce graduates having professional excellence in Basic Sciences and Metallurgical Engineering with concern towards society
2. To provide a scientific environment, to help meet the desires and needs of students and faculty for enhancing research efforts and technological innovations.
3. To provide technical support to higher education, industry and R&D units.
Model Curriculum of Engineering & Technology PG Courses [Volume-I]

Course Structure for M. Tech. (METALLURGY)

M. Tech. Semester - 1

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Subject</th>
<th>Scheme Of Studies Per Week</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1CS01</td>
<td>Program Core - I: Advances in Materials Testing</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>1CS02</td>
<td>Program Core - II: Advances in Metal Casting</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>1CSxx</td>
<td>Program Elective - I:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Advances in Ferrous Metal Production</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Phase Transformations in Metals & Alloys</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Alloy Steels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1CSxx</td>
<td>Program Elective - II:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Light Metals and Alloys</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Advances in Metal Forming</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Advanced Physical and Mechanical Metallurgy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Axxx</td>
<td>Research Methodology and IPR</td>
<td>2 0 0</td>
<td>2</td>
</tr>
<tr>
<td>1Axxx</td>
<td>Audit Course - I</td>
<td>2 0 0</td>
<td>0</td>
</tr>
<tr>
<td>1CS03</td>
<td>Laboratory - 1: Materials Testing Lab</td>
<td>0 0 4</td>
<td>2</td>
</tr>
<tr>
<td>1CS04</td>
<td>Laboratory - 2: Metal Casting Lab</td>
<td>0 0 4</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Credits: 18
Course Structure for M. Tech. (METALLURGY)

M. Tech. Semester – 2

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Subject</th>
<th>Scheme Of Studies Per Week</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2CS05</td>
<td>Program Core - III: Advances in Metal Joining</td>
<td>3 0 0 3</td>
<td>3</td>
</tr>
<tr>
<td>2CS06</td>
<td>Program Core - IV: Corrosion Engineering</td>
<td>3 0 0 3</td>
<td>3</td>
</tr>
<tr>
<td>2CSXX</td>
<td>Program Elective - IV: 1. Particulate Material Technology 2. Nuclear Metallurgy 3. Ferro Alloy Technology</td>
<td>3 0 0 3</td>
<td>3</td>
</tr>
<tr>
<td>2AXXX</td>
<td>Audit Course - II</td>
<td>2 0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>2CS07</td>
<td>Laboratory - 3: Metal Joining Lab</td>
<td>0 0 4 2</td>
<td>2</td>
</tr>
<tr>
<td>2CS08</td>
<td>Laboratory - 4: Corrosion Engineering Lab</td>
<td>0 0 4 2</td>
<td>2</td>
</tr>
<tr>
<td>2CS09</td>
<td>Mini Project with Seminar</td>
<td>2 0 0 2</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Credits: 18

* Students be encouraged to go to Industrial Training/ Internship for at least 6 to 8 weeks during semester break.
Model Curriculum of Engineering & Technology PG Courses [Volume-I]

Course Structure for M. Tech. (METALLURGY)

M. Tech. Semester - 3

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Subject</th>
<th>Scheme Of Studies Per Week</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>3CSXX</td>
<td>Program Elective V:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Surface Engineering</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2. Materials Characterization Techniques</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Nano Materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3CSXX</td>
<td>Open Elective:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Composite Materials</td>
<td>3 0 0</td>
<td>3</td>
</tr>
<tr>
<td>3CS10</td>
<td>Dissertation-I / Industrial Project</td>
<td>0 0 20</td>
<td>10</td>
</tr>
</tbody>
</table>

Total Credits: 16

Students going for Industrial Project/Thesis will complete these courses through MOOCs
Course Structure for M. Tech. (METALLURY)
M. Tech. Semester - IV

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Subject</th>
<th>Scheme Of Studies Per Week</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dissertation II</td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Total Credits:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credits: 16
ADVANCES IN MATERIALS TESTING
(Program Core – I)
M.Tech. I Year I-Sem L T P C 3 0 0 3

Pre-Requisites: Nil
Course Objectives:
1. Obtain a working knowledge of various hardness testing machines BHN, VHN, RHN.
2. To gain an understanding of the response of various metals under the application of stress and/or temperature.
3. Obtain a working knowledge of creep and fatigue and analysis of data.

UNIT–I

UNIT–II

UNIT–III
Fatigue Test: Introduction, Stress cycles, S-N Curve, effect of mean stress, mechanism of fatigue failure, effect of stress concentration, size, surface condition and environments on fatigue.

UNIT–IV

UNIT–V
NDT: Principle, operation, advantages and limitations of Liquid Penetrant, Magnetic Particle, Radiography and Ultrasonic tests.

Text Books:
Reference Books:
2. Structure and properties of materials by Wulff, John, 1903- ed

Course Outcomes:
At the end of the course the student will be able to:
1. Classify mechanical testing of ferrous and non-ferrous metals and alloys.
2. Identify the testing methods for obtaining strength and hardness.
3. Able to construct and study the stress strain diagrams.
4. Examine the mechanisms of materials failure through fatigue and creep.
5. Learn finding the defects using NDT techniques.
ADVANCES IN METAL CASTING
(Program Core – II)
M.Tech. I Year I-Sem

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Pre-Requisites: Nil
Course Objectives:
This course is mainly intended to
1. Introduce and explain various moulding, casting techniques and equipment used.
2. Principles of Solidification of casting, defects in castings and their remedies are also dealt in detail.
3. Different types of pattern materials using for casting.

UNIT-I
Pattern materials, types of patterns and pattern allowances, Mould and Core making materials and their characteristics. Recent developments in castings: Full mold casting, Investment casting, Continuous casting, Vacuum casting.

UNIT-II
Riser design shape, size and placement. Effective feeding distances for simple and complex shapes. Use of chills. Gating design, Factors involved in Gating design, Types of gates, gating ratio.

UNIT-III

UNIT-IV
Additive manufacturing: Principles and technology of 3D printing, Advantages, limitations.

UNIT-V
Melting and quality control of cast iron, steel and aluminium. Defects arising with various casting processes, their identification and preventing methods.

