ACADEMIC REGULATIONS
COURSE STRUCTURE AND
DETAILED SYLLABUS

CIVIL ENGINEERING

For
M. Tech. (Structural Engineering)
(Two Year Full Time Programme)

JNTUH COLLEGE OF ENGINEERING HYDERABAD
(Autonomous)
Kukatpally, Hyderabad – 500 085, Telangana, India.

2018
SEMESTER I

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Core 1</td>
<td>Advanced Structural Analysis</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Core 2</td>
<td>Theory of Elasticity</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Program Elective-1 1</td>
<td>Theory of Thin Plates & Shells</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Program Elective-1 2</td>
<td>Theory and Applications of Cement Composites</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Program Elective-1 3</td>
<td>Theory of Structural Stability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Program Elective-2 1</td>
<td>Numerical Methods in Structural Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Program Elective-2 2</td>
<td>Structural Health Monitoring</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Program Elective-2 3</td>
<td>Structural Optimization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Core Lab -1</td>
<td>Numerical Analysis Lab</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Core Lab -2</td>
<td>Advanced Concrete Technology Lab</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>MLC</td>
<td>Research Methodology and IPR</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>Audit 1</td>
<td>Audit Course -1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td>16</td>
<td>0</td>
<td>6</td>
<td>18</td>
</tr>
</tbody>
</table>

SEMESTER II

<table>
<thead>
<tr>
<th>S.No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Core 3</td>
<td>FEM in Structural Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Core 4</td>
<td>Structural Dynamics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Program Elective -3 1</td>
<td>Advanced Steel Design</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Program Elective -3 2</td>
<td>Design of Formwork</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Program Elective -3 3</td>
<td>Design of High Rise Buildings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Program Elective -3 4</td>
<td>Design of Masonry Structures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Program Elective -4 1</td>
<td>Advanced Reinforced Concrete Design</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Program Elective -4 2</td>
<td>Advanced Design of Foundations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Program Elective -4 3</td>
<td>Soil Structure Interaction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Program Elective -4 4</td>
<td>Design of Industrial Structures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Core Lab -3</td>
<td>Advanced Structural Engineering Lab</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Core Lab -4</td>
<td>Structural Design Lab</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>Core</td>
<td>Mini Project with Seminar</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>Audit 2</td>
<td>Audit Course-2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td>14</td>
<td>0</td>
<td>10</td>
<td>18</td>
</tr>
</tbody>
</table>

2
SEMESTER III

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Program Elective -5</td>
<td>1. Earthquake Resistance Design of Buildings 2. Design of Prestressed Concrete Structures 3. Fracture Mechanics of Concrete Structures</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Dissertation</td>
<td>Dissertation Phase –I</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>16</td>
</tr>
</tbody>
</table>

SEMESTER IV

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dissertation</td>
<td>Dissertation Phase-II</td>
<td>0</td>
<td>0</td>
<td>32</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>16</td>
</tr>
</tbody>
</table>

Total Credit for the Programme PG Credits: = 18+ 18+16+16 = 68

Audit Course 1 &2

1. English for research Paper Writing
2. Disaster Management
3. Sanskrit for Technical Knowledge
4. Value Education
5. Constitution of India
6. Pedagogy Studies
ADVANCED STRUCTURAL ANALYSIS

M.Tech, SE. I-Sem L T P C
 3 0 0 3

Objectives:
To impart knowledge on the analysis of indeterminate structures like continuous beams, trusses and portal frames.

Outcome:
The learner will be able to analyse different indeterminate structures using Matrix methods.

Pre requisites : Structural Analysis I & II

UNIT I

Transformation of coordinates - element stiffness matrix - and load vector - local and global coordinates.

UNIT II
Assembly of stiffness matrix from element stiffness matrix - direct stiffness method - general procedure - banded matrix - semi bandwidth - assembly by direct stiffness matrix method.

UNIT III
Analysis of plane truss - continuous beams with and without settlement - plane frame including side sway single storey, single – bay and garde frame by flexibility method using system approach by flexibility methods and gables frames by Gable System Approach.