Text Books:
Reference Books:

Course Outcomes:
This course would pave a platform for students to develop a thorough understanding on:
1. The casting technology.
2. Solidification of metals and alloys.
5. Designing pattern techniques for different material with suitable materials
6. Advanced techniques in casting.
ADVANCES IN FERROUS METAL PRODUCTION
(Program Elective – I)

M.Tech. I Year I-Sem L T P C 3 0 0 3

Pre-Requisites: Nil

Course Objectives:
1. To learn alternate routes of iron making based on coal based and gas based processes.
2. Gain knowledge about important smelt reduction processes.
3. To enhance the technical knowledge in secondary steel making processes.

UNIT-I
Basics of iron and steel productions. The need for alternative Iron units. Fundamentals of direct reduction, applications of DRI.

UNIT-II
Coal based DR processes: Rotary Kiln, Fast met, ITMK 3 process.

UNIT-III

UNIT –IV

UNIT-V

Text Books:

Reference Books:
1. Hot Metal production by smelting reduction of Iron oxide, by Amit Chatterjee. PHI learning Pvt Ltd.
2. Steel making – A.K. Chakrabarti, PHI.
Course Outcomes:
At the end of the course, student will be able to gain or develop
1. Comprehensive understanding of alternate routes to iron making concomitant to kinetics of reduction of oxides of iron.
2. Analyze, compare and contrast the different coal based and gas based DR processes.
4. Knowledge about the importance of secondary steel making processes and types of processes and their significance.
5. Importance of vacuum in steel making in improving the quality of steels.
6. Explain the post solidification processes to alters the microstructure for enhancing the properties of steels.
PHASE TRANSFORMATIONS IN METALS & ALLOYS
(Program Elective - I)

M.Tech. I Year I-Sem

L T P C
3 0 0 3

Pre-Requisites: Nil

Course Objectives:
1. This course is mainly designed to impart knowledge about thermodynamics and phase diagrams concerning single and binary components, and various interfaces.
2. Gain knowledge about solidification and structure development of metals and alloys.
3. Enhance technical knowledge about diffusion and diffusionless transformations.

UNIT–I
Thermodynamics and phase Diagrams: Single component systems, Binary solutions, Equilibrium in Heterogeneous systems, Binary phase Diagrams.

UNIT–II
Crystal Interfaces and Microstructures: Interfacial free energy, Solid/ Vapour Interfaces, Boundaries in single-phase solids, Interfaces in solids, Interface migration.

UNIT–III
Solidification: Nucleation in pure metals, Growth of a pure solid, Alloy solidification, solidification of Ingots and castings, solidification of fusion welds.

UNIT–IV

UNIT–V
Diffusionless Transformations: Characteristics, Martensite crystallography, Theories of Martensite Nucleation, Martensite growth, Tempering of Ferrous Martensites.

Text Books:
2. Phase Transformations in Materials by Gernot Kostorz.

Reference Books:
2. Physical Chemistry for Metallurgist - J. Mackowick.
Course Outcomes:

At the end of the course the student will be able to:

1. Understand the principle of thermodynamics in phase diagrams.
2. Get familiarize with single and binary components and various crystal interfaces.
4. Apply the fundamentals of phase transformation in steels and other engineering materials.
5. Understand the diffusion kinetics in phase transformations.
6. Understand the characteristics of diffusionless transformations.
ALLOY STEELS
(Program Elective – I)

M.Tech. I Year I-Sem

Pre-Requisites: Nil

Course Objectives:
This course deals with:
1. Describe the physical metallurgy of steels and alloy steels.
2. Explain the microstructure and properties of steels and alloy steels.
3. Make judgments on microstructural evolution and properties developed in alloy steels.

UNIT – I

UNIT – II
Medium- High carbon ferrite-pearlite steels – structure property relationships, Bainitic steels, Low-carbon bainitic steels requirements, development and choice of alloying elements, Mechanical properties, microstructure and impact properties, High-Carbon bainitic steels.

UNIT – III
Ultra-high strength steels: Classification and applications. Description steels tempered at low temperatures, secondary hardening, Thermo-mechanical treatments, rapid austenitizing treatments, structure-property relationships in tempered martensite, cold-drawn pearlite steels, maraging steels.

UNIT – IV
Stainless steels: Classification, Composition, role of alloying elements, Heat treatment, microstructure and applications.

UNIT- V
Tool steels and Heat resistant steels: Classification, Composition, role of alloying elements, Heat treatment, microstructure and applications.

Text Books:
Reference Books:

Course Outcomes:
1. Able to classify plain carbon steels, alloy steels and differentiate the steels and appreciate the role of alloy elements in steels and how to modify the structures to get the desired properties in steels.
2. Know the importance of structure - property correlation study in HSLA, Ultra high strength steels etc., and their suitable applications.
3. Analyze the importance of composition, heat treatment and microstructure effects on properties and uses of stainless steels.
4. Analyze the importance of composition, heat treatment and microstructure effects on properties and uses of tool steels and heat resistant steels.
5. Able to apply the knowledge gained on microstructural evolution and its stability to optimize the processing routes for specific applications.
LIGHT METALS AND ALLOYS
(Program Elective – II)

Pre-Requisites: Nil

Course Objectives:
This course is mainly intended:
1. To give an exposure of various alloy systems, phase diagrams and their applications.
2. To highlight the importance of alloy selection.
3. To demonstrate the influence of composition, processing and microstructural effect on properties of the non ferrous alloys.

UNIT-I
Aluminium alloys: Classification, Properties and applications, Physical metallurgy of Al-Cu alloys, Al-Mg alloys, Al-Zn alloys, Al-Mn alloys, Al-Si alloys, and Al-Li alloys, Ternary phase diagrams: Al-Cu-Mg alloys, Al-Si-Mg alloys and Al-Zn-Mg alloys.

UNIT-II
Magnesium Alloys: Classification, properties and applications, Alloying elements to magnesium and their purpose, Designation of magnesium alloys, Temper designation of magnesium alloys, Precipitation hardening in Magnesium alloys, Mg-Al-Zn alloys, Corrosion resistance of Mg-alloys.

UNIT-III
Titanium alloys: Classification, properties and applications, Interstitial solid solutions of titanium, Strengthening mechanisms of Titanium alloys. Titanium alloys for aerospace and aero engine applications.