UNIT IV
Analysis of plane truss - continuous beams with and without settlement - plane frame including sides sway, grids and gable frames by stiffness methods, single bay – two storey, two bay single – storey.

UNIT V. Special analysis procedures - static condensation and sub structuring - initial and thermal stresses.

REFERENCES

1. Matrix Analysis of Frames structures by William Weaver J.R and James M.Gere, CBS publications.
3. Matrix method of S.A by Pandit & Gupta
5. Matrix Methods of Structural Analysis by J.Meek.
7. Structural Analysis by Devdas Menon, Narosa Publishing Housing Pvt Ltd.
THEORY OF ELASTICITY

M.Tech, SE. I-Sem

Objectives:
To impart knowledge on the basic concepts of theory of elasticity, and solve the Structural Engineering problems.

Course outcomes:
The learner will be able to solve problems of elasticity and plasticity and be able to apply numerical methods to solve continuum problems.

Prerequisites: Strength of Materials I & II

UNIT-I

UNIT II
Two dimensional problems in rectangular coordinates - solution by polynomials - Saint-Venants principle - determination of displacements - bending of simple beams stress function – Simply Supported and Cantilever Beams.

UNIT III

UNIT IV

UNIT V
Torsion of Circular Shafts - Torsion of Straight Prismatic Bars – Saint Venants Method - torsion of prismatic bars - bars with elliptical cross sections - membrane analogy - torsion of a bar of narrow rectangular bars - torsion of shafts, tubes, bars etc.

References:
1. Theory of Elasticity by Timeshenko, McGrawhill Publications
2. Theory of Elasticity by Y.C.Fung.
THEORY OF THIN PLATES & SHELLS
(Program Elective – I)

M.Tech, SE. I-Sem

Objectives:
To impart knowledge on the behavior and design of shells and Folded plates.

Outcomes:
The learner will be able to analyse and design the shells and folded plates.

Prerequisites: Theory of Elasticity, Structural Analysis

UNIT I

UNIT II
Small Deflection Theory of Thin Rectangular Plates: Assumptions – Derivation of governing differential equation for thin plates – Boundary conditions – simply supported plate under sinusoidal load – Navier solution – Application to different cases – Levy’s solution for various boundary conditions subjected to different loadings like uniform and hydrostatic pressure.

UNIT III
Circular Plates: Differential Equation for symmetrical bending of Laterally loaded circular Plates – Uniformly loaded circular plates –circular plate concentrically loaded – circular plate loaded at center

UNIT IV

UNIT V
Introduction to the shells of Double curvatures: Geometry, analysis and design of elliptic paraboloid, conoid and hyperbolic parabolic shapes, inverted umbrella type.

Axi- Symmetrical shells: General equation - Analysis and axi-symmetrical by membrane theory. Application to spherical shell and hyperboloid of revolution cooling towers.

REFERENCES:
2. Analysis and design of concrete shell roofs By G.S.Ramaswami. CBS publications.
5. Design of Shells and Folded Plates by P.C. Varghese, PHI Learning Pvt. Ltd
6. Design of concrete shell roofs By Chaterjee. Oxford and IBH,
THEORY AND APPLICATIONS OF CEMENT COMPOSITES
(Program Elective – 1)

M.Tech, SE. I-Sem

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Outcomes: At the end of the course, students will be able to
1. Formulate constitutive behaviour of composite materials – Ferrocement, SIFCON and Fibre Reinforced Concrete - by understanding their strain- stress behaviour.
2. Classify the materials as per orthotropic and anisotropic behaviour.
3. Estimate strain constants using theories applicable to composite materials.
4. Analyse and design structural elements made of cement composites.

UNIT – I

UNIT – II

UNIT – III

UNIT – IV
Mechanical Properties of Cement Composites: Behavior of Ferrocement, Fiber Reinforced Concrete in Tension, Compression, Flexure, Shear, Fatigue and Impact, Durability and Corrosion.