UNIT-IV

UNIT-V
Beryllium alloys: Classification properties and applications, Processing of Beryllium alloys, Al-Be alloys, Corrosion resistance of Beryllium alloys.

Text Books:
Reference Books:
1. Heat treatment, structure and properties of Nonferrous alloys- Charlie Brooks, ASM Metals Park, Ohio, USA.

Course Outcomes:
At the end of the course, the student will be:
1. Able to classify Aluminum alloys and understand the importance of structure - property correlation in binary and ternary alloys.
2. Knowledge of Magnesium and Zinc alloys and their applications.
3. List out the properties of Titanium and its alloys and comprehend their usage.
4. Analyze the importance of properties and applications of Beryllium alloys.
5. Can develop and design stronger and safer new light weight alloys with the knowledge of metal properties for specialized applications with minimum consumption of materials.
ADVANCES IN METAL FORMING
(Program Elective – II)

M.Tech. I Year I-Sem

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Pre-Requisites: Nil

Course Objectives:
1. Gain an understanding of fundamentals of metal working.
2. Analyze the behavior of metals during plastic deformation.
3. Obtain a working knowledge of forging, rolling, extrusion, drawing, Sheet metal forming and other processes.

UNIT-I
Forging: Forging types of presses and hammers. Classification: Open die forging and Closed die forging; die design, forging in plane strain, calculation of forging loads; forging defects - causes and remedies, residual stresses in forging. New technologies: Liquid metal forging, Isothermal forging, No draft forging, Roll forging. Lubrications in forging, forging defects and their remedies.

UNIT-II
Rolling: Classification of rolling processes, types of rolling mills, hot and cold rolling, rolling of bars and shapes forces and geometrical relationship in rolling, analysis of rolling load, torque and power, rolling mill control, process variables, redundant deformation. Roll flattening, roll camber – its effect on rolling process; mill spring; Automatic gauge control - Roll pass classification & design. Lubrication in rolling: rolling defects - causes and remedies.

UNIT-III
Extrusion and Drawing: Direct and indirect extrusion, variables affecting extrusion, deformation pattern, equipments, port-hole extrusion die, hydrostatic extrusion, defects and remedies, simple analysis of extrusion, tube extrusion and production of seamless pie and tube, drawing of rods, wires and tubes.

UNIT-IV
Sheet metal forming and other processes: Forming methods - Shearing, blanking, bending, stretch forming, deep drawing. Types of dies used in press working, defects in formed part, sheet metal forming, formability limit diagram.

UNIT-V

Text Books:
Reference Books:
4. Principles of industrial metal working process, G. W. Rowe, Edward Arnold

Course Outcomes:
At the end of the course the student will be able to:
1. Identify the behavior of metals under the various modes of deformation.
2. To use mechanics of metal working principles suitable for various mechanical working operations.
3. Identify and adopt a particular deformation process to obtain the required product.
4. Study of formability limit diagram.
5. Comparison of conventional & high velocity forming processes.
ADVANCED PHYSICAL AND MECHANICAL METALLURGY
(Program Elective – II)

M.Tech. I Year I-Sem

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Pre-Requisites: Nil
Course Objectives:
1. To highlight the importance of solidification, crystallographic texture and structure – property correlations.
2. To develop a fundamental understanding of stress-strain behaviour, fracture mechanisms.
3. To familiarize with effect of cold working, annealing and phase transformations.
4. To understand order-disorder transformations and principles of metal forming techniques.

UNIT-I
Solidification and solidification structures, interfaces, crystallographic texture, residual stresses, structure - property correlations, Order-disorder Transformations.

UNIT-II
Phase transformations: Thermodynamic basics.
Austenite – Pearlite transformation, Bainite transformation, Martensitic transformation,

UNIT-III
Recovery, re-crystallisation and grain growth: Annihilation, Polygonisation, property changes, driving forces, N - G aspects, Annealing twins, Texture in cold worked and Annealed alloys.

UNIT-IV
Plasticity and work hardening: fundamentals, stress - strain behaviour, fracture mechanisms.

UNIT-V
Yield criteria for deformation of materials, Variables of metal forming (Temp, Strain rate, friction and lubrication), Formability Limit Diagram.

Text Books:
Reference Books:

Course Outcomes:
At the end of the course the student will be able to:
1. Identify the solidification structures and gain a basic knowledge about crystallographic texture.
2. Gain knowledge about phase transformations and order-disorder transformations.
3. Understanding of basic thermodynamics required for phase transformations.
4. Awareness of cold worked and annealed properties of given alloys.
5. Gain knowledge about stress-strain behaviour and fracture mechanisms under various conditions.
6. Gain a basic knowledge about principles of metal forming techniques and formability limit diagrams.
RESEARCH METHODOLOGY AND IPR

M.Tech. I Year I-Sem

Pre-Requisites: Nil

Course Objectives:
1. To understand the research problem
2. To know the literature studies, plagiarism and ethics
3. To get the knowledge about technical writing
4. To analyze the nature of intellectual property rights and new developments
5. To know the patent rights

UNIT-I
Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem.
Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

UNIT-II
Effective literature studies approaches, analysis, Plagiarism, Research ethics

UNIT-III
Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee

UNIT-IV

UNIT-V
TEXT BOOKS:
2. Wayne Goddard and Stuart Melville, “Research Methodology: An Introduction”

REFERENCES:

Course Outcomes
At the end of this course, students will be able to
1. Understand research problem formulation.
2. Analyze research related information
3. Follow research ethics
4. Understand that today’s world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity.
5. Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular.
6. Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.
VALUE EDUCATION
AUDIT COURSE – I

M.Tech. I Year I-Sem

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Course Objectives:
Students will be able to
1. Understand value of education and self-development
2. Imbibe good values in students
3. Let the should know about the importance of character

UNIT-I
- Values and self-development-Social values and individual attitudes. Work ethics, Indian vision of humanism.
- Moral and non-moral valuation. Standards and principles
- Value judgements

UNIT-II
- Importance of cultivation of values.
- Patriotism. Love for nature, Discipline

UNIT-III
- Personality and Behavior Development – Soul and Scientific attitude. Positive Thinking. Integrity and discipline.
- Punctuality, Love and Kindness.
- Avoid fault Thinking.
- Free from anger, Dignity of labour.
- Universal brotherhood and religious tolerance.
- True friendship.
- Happiness Vs suffering, love for truth.
- Aware of Self-destructive habits.
- Association and Cooperation.
- Doing best for saving nature

UNIT-IV
- Character and Competence-Holy books vs Blind faith
- Self-management and Good health.
- Science of reincarnation.
- Equality, Nonviolence, Humility, Role of Women.
- All religions and same message.
- Mind your Mind, Self-control.
- Honesty, Studying effectively
Suggested reading

Course Outcomes:
Students will be able to
 1. Knowledge of self-development
 2. Learn the importance of Human values
 3. Developing the overall personality
MATERIALS TESTING LAB
(LABORATORY - I)

M.Tech. I Year I-Sem

Pre-Requisites: Advances in Materials Testing

Course Objectives:
Students will be able to:
1. Demonstrate skill in using different hardness testing machines.
2. Explain the rationale for using particular loads in testing fatigue and tensile properties of materials.
3. Use the standard specimens in determining toughness and ductility of materials.

List of Experiments:
1. Tensile Testing (Room Temperature and High Temperature)
 To determine the
 i. Elastic modulus
 ii. Yield and Ultimate tensile strength
 iii. Breaking stress
 iv. Percentage Elongation
 v. Percentage reduction in area of a given specimen.
2. Compression Testing at room temperature:
 To determine the mechanical properties of materials under compression conditions.
3. Three Point Bend Testing:
 To measure the specimen’s flexural strength, modulus etc.,
4. Low Cycle Fatigue:
 To determine the fatigue properties of a given material under fatigue condition.
5. High Cycle Fatigue:
 To determine the fatigue properties of a given material under fatigue condition.
6. Creep Test:
 To study the creep properties and practice the testing procedure.
7. Fracture Mechanics (K_{IC},J_{IC}) at room temperature:
 To study the fracture mechanism of the specimen.

Course Outcomes:
After completing the course, the student will be able:
1. Explain the methods of destructive testing (Tensile testing, Compression testing, Three point bend testing, Low cycle fatigue High cycle fatigue, Creep testing and Fracture mechanics.
2. Analyze, interpret and present the observation from the tests conducted.
3. Can prepare formal laboratory reports describing the experimental and the results obtained.
4. Solve material problems associated with testing.
METAL CASTING LAB
(LABORATORY - II)
M.Tech. I Year I-Sem

Pre-Requisites: Advances in Metal Casting

Course Objectives:
1. To give basic idea of different mould sands and binders used to prepare green sand.
2. Operate instruments to find different properties of green sand.
3. Handling of NDT equipment and determine flaws in material.

List of Experiments:
1. Preparation of gating system using green sand.
2. Study of particle size distribution of the sand.
3. Study of the variation of permeability of the green sand with clay and water.
4. Determination of the variation of sand properties like green hardness, green compact strength with additives in sands.
5. Determination of the variation of hot compact hardness and hot shear strength with additives in sands.
6. Determination of clay content in sand.
7. Determination of the shatter index of green sand.
8. Preparation of aluminium coatings.
9. Charge calculations and melting practice of cast iron in a cupola.
10. Preparation of CO$_2$ moulds.
11. Making of pipes by centrifugal casting process.
12. Non-destructive testing of a few cast iron components.

Course Outcomes:
1. Able to determine the green sand properties.
2. Able to operate basic furnaces.
4. Learn about the NDT techniques and able to conduct.
ADVANCES IN METAL JOINING
(Program Core – III)
M.Tech. I Year II-Sem \[\text{L T P C} = 3 0 0 3 \]

Pre-Requisites: Nil
Course Objectives:
1. To develop understanding of metallurgical fundamentals of welding with regard to heat flow and phase transformations during welding.
2. To study Welding of ferrous metals and alloys.
3. To study Welding of non ferrous metals and alloys.
4. To gain a knowledge about quality control methods in welded joints.

UNIT–I

UNIT–II
Flux assisted GTAW process, friction welding processes, friction stir welding and friction surfacing, microwave Joining and hybrid welding.

UNIT–III
Weld metal solidification - Phase transformations- weld CCT diagrams - carbon equivalent- preheating and post heating- weldability of carbon steels and low alloy steels.

UNIT–IV
Welding of stainless steels use of Schaffler and Delong diagrams, welding of cast irons, welding of aluminum alloys.

UNIT–V
Welding of titanium alloys and welding of dissimilar metals. Weld defects: Causes and remedial measures, Weldability tests - effect of metallurgical parameters.

Text Books:

Reference Books:
Course Outcomes:
At the end of the course, student will be able to gain:
1. Basic theoretical & practical knowledge of welding of ferrous metals and alloys.
2. Basic theoretical & practical knowledge of welding of non ferrous metals and alloys.
3. Conduct quality control tests on welded joints.
5. Knowledge about different welding processes.
CORROSION ENGINEERING
(Program Core – IV)

M.Tech. I Year II-Sem

L T P C
3 0 0 3

Pre-Requisites: Nil

Course Objectives:
1. Electrometallurgy principles in deposition, winning and the efficiency of the bath to be discussed.
2. Testing methods are to be studied. Various ways in which corrosion takes place in metals/alloys together with corrosion protection methods and tests conducted are to be studied.
3. Design corrosion resistant structures and materials.

UNIT-I
Introduction, electro chemistry principles, electrochemical reactions, Polarization, Passivity, environmental effects (oxygen, oxidizers, velocity, temperature, corrosive concentration, galvanic coupling).

UNIT-II
Corrosion, introduction, definition, classification, forms of corrosion, uniform corrosion. Two metal corrosion: sacrificial anode, EMF and galvanic Series, environmental effects. Pitting corrosion: pit shape and growth, autocatalytic nature of pitting, crevice corrosion.

UNIT-III

UNIT-IV

UNIT-V
Modern theory and applications of corrosion: Introduction, free energy, cell potentials, emf series, applications of thermodynamics to corrosion, corrosion rate expressions and measurements, corrosion testing.