UNIT – V
Analysis and Design of Cement Composite Structural Elements – Ferro cement, SIFCON and Fibre Reinforced Concrete.

Reference Books:
THEORY OF STRUCTURAL STABILITY
(Program Elective – 1)

M.Tech, SE. I-Sem

L T P C
3 0 0 3

Course Outcomes: At the end of the course, students will be able to
1. Determine stability of columns and frames
2. Determine stability of beams and plates
3. Use stability criteria and concepts for analyzing discrete and continuous systems,

UNIT – I
Criteria for Design of Structures: Stability, Strength, and Stiffness, Classical Concept of
Stability of Discrete and Continuous Systems, Linear and nonlinear behavior.

UNIT – II
Stability of Columns: Axial and Flexural Buckling, Lateral Bracing of Columns, Combined Axial, Flexural
and Torsion Buckling.

UNIT – III
Stability of Frames: Member Buckling versus Global Buckling, Slenderness Ratio of Frame Members.

UNIT – IV
Stability of Beams: lateral torsion buckling.
Stability of Plates: axial flexural buckling, shear flexural buckling, buckling under combined loads.

UNIT – V
Introduction to Inelastic Buckling and Dynamic Stability.

Reference Books:
NUMERICAL METHODS IN STRUCTURAL ENGINEERING
(Program Elective – 2)

M.Tech, SE. I-Sem
L T P C
3 0 0 3

Objectives:
To impart knowledge about various methods of analysing linear equations and understand the different mathematical techniques.

Outcome:
The learner will be able to apply various mathematical techniques to Structural engineering problems.

Prerequisites : Mathematics I & II

UNIT I:

UNIT II:

UNIT III

UNIT IV.

UNIT V

References:
5. Computer based numerical analysis by Dr. M.Shanta Kumar, Khanna Book publishers New Delhi.
M.Tech, SE. I-Sem

Course Outcomes: At the end of the course, students will be able to
1. Diagnosis the distress in the structure understanding the causes and factors.
2. Assess the health of structure using static field methods.
3. Assess the health of structure using dynamic field tests.
4. Suggest repairs and rehabilitation measures of the structure

UNIT – I
Structural Health: Factors affecting Health of Structures, Causes of Distress, Regular Maintenance.

UNIT – II

UNIT – III
Static Field Testing: Types of Static Tests, Simulation and Loading Methods, sensor systems and hardware requirements, Static Response Measurement.

UNIT – IV

UNIT – V
Introduction to Repairs and Rehabilitations of Structures: Case Studies (Site Visits), piezo–electric materials and other smart materials, electro–mechanical impedance (EMI) technique, adaptations of EMI technique.

Reference Books:
1. Structural Health Monitoring, Daniel Balageas, Claus_Peter Fritzen, Alfredo Güemes, John Wiley and Sons, 2006

L T P C
3 0 0 3
Course Outcomes: At the end of the course, students will be able to
1. Use Variational principle for optimization
2. Apply optimization techniques to structural steel and concrete members.
3. Design using frequency constraint.

UNIT –I

UNIT –II
Calculus of Variation: Variational Principles with Constraints,

UNIT –III

UNIT –IV
Geometric Programming and Stochastic Programming.

UNIT –V
Applications: Structural Steel and Concrete Members, Trusses and Frames.
Design: Frequency Constraint, Design of Layouts.

Reference Books:
2. Variational methods for Structural optimization, Cherkaev Andrej, Springer
Course Outcomes: At the end of the course, students will be able to
1. Find Roots of non-linear equations by Bisection method and Newton’s method.
2. Do curve fitting by least square approximations
3. Solve the system of Linear Equations using Gauss - Elimination/ Gauss - Seidal Iteration/ Gauss - Jorden Method
4. To Integrate Numerically Using Trapezoidal and Simpson’s Rules

Syllabus Contents:
1. Find the Roots of Non-Linear Equation Using Bisection Method.
3. Curve Fitting by Least Square Approximations.
5. Solve the System of Linear Equations Using Gauss - Seidal Iteration Method.
8. Integrate numerically using Simpson’s Rules.
11. Practice with MAT lab
Course Outcomes: At the end of the course, students will be able to
1. Design high grade concrete and study the parameters affecting its performance.
2. Conduct Non Destructive Tests on existing concrete structures.
3. Apply engineering principles to understand behavior of structural/ elements.

List of Experiments/Assignments:
1. Study of stress-strain curve of high strength concrete, Correlation between cube strength, cylinder strength, split tensile strength and modulus of rupture.
2. Effect of cyclic loading on steel.
3. Non-Destructive testing of existing concrete members.
4. Behavior of Beams under flexure, Shear and Torsion.
5. Fresh properties of self-compacting concrete.

Reference Books:
3. Concrete Technology by A.R. Santhakumar, Oxford University Press.
Course Outcomes:
At the end of this course, students will be able to
1. Understand research problem formulation.
2. Analyze research related information
3. Follow research ethics
4. Understand that today’s world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity.
5. Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular.
6. Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.

UNIT – I : Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem.
Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

UNIT - II: Effective literature studies approaches, analysis Plagiarism, Research ethics,

UNIT - III: Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee

UNIT - VI: New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

References:
2. Wayne Goddard and Stuart Melville, “Research Methodology: An Introduction”
FEM IN STRUCTURAL ENGINEERING

M.Tech, SE. II-Sem

Course Outcomes: At the end of the course, students will be able to
1. Use Finite Element Method for structural analysis.
2. Execute the Finite Element Program/Software.
3. Solve continuum problems using finite element analysis.

UNIT - I

UNIT –II

UNIT –III

UNIT-IV
Application to Solid Mechanics: Plane Stress, CST Element, Plane Strain Rectangular Element, Isoparametric Formulation of the Plane Quadrilateral Element, Axi-Symmetric Stress Analysis, Strain and Stress Computations.

UNIT-V
Computer Implementation of FEM procedure, Pre-Processing, Solution, Post-Processing, Use of Commercial FEA Software.

Reference Books:
STRUCTURAL DYNAMICS

M.Tech, SE. II-Sem L T P C
3 0 0 3

Objectives:
To impart knowledge on the fundamental of structural dynamics and their applications.

Outcomes: The learner will be able to understand the equation of motion, dynamics response of single and multi degree-of freedom systems.

Prerequisites : Structural Analysis I & II

UNIT I:

UNIT II

UNIT III

UNIT IV

Continuous Systems: Introduction - Flexural vibrations of beams - Elementary case – Derivation of governing differential equation of motion - Analysis of undamped free vibrations of beams in flexure - Natural frequencies and mode-shapes of simple beams with different end conditions - Principles of application to continuous beams.

UNIT V

References:
2. Dynamics of Structures by Anil K. Chopra, Pearson Education (Singapore), Delhi.
ADVANCED STEEL DESIGN
(Program Elective – 3)

M.Tech, SE. II-Sem

L T P C
3 0 0 3

Objectives:
To impart knowledge on behavior and design of various connections, industrial and steel girders.

Outcomes: The learner will be able to design different steel structures.

Pre requisites : Design of Steel Structures & Structural Analysis

UNIT-I
SIMPLE CONNECTIONS – RIVETED, BOLTED PINNED AND WELDED CONNECTIONS:
Riveted Connections – Bolted Connections – Load Transfer Mechanism – Failure of Bolted Joints –
Specifications for Bolted Joints – Bearing – Type Connections – Tensile Strength of Plate – Strength and
Efficiency of the Joint – Combined Shear and Tension – Slip-Critical connections – Prying Action –
Combined Shear and Tension for Slip-Critical Connections. Design of Groove Welds - Design of Fillet
Welds – Design of Intermittent Fillet Welds – Failure of Welds.

UNIT-II
ECCENTRIC AND MOMENT CONNECTIONS:
Introduction – Beams – Column Connections –
Connections Subjected to Eccentric Shear – Bolted Framed Connections – Bolted Seat Connections – Bolted
Bracket Connections. Bolted Moment Connections – Welded Framed Connections- Welded Bracket
Connections – Moment Resistant Connections.