Text Books:
Reference Books:

Course Outcomes:
1. Able to interpret electro chemical phenomenon.
2. Can explain different types of corrosion and their causes and effect.
3. Able to identify the different remedial measures to be taken.
4. Able to design corrosion resistant structures and materials.
5. Determine the thermodynamic causes of corrosion.
6. Conduct corrosion tests and able to quantify the corrosion processes.
ADVANCES IN NON DESTRUCTIVE TESTING METHODS
(Program Elective – III)

M.Tech. I Year II-Sem

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Pre-Requisites: Nil

Course Objectives:
1. Provide an opportunity to learn visual methods, electrical methods and magnetic methods.
2. To develop a fundamental understanding of ultrasonic testing of material and radiographic methods.
3. To be able to select the suitable NDT methods for particular environments.

UNIT-I

UNIT-II
Magnetic methods: Methods of generating fields, magnetic particles and suspending liquids. Magnetography, field sensitive probes, advantages, limitations and applications of magnetic methods.

UNIT-III
Electrical methods: Eddy current methods, potential-drop methods, applications.
Electromagnetic testing: Magnetism, Magnetic domains, Magnetization curves, Magnetic Hysteresis. Hysteresis-loop tests, comparator - bridge tests Absolute single-coil system, applications.

UNIT-IV
Ultrasonic testing of materials: Generation of Ultrasonic waves, general characteristics of ultrasonic waves; methods and instruments for ultrasonic materials testing; special techniques. Principles, test procedures of composites by Ultrasonic flaw inspection. Advantages, disadvantages, Applications.
Acoustic emission methods: Basic Principles and practice, computerized tomography, composite health monitoring.

UNIT-V

Text Books:
1. Non-Destructive Testing by R. Halmshaw, 2nd edition, by The British Institute of NDT.
Reference Books:

Course Outcomes:
The end of the student gain will be:
1. Complete knowledge on microscopic evaluation and dynamic inspection.
2. Knowledge about applications of NDT methods like visual observation, penetrant detection, electrical methods etc.
3. Ability to use ultrasonic testing and radiographic methods for checking various types of defects.
4. Selection of suitable NDT methods for various environments.
5. Documentation of testing and evaluation of results for further analysis.
ADVANCES IN NON-FERROUS METALS PRODUCTION
(Program Elective – III)

M.Tech. I Year II-Sem

L T P C
3 0 0 3

Pre-Requisites: Nil

Course Objectives:
1. To explain the fundamentals of extraction of non ferrous metals.
2. Gain knowledge in extraction of Copper, Zinc, Aluminium and Titanium in modern techniques.
3. Gain knowledge in extraction of Uranium, Thorium, Zirconium and their refining techniques.

UNIT-I
Introduction, Unit operations for pyrometallurgy, Hydrometallurgy, Electrometallurgy.
Advantages and disadvantages.

UNIT-II
Advanced extraction and refining techniques for the production of Cu, Zn, Al and Ti.

UNIT-III
Processing techniques for the extraction of Nuclear reactor materials.
Uranium: Acid and alkali processes for digestion of uranium ores, purification of crude salt, production of reactor grade UO₂ and uranium.

UNIT-IV
Thorium: Flow sheets, Acid and alkali processes for digestion of thorium ores, purification and production.

UNIT-V
Zirconium: Flow sheets, Acid and alkali processes for digestion of zirconium ores, purification and production.

Text Books:

Reference Books:
Course Outcomes:
At the end of the course, student would be able to apply:
1. The fundamental understanding of principles of extraction.
2. Awareness about modern extraction and refining techniques in production of Copper, Zinc, Aluminium, Titanium, Uranium, Thorium and Zirconium.
3. Know the advantages and disadvantages in different extraction processes.
4. Able to understand different types of solution and their properties used in extraction process.
5. Gain knowledge about different purification techniques for different materials.
6. Comparison between traditional and modern techniques of extraction.
STRENGTHENING MECHANISMS
(Program Elective – III)

M.Tech. I Year II-Sem

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Pre-Requisites: Nil

Course Objectives:
1. To explain and describe various strengthening mechanisms involved in the development of existing alloys and new alloys.
2. To understand the role of solutes, precipitates, fibers in the strengthening mechanisms.
3. To understand recovery, recrystallization and grain growth.

UNIT-I
Strengthening from grain boundaries, Hall-Petch relation, ASTM grain size measurement, yield-point phenomenon, strain aging.

UNIT-II
Solid solution strengthening: Elastic interaction, modulus interaction, stacking fault interaction, electrical interaction, short range order interaction, long range order interaction.

UNIT-III
Cold working: Strain hardening of single crystals, Annealing of cold worked metal, Recovery, Recrystallization and Grain growth.

UNIT-IV
Strengthening from fine particle: Principle, mechanisms and examples of Precipitation hardening (age hardening), Dispersion hardening.

UNIT-V
Fiber strengthening, strength and moduli of composites (Iso-strain and Iso-stress condition), influence of fiber length, orientation and concentration. Martensitic strengthening.

Text Books:

Reference Books:
Course Outcomes:
At the end of the course, student would be able:
1. Able to explain the process of strengthening by grain / grain boundary in materials.
2. Explain and illustrate how alloying can improve strength in metals.
3. Choose cold working and annealing cycles for improving strength and ductility in materials for suitable applications.
4. Gain knowledge about strengthening by the secondary phase particles.
5. Analyze the composite strengthening by various methods of orientation of fibers in materials.
6. Can develop particular strengthening mechanisms for design of high strength metals and alloys.
PARTICULATE MATERIAL TECHNOLOGY
(Program Elective – IV)

M.Tech. I Year II-Sem

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Pre-Requisites: Nil

Course Objectives:
1. To build the necessary background of emergence and importance of powder metallurgy, scope and limitations.
2. Obtain a necessary knowledge about various powder production techniques and characteristics.
3. Obtain a working knowledge of compaction and sintering techniques.
4. Gain an effective knowledge of applications of powder metallurgy products.

UNIT-I
Introduction: Emergence and importance of particulate materials and their processing, comparison of powder metallurgy with other manufacturing techniques, its scope and limitations; Metal powder production methods: physical Methods, chemical methods and mechanical methods; selection of metal powder production method.

UNIT-II
Characterization and testing of particulate materials: Chemical composition and structure, particle size and shape, Particle surface topography, Surface area, apparent and tap density, flow rate, compressibility, green strength, pyrophorosity and toxicity and Porosity measurements.