UNIT-III ANALYSIS AND DESIGN OF INDUSTRIAL BUILDINGS:
Dead loads, live loads and wind loads on roofs. Design wind speed and pressure, wind pressure on roofs;
wind effect on cladding and louvers; Design of angular roof truss, tubular truss, truss for a railway
platform. Design of purlins for roofs, design of built up purlins, design of knee braced trusses and stanchions.
Design of bracings.

UNIT-IV DESIGN OF STEEL TRUSS GIRDER BRIDGES:
Types of truss bridges, component parts of a truss bridge, economic Proportions of trusses, self weight of
truss girders, design of bridge Compression members, tension members; wind load on truss girder Bridges;
wind effect on top lateral bracing; bottom lateral bracing; portal Bracing; sway bracing Design of Lacing.

UNIT-V Plastic Analysis and Design:
Introduction – Plastic Theory – Plastic neutral Axis plastic moment, Elastic & Plastic Section modulii shape
factors plastic Hinge – Fundamental condition conditions in plastic analysis, methods of plastic analysis –
collapse load – simply supported, propped cantilever beam, fixed beams continuous beams, portal frame
single bay single storey portal frame at different level subjected to vertical and horizontal loads, Method of
instantaneous center gable frame – Trial and effort method – plastic moment distribution method –
continuous beam, two bay-single story portal frame – Deflections and ultimate load propped cantilever beam
fixed beam minimum weight design continuous beams and single bay-single storey portal frame.

References:
3. Design Steel Structures Volume – II, Dr. Ramachandra & Vivendra Gehlot Scientitic Publishes
 Journals Department..
5. Design of Steel Structures Galyord & Gaylord, Publisher : Tata Mc Graw Hill, Education. Edition
 2012.
DESIGN OF FORM WORK
(Program Elective – 3)

M.Tech, SE. II-Sem

Course Outcomes: At the end of the course, students will be able to
1. Select proper formwork, accessories and material.
2. Design the form work for Beams, Slabs, columns, Walls and Foundations.
3. Design the form work for Special Structures.
4. Understand the working of flying formwork.
5. Judge the formwork failures through case studies.

UNIT- I
Introduction: Requirements and Selection of Formwork.

UNIT- II

UNIT- III
Formwork Design for Special Structures: Shells, Domes, Folded Plates, Overhead Water Tanks, Natural Draft Cooling Tower, Bridges.

UNIT- IV
Flying Formwork: Table Form, Tunnel Form, Slip Form, Formwork for Precast Concrete, Formwork Management Issues –Pre- and Post-Award.

UNIT- V
Formwork Failures : Causes and Case studies in Formwork Failure, Formwork Issues in Multi- Story Building Construction.

Reference Books:
2. Concrete Technology by A.R. Santhakumar, Oxford Univ. Press
4. IS 14687: 1999, False work for Concrete Structures - Guidelines, BIS.
DESIGN OF HIGH RISE BUILDINGS
(Program Elective – 3)

M.Tech, SE. II-Sem

Course Outcomes: At the end of the course, students will be able to
1. Analyse, design and detail Transmission/ TV tower, Mast and Trestles with different loading conditions.
2. Analyse, design and detail the RC and Steel Chimney.
3. Analyse, design and detail the tall buildings subjected to different loading conditions using relevant codes.

UNIT- I
Design of transmission/ TV tower, Mast and trestles: Configuration, bracing system, analysis and design for vertical transverse and longitudinal loads.

UNIT-II
Analysis and Design of RC and Steel Chimney, Foundation design for varied soil strata.

UNIT- III
Tall Buildings: Structural Concept, Configurations, various systems, Wind and Seismic loads, Dynamic approach, structural design considerations and IS code provisions. Firefighting design provisions.

UNIT- IV
Application of software in analysis and design.

Reference Books:

5. Tall Building Structures, Smith Byran S. and Coull Alex, Wiley India. 1991.
Design of Masonry Structures

Course outcomes: At the end of the course, students will be able to
1. Understand the masonry design approaches.
2. Analyse Reinforced Masonry Members.
3. Determine interactions between members.
4. Determine shear strength and ductility of Reinforced Masonry members.
5. Check the stability of walls.
6. Perform elastic and Inelastic analysis of masonry walls.

UNIT- I
Introduction: Historical Perspective, Masonry Materials, Masonry Design Approaches, Overview of Load Conditions, Compression Behaviour of Masonry, Masonry Wall Configurations, Distribution of Lateral Forces.

UNIT- II
Flexural Strength of Reinforced Masonry Members: In plane and Out-of-plane Loading.

UNIT- III
Interactions: Structural Wall, Columns and Pilasters, Retaining Wall, Pier and Foundation.

UNIT- IV
Shear Strength and Ductility of Reinforced Masonry Members.

UNIT- V

Reference Books:
2. Design of Reinforced Masonry Structures, Narendra Taly, ICC, 2nd Edn,
Objectives:
To impart knowledge on the behavior and design on various reinforced concrete structural elements.

Outcome:
The learner will be able to design the reinforced concrete elements like beams, slabs and compression members.

Prerequisites: Design of Reinforced Concrete Structures

UNIT I

UNIT II
Limit Analysis of R.C.Structures: Rotation of a plastic hinge, Redistribution of moments, moment rotation characteristics of RC member, I.S. code provisions, applications for fixed and continuous beam. Yield line analysis for slabs: Upper bound and lower bound theorems – yield line criterion – Virtual work and equilibrium methods of analysis – For square and circular slabs with simple and continuous end conditions. Moment Curvature diagram.

UNIT III
Ribbed slabs: Analysis of the Slabs for Moment and Shears, Ultimate Moment of Resistance, Design for shear, Deflection, Arrangement of Reinforcements.
Flat slabs: Direct design method – Distribution of moments in column strips and middle strip-moment and shear transfer from slabs to columns – Shear in Flat slabs-Check for one way and two way shears-Introduction to Equivalent frame method. Limitations of Direct design method, Distribution of moments in column strips and middle strip sketch showing reinforcement details.

UNIT IV

UNIT V

Design of Combined Footings - Distribution of Soil Pressure - Geometry of Two-column Combined Footing – Design Considerations in Two-Column Footings sketch showing reinforcement details.

REFERENCE:
9. IS 456-2000
10. SP 16
11. SP 34
Advanced Design of Foundations (Program Elective – 4)

M.Tech, SE. II-Sem

Course Outcomes: At the end of the course, students will be able to
1. Decide the suitability of soil strata for different projects.
2. Design shallow foundations deciding the bearing capacity of soil.
3. Analyze and design the pile foundation.
4. Understand analysis methods for well foundation.

UNIT- I
Planning of Soil Exploration for Different Projects, Methods of Subsurface Exploration, Methods of Borings along with Various Penetration Tests.

UNIT- II

UNIT- III

UNIT- IV

UNIT- V

Reference Books:
1. Design of foundation system, N.P. Kurian, Narosa Publishing House
Course Outcomes: At the end of the course, students will be able to
1. Understand soil structure interaction concept and complexities involved.
2. Evaluate soil structure interaction for different types of structure under various conditions of loading and subsoil characteristics.
3. Prepare comprehensive design oriented computer programs for interaction problems based on theory of sub grade reaction such as beams, footings, rafts etc.
4. Analyze different types of frame structure founded on stratified natural deposits with linear and non-linear stress-strain characteristics.
5. Evaluate action of group of piles considering stress-strain characteristics of real soils.

UNIT- I

UNIT- II
Application of Advanced Techniques of Analysis such as FEM and Finite Difference Method.

UNIT- III

UNIT- IV
Preparation of Comprehensive Design Oriented Computer Programs for Specific Problems, Interaction Problems based on Theory of Sub Grade Reaction Such as Beams, Footings, Rafts Etc.