UNIT-III
Treatment of metal powders: Annealing, powder mixing, mechanical milling, shape forming: die compaction: types of presses, tooling and design; behavior of powder during compaction, modern methods of powder consolidation:isostatic pressing, roll compaction, powder extrusion, and forging, slip casting, gel casting, tape casting, hot pressing and hot isostatic pressing.

UNIT-IV
Sintering: Solid state sintering: stages of sintering, driving forces for sintering, mechanism of sintering; liquid phase and activated sintering; sintering furnaces: batch type furnaces, continuous sintering furnaces and vacuum furnaces; Sintering zones: entrance zone, high temperature zone and cooling zone; sintering atmosphere: hydrogen, reformed hydro carbon gases, nitrogen, dissociated ammonia, argon and helium and vacuum.

UNIT-V
Powder metallurgy applications: Production of self lubricating bearings, porous metals and filters, cermets, cemented carbides, electrical and magnetic materials; dispersion strengthened alloys by powder metallurgy route.
Text Books:
1. Powder Metallurgy - PC Angelo, PSG College.

Reference Books:
3. Introduction to Powder metallurgy – JS Hirschhorn.
4. ASM Handbook on Powder Metallurgy, Metals Park, Ohio, USA.

Course Outcomes:
At the end of the course the student will be able to:
1. Classify powder preparation techniques.
2. Explain the characterization techniques of powders.
3. Describe hot, cold and pressure-less powder compaction and sintering techniques of powder compacts.
4. To understand sintering zones and gain knowledge about sintering atmospheres.
5. List out the applications of powder metallurgy.
NUCLEAR METALLURGY
(Program Elective – IV)

M.Tech. I Year II-Sem L T P C
3 0 0 3

Pre-Requisites: Nil

Course Objectives:
1. To explain and describe the basics of Nuclear technology and relevance of metallurgy to nuclear reactors.
2. To gain a working knowledge of extraction of nuclear metals like Uranium, Thorium, and Beryllium.
3. To understand principles of nucleation reactors and its safety.

UNIT–I
Elementary nuclear physics and chemistry: Structure of nucleus, radioactivity, binding energy; nuclear interaction; fission and fusion: nuclear reaction; energy release and chain reactions; neutron cross-section; multiplication and criticality concepts and factors.

UNIT–II
Mechanisms of moderation, radiation detection, radiation effects on fissile and non-fissile materials; radiation damage and radiation growth; thermal cycling; protection against radiations.

UNIT–III
Types of reactors and classification. Considerations in selection and properties of common materials used as nuclear fuels, their physical and chemical properties; canning materials; coolants; control rods; reflectors and shielding materials.

UNIT–IV
Occurrence and general characteristics of nuclear minerals. Flow sheets of processing of nuclear minerals for the production of nuclear grade Uranium, Thorium, Beryllium and Zirconium with emphasis on basic scientific principles involved.

UNIT–V
Production and enrichment of uranium, Fabrication of fuel elements. Irradiated fuel processing for recovery of Plutonium. Nuclear power production in India and its economics.

Text Books:
Reference Books:

Course Outcomes:
At the end of the course, student would be able to:
1. Use fundamental concepts of physics and chemistry to know the basics of nuclear energy. Understand the use of nuclear energy as a major source of energy.
2. Recognize the predominant mechanisms for materials failure in radiation environments, and understand the fundamentals of radiation damage events and gain knowledge about the safety measures and control.
3. Understand the guiding principles of reactor safety and report findings including recommendations for improvement.
4. Understand materials design issues in various reactor configurations and recognize the materials used in different types of reactor applications.
5. Understand the manufacturing processes and fabrications methods used for various materials used in reactors.
6. Work and communicate effectively in diverse and multi-disciplinary teams and be aware of modern professional, ethical, and societal issues as well as recognize the need for lifelong learning.
FERRO ALLOY TECHNOLOGY
(Program Elective – IV)

M.Tech. I Year II-Sem L T P C
3 0 0 3

Pre-Requisites: Nil

Course Objectives:
The prime objective of the course is to
1. Make the student aware of various ferroalloys properties and their uses.
2. To expose the students to various production methods of ferro alloys.

UNIT-I
Mechanical equipment of ferro alloy furnaces: Principle elements, Closed top furnaces, Lining of furnaces. Electrical equipment and dimensions of reaction chamber.

UNIT-II

UNIT-III
Manufacture of Ferro – Vanadium: Physico - chemical properties of vanadium, recovery of vanadium form Ores, Chemical processing of vanadium slags, Smelting of Ferro-Vanadium.

UNIT-IV
Manufacture of Ferro – Tungsten: Physico - chemical properties of Tungsten, smelting of Ferro-Tungsten.
Manufacture of Ferro – Titanium: Physico - chemical properties of Titanium, smelting of Ferro-Titanium.

UNIT-V
Manufacture of Ferro – Molybdenum: Physico - chemical properties of Molybdenum, Charge materials and charge preparation and smelting of Ferro-Molybdenum.

Text Books:
Reference Book:

Course Outcomes:
At the end of the course, student would be able to:
1. Can list out the various ferro alloys, their applications, illustrate and know the importance of design of furnaces.
2. Explain the process/production methods for Ferro – Silicon and Ferro – chrome and the necessary corrective steps to be taken to overcome the problems arising during production.
3. Describe the raw materials and production for Ferro – Manganese, Ferro – Vanadium process.
5. Appreciate the need for recover, reuse, and recycle of by-products.
6. Judge and predict the future of Ferro alloy technology.
ENGLISH FOR RESEARCH PAPER WRITING
AUDIT COURSE – II

M.Tech. I Year II-Sem

L T P C
2 0 0 0

Course Objectives:
Students will be able to:
1. Understand that how to improve your writing skills and level of readability
2. Learn about what to write in each section
3. Understand the skills needed when writing a Title
4. Ensure the good quality of paper at very first-time submission

UNIT-I
Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and
Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

UNIT-II
Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticising, Paraphrasing

UNIT-III
Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check.

UNIT-IV
Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key
skills are needed when writing an Introduction, skills needed when writing a Review of the
Literature

UNIT-V
Skills are needed when writing the Methods, Skills needed when writing the Results, Skills are
needed when writing the Discussion, Skills are needed when writing the Conclusions

UNIT-VI
Useful phrases, how to ensure paper is as good as it could possibly be the first – time submission
Suggested Studies:
METAL JOINING LAB
(LABORATORY - III)

M.Tech. I Year II-Sem

L T P C
0 0 4 2

Pre-Requisites: Advances in Metal Joining

Course Objectives:

1. To expose students to different weld joining techniques.
2. To study the properties of weld.
3. To inspect the quality of welded joints.