UNIT-V
Analysis of Different Types of Frame Structures Founded on Stratified Natural Deposits with Linear and Non-Linear Stress-Strain Characteristics.

Determination of Pile Capacities and Negative Skin Friction, Action of Group of Piles Considering Stress-Strain Characteristics of Real Soils, Anchor Piles and Determination of Pullout Resistance.

Reference Books:
DESIGN OF INDUSTRIAL STRUCTURES
(Program Elective – 4)

M.Tech, SE. II-Sem

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Objectives:
To impart knowledge about different types of industrial structures their analysis and design for different conditions as per codal provision.

Outcomes:
The learner will be able to plan different types of industrial structures such as cold framed members, RC buckers, Soil, Chimneys. Cylindrical shells and design them.

Prerequisites: Design of Steel Structures & Structural Analysis

UNIT 1

UNIT 2
Thin Walled / Cold Formed Steel Members : Definitions – Local Bucking of Thin-Elements-Post Buckling of Thin-Elements – Light Guage Steel Columns and Compression Members – Form-Factor for Columns and Compression Members – Behaviour of Stiffened Elements Under Uniform Compression – Multiple Stiffened Compression Elements –Effective Length of Light Gauge Steel Compression Members – Light Gauge Steel Tension Members.

UNIT 3

UNIT 4

UNIT 5
Design Principles of Cylindrical Shells & Design Problems.

References:
1. Advanced Reinforced Concrete Design, By N. Krishna Raju (CBS Publishers & Distributors) 2005
3. Design of Steel Structures, By Duggal - Tata McGraw-Hill publishers – 2010
The objectives of this course is to make students to learn principles of design of experiments, To investigate the performance of structural elements . To evaluate the different testing methods and equipments.

Course Outcomes: On completion of this course, students are able to
• Achieve Knowledge of design and development of experimenting skills.
• Understand the principles of design of experiments
• Design and develop analytical skills.
• Summerize the testing methods and equipments.

List of Experiments
1. Testing of beams for deflection, flexure and shear 12 Hrs
2. Experiments on Concrete, including Mix design 12 Hrs
3. Experiments on vibration of multi storey frame models for Natural frequency and modes. 12Hrs
4. Use of Non destructive testing (NDT) equipments – Rebound hammer, Ultra sonic pulse velocity meter and Profometer 12 Hrs
Course Outcomes: At the end of the course, students will be able to
1. Design and Detail all the Structural Components of Frame Buildings.
2. Design and Detail complete Multi-Storey Frame Buildings.

Syllabus Content:
Design and detailed drawing of complete G+3 structures by individual student using latest relevant IS codes.

List of Experiments
1. Static and Dynamic analysis of Building structure using software (ETABS / STAADPRO) 12 Hrs
2. Design of RCC and Steel structure using software (ETABS / STAADPRO) 12 Hrs
3. Analysis of folded plates and shells using software. 12 Hrs
4. Preparation of EXCEL sheets for structural design. 12 Hrs
MINI PROJECT WITH SEMINAR

M.Tech, SE. II-Sem

Course Outcomes: At the end of the course, the student will be able to:
1. Identify structural engineering problems reviewing available literature.
2. Study different techniques used to analyze complex structural systems.
3. Work on the solutions given and present solution by using his/her technique applying engineering principles.

Syllabus Contents:

Mini Project will have mid semester presentation and end semester presentation. Mid semester presentation will include identification of the problem based on the literature review on the topic referring to latest literature available.

End semester presentation should be done along with the report on identification of topic for the work and the methodology adopted involving scientific research, collection and analysis of data, determining solutions highlighting individuals’ contribution.

Continuous assessment of Mini Project at Mid Sem and End Sem will be monitored by the
EARTHQUAKE RESISTANT DESIGN OF BUILDINGS
(Program Elective – 5)

M.Tech, SE. III-Sem

3 0 0 3

Objectives:
To impart knowledge on the seismology and behavior of buildings during earthquakes.

Outcomes: The learner will be able to analyse and design buildings to resist seismic forces.