List of Experiments:

1. Fabrication of weld joints using Arc welding.
2. Fabrication of weld joints using Gas welding.
3. Fabrication of weld joints using TIG welding.
4. Fabrication of weld joints using MIG welding.
5. Microstructural study of welded joints.
6. Hardness survey of welded joints.
7. Tensile Testing of Welded joints.
8. Quality Inspection of welded joints by Dye penetrant testing method.
10. Quality Inspection of welded joints by Ultrasonic testing method.

Course Outcomes:

At the end of the course, student would be able to:

1. Fabricate weld joints using Arc, Gas, TIG and MIG welding techniques.
2. Study the microstructure, hardness and tensile strength of welded joints.
3. To inspect the quality of weld joint on surface and subsurface by using Dye penetrant method.
4. To inspect the quality of weld joint at greater depths by using Ultrasonic testing method.
CORROSION ENGINEERING LAB
(LABORATORY - IV)

M.Tech. I Year II-Sem L T P C
 0 0 4 2

Pre-Requisites: Corrosion Engineering

Course Objectives:
1. Give knowledge about Corrosion & its Classification.
2. Learn different corrosion protection techniques.

List of Experiments:
1. To conduct the Uniform Corrosion.
2. To understand the principles involved in Galvanic cell corrosion.
3. To study the pitting corrosion of Aluminium, Stainless steel in suitable environment.
4. To anodize the given Aluminium sample and to colour with a dye and measure the thickness of an oxide film.
5. Corrosion Prevention method by using electroplating of Copper.
7. Corrosion Prevention method by using electroplating of Zinc.
8. Corrosion rate measurement.

Course Outcomes:
1. Gain knowledge about corrosion and its types.
2. Learn about different corrosion protection methods.
3. Understand the principles of different types of corrosion.
4. Able to determine the formed layer on material surface protective or not.
MINI PROJECT WITH SEMINAR

M.Tech. I Year II-Sem

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Pre-Requisites: Nil

Course Objectives:

1. This course is mainly intended to make the students acquire real time practical experience on the industry oriented processes, technologies, and applications.
2. Students will be exposed to sophisticated equipments and modern technologies.

Course Outcomes:

At the end of the course the student will be able to:
1. Exposed to the various practical aspects relating to Metallurgical Engineering with respect to characterization, analysis and extraction principles and are getting hands on experience in using / handling equipments and hence they are able to solve problems and analyze the results.
2. Carry out project work related to modern and novel techniques and synthesis of newer materials with wide applications and tailor made properties.
3. Exposed to various safety measures, ethical practices and environmental concerns.
4. Good attitude, co-ordination and co-operation is developed when interacting with various categories of persons like scientists, production engineers, quality control engineers and team members etc.
5. Conduct the project as an individual and exhibit work, project, and financial management.
6. Deliver a well-organized technical presentation at conferences and other symposia and write a project report.
SURFACE ENGINEERING
(Program Elective – V)

M.Tech. II Year I-Sem

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Pre-Requisites: Nil

Course Objectives:
1. To provide a state - of - the art knowledge to the students about the various surface engineering techniques.
2. To explain the importance, need for surface engineering and past, present and future status of surface engineering.
3. To comprehend the laser processing, electrons and ion beam processing of surfaces, to characterize and evaluate coatings etc.
4. To understand the combat techniques to protect the surfaces from wear, corrosion and other failure causing environments.

UNIT-I
Introduction to surface modification, need for surface modification, surface properties, surface property modification, history of surface modification techniques.

UNIT-II
Plating and coating process: Concept of coating, types of coatings, properties of coatings, hard facing, anodizing, PVD, CVD, Electro deposition, Electro less deposition, hot deposition, hot dipping.

UNIT-III

UNIT-IV

UNIT-V
General design principles related to surface engineering, design guidelines for surface preparation, surface engineering solution to specific problems. Case studies related to Engineering Components, Shafts, Bearings, Turbine blades.

Text Books:
Reference Books:

Course Outcomes:
At the end of the course, the student will be able to:
1. Gain knowledge of different surface properties, appreciate the need for surface modification and past practices.
2. Knowledge of plating and coatings techniques.
3. Knowledge of surface modification by chemical and thermal processes.
4. Differentiate between the methods used and indicate their relative merits and demerits.
5. This course provides an opportunity to the students to understand the various aspects associated with industrial applications of surface engineering.
6. Design various surface modifications according to the needs, compatibility and efficiency of the processes and the desired output.
MATERIALS CHARACTERIZATION TECHNIQUES
(Program Elective – V)

M.Tech. II Year I-Sem

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Pre-Requisites: Nil

Course Objectives:
1. To explain and describe the various working techniques of optical microscope, Scanning and Transmission Microscopes used for evaluating material properties.
2. To explain and describe the various working techniques of XRD, SPM, AFM for evaluating material properties.
3. To differentiate and compare between various characterization techniques.
4. Obtain knowledge on the various thermal analyses techniques.

UNIT – I
Optical Microscopy–Introduction, optical principles, Instrumentation, specimen preparation-metallographic principles, Imaging Modes, Applications, Limitations.

UNIT – II
(a) Scanning Electron Microscopy (SEM)-Introduction, instrumentation, Contrast formation, Operational variables, Specimen Preparation, Imaging Modes, Applications, and Limitations.
(b) Transmission Electron Microscopy(TEM)-Introduction, instrumentation, Specimen preparation –pre thinning, final thinning, Image modes-mass density contrast, diffraction contrast, Phase contrast, Applications, Limitations.

UNIT – III
X-Ray Diffraction (XRD) - Introduction, Basic principles of diffraction, X-ray generation, Instrumentation, Types of analysis, Data collection for analysis, Applications, Limitations.

UNIT – IV
Thermal Analysis: Introduction, Basic thermodynamics and heat transfer, common characteristics- Instrumentation, experimental parameters, Different types used for analysis, Differential thermal analysis, Differential Scanning Calorimetry, Thermogravimetry, Dilatometry, Dynamic Mechanical analysis- Basic Principles, Instrumentation, working principles, Applications, Limitations.

UNIT – V

Text Books:

Reference Books:

Course Outcomes:
At the end of the course, student will be:
1. Able to use metallurgical microscopes to analyze the experimental results.
2. Understand the various specimen preparation techniques for SEM, TEM and analyze the experimental results.
3. Describe the construction of XRD machine and understand its principle and analyze / interpret the experimental results.
4. Conduct characterization measurement by thermal analysis and solve problem using the thermo dynamic principles.
5. Knowledge on thermal analyses methods such as DSC, calorimetry and dilatometry etc.,
6. Analyze, evaluate and interpret data and solve practical characterization problems using modern tools like SPM, AFM etc.
NANO MATERIALS
(Program Elective – V)

M.Tech. II Year I-Sem

L T P C
3 0 0 3

Pre-Requisites: Nil

Course Objectives:
1. This course is primarily intended to expose the students to a highly interdisciplinary subject.
2. This would emphasize on the classification, synthesis and applications of Nano materials.
3. To enhance the various nano synthesis techniques and to identify and solve problems.
4. To describe methods for production of nano materials and their characterization techniques for applications of nano materials.

UNIT-I

UNIT-II
Zero Dimensional Nano-structures, Nano particles through homogenous nucleation; Growth of nuclei, synthesis of metallic Nano particles, Nano particles through heterogeneous nucleation; Fundamentals of heterogeneous nucleation and synthesis of nano particles using micro emulsions and Aerosol.

UNIT-III

UNIT-IV

UNIT-V
Thin films, Atomic layer deposition (ALD), Electrochemical deposition (ECD), Sol-Gel films. Special Nano Materials, Carbon fullerene and nano tubes: carbon fullerenes, formation, properties and applications. Carbon nano tubes: formation and applications.
Text Books:
2. Nano Essentials: T. Pradeep, TMH.

Reference Books:
1. Springer Handbook of Nanotechnology.
2. The Guest for new materials Auther S. T. Lakshmi Kumar, Published by Vigyan Prasar.

Course Outcomes:
At the end of the course the student would be able to:
1. Describe the importance and impact of nanomaterials and their diversified applications, listing out their salient properties and uses in commercial and industrial applications.
2. Describe the various types of nano materials used in semi conductors, ferro electric devices etc.
3. Can illustrate and categorize the synthesis procedures and characterization techniques with respect to nano particles
4. Can illustrate and categorize the synthesis procedures and characterization techniques in case of nano tubes and nano wires.
5. Describe the various types of thin film deposition techniques and differentiate their merits and demerits.
6. Demonstrate the capacity and exhibit interest for self-directed learning on topics related to nanoscience and nanotechnology.
COMPOSITE MATERIALS
(Open Elective)

M.Tech. II Year I-Sem

L T P C
3 0 0 3

Pre-Requisites: Nil

Course Objectives:
1. Describe the importance of composite materials and its constituents.
2. Familiarize the students with various types of fibers, their properties and processing techniques.
3. Introduce the various process techniques for composite materials.
4. To demonstrate the relationship among synthesis, processing and properties in composite materials.

UNIT-I
Introduction, Classification of Composite materials based on structure and matrix and reinforcements, Advantages and applications of composites, Functional requirements of reinforcement and matrix materials.

UNIT-II
Types of reinforcements and their properties: Glass, Carbon, Boron, Aramid, Al\textsubscript{2}O\textsubscript{3} and SiC fibers. Nature and manufacture of glass, carbon and aramid fibres, Comparison of fibres. Role of interfaces: Wettability and Bonding, The interface in Composites, Interactions and Types of bonding at the Interface, Tests for measuring Interfacial and bond strength.

UNIT-III

UNIT-IV
Fabrication of Metal Matrix Composites: Solid state fabrication, Liquid state fabrication and In-situ fabrication techniques. Interface in Metal Matrix Composites. Mechanical bonding, Chemical bonding and Interfaces in In-situ Composites. Discontinuously reinforced Metal Matrix Composites: Properties and Applications. Fabrication of Carbon fiber composites, properties, interface and applications.

UNIT -V

Text Books:
Reference Books:

Course Outcomes:
1. Can classify the composites, know the required properties, reinforcements and matrix materials and uses of composites.
2. Able to explain how common fibers are produced and how the properties of the fibers are related to the internal structure and the interfaces obtained.
3. Knowledge of processing techniques for polymer matrix, ceramic matrix and metal matrix composites and list out their properties and applications.
4. Ability to arrive at different deformation and failure mechanisms of composite materials under different loading conditions in engineering applications.
5. Able to explain the elastic constants and strengths of the composite.
6. Able to undertake any technical assignment in R&D and production of newer and smarter materials.
Dissertation - I / Industrial Project

M.Tech. II Year I-Sem

L T P C
0 0 20 10

Pre-Requisites: Course work relevant to the topic of the project

Course Objectives:
1. This course is mainly intended to make the students acquire real time practical experience on the industry oriented processes, technologies, and applications.
2. Students will be exposed to sophisticated equipments and modern technologies.

Course Outcomes:
At the end of the course the student will be able to:
1. Identify a research problem after thorough literature review in metallurgical engineering, plan and execute experimental work to obtain results.
Dissertation – II

M.Tech. II Year II-Sem L T P C 0 0 32 16

Pre-Requisites: Course work relevant to the topic of the project

Course Objectives:
1. This course is mainly intended to make the students acquire real time practical experience on the industry oriented processes, technologies, and applications.
2. Students will be exposed to sophisticated equipments and modern technologies.

Course Outcomes:
At the end of the course the student will be able to:
1. Exposed to the various practical aspects relating to Metallurgical Engineering with respect to characterization, analysis and extraction principles and are getting hands on experience in using / handling equipments and hence they are able to solve problems and analyze the results.
2. Carry out project work related to modern and novel techniques and synthesis of newer materials with wide applications and tailor made properties.
3. Exposed to various safety measures, ethical practices and environmental concerns.
4. Good attitude, co-ordination and co-operation is developed when interacting with various categories of persons like scientists, production engineers, quality control engineers and team members etc.
5. Conduct the project as an individual and exhibit work, project, and financial management.
6. Deliver a well-organized technical presentation at conferences and other symposia and write a project report.