Prerequisites: Structural Dynamics, Reinforced Concrete Design

UNIT - I
Introduction-Functional planning-Continuous load path-Overall form-simplicity and symmetry-elongated shapes-stiffness and strength - Seismic design requirements-regular and irregular configurations-basic assumptions.

UNIT - II
Conceptual Design - Horizontal and Vertical Load Resisting Systems - System and Members for Lateral Loads and High Rise / Tall Structures.

UNIT - III
Introduction to Earthquake Resistant Design – Seismic Design Requirements and Methods.

UNIT - IV
Design of Shear walls: Classification according to Behavior, Loads in Shear walls, Design of Rectangular and Flanged Shear walls, Derivation of Formula for Moment of Resistance of Rectangular Shear walls – Behaviour of Coupled Shear Walls.

UNIT - V

Capacity Based Design: Introduction to Capacity Design, Capacity Design for Beams and Columns-Case studies.
REFERENCES:

2. Earthquake Resistant Design of structures – Pankaj Agarwal and Manish Shrikhande, Prentice Hall of India Pvt. Ltd.
4. Masonry and Timber structures including earthquake Resistant Design – Anand S. Arya, Nem chand & Bros
6. Design of Reinforced Concrete Structures by N. Subramanian, Oxford University Press.

Reference Codes:

Course outcomes: At the end of the course, students will be able to
1. Find out losses in the prestressed concrete. Understand the basic aspects of prestressed concrete fundamentals, including pre and post-tensioning processes.
2. Analyse prestressed concrete deck slab and beam/girders.
3. Design prestressed concrete deck slab and beam/girders.
4. Design of end blocks for prestressed members.

UNIT I:
Design of Prestressed Concrete Sections- Design of sections for flexure, Minimum section modulus-prestressing force- Limitation of prestress in long spans- limiting zone for the prestressing force- Design of sections for the limit state of collapse in flexure-Design of sections for axial tension.

UNIT II:
Statically Indeterminate Structures: Primary and secondary moments – methods of Analysis of secondary moments. –Analysis of continuous beams and simple portal frames (single bay and single storey)
Composite Beams: Different Types- Propped and Unpropped- stress distribution- Differential shrinkage-Analysis of composite beams- General design considerations.

UNIT III:
Design of sections for Compression and Bending: Load- Moment Interaction curves for prestressed concrete short columns-Design of long prestressed columns-design of prestressed concrete compression members in biaxial bending- practical design considerations-design of prestressed sections for shear and torsion.

UNIT IV:
Prestressed Concrete Slabs: Types of prestressed concrete floor slabs- design of prestressed concrete one way and two way slabs—design of prestressed concrete simple flat slabs and continuous flat slab floors.

UNIT V:

References:
3. prestressed concrete by k.v.muthu PHI learning Pvt.CEO
5. Is:1343-2012-code of practice for prestressed concrete
FRACTURE MECHANICS OF CONCRETE STRUCTURES
(Program Elective – 5)

M.Tech, SE. III-Sem
L T P C
3 0 0 3

Objectives:
To impart knowledge on the mechanisms of failure and non linear fracture mechanics.

Outcomes:
The learner will be able to understand the behavior of concrete with tension and compression failure surfaces and concepts of CTOD and CMD.

Prerequisites: Concrete Technology, Strength of Materials I & II

UNIT I
Fundamentals of Fracture Mechanics, Mechanisms of fracture and crack growth

UNIT II
Cleavage fracture, ductile fracture, fatigue cracking, Environment assisted cracking, Quasi brittle materials.

UNIT III
Service failure analysis, linear elastic fracture mechanics, Griffith’s criteria, stress intensity factors, crack tip plastic zone, Erwin’s plastic zone correction, R curves, compliance, J Integral, nonlinear analysis, Review of concrete behaviour in tension and compression, Basic frameworks for modeling of quasibrittle materials.

UNIT IV

UNIT V
Concept of CTOD and CMD, Material models, crack models, band models, models based on continuum damage mechanics

REFERENCES:
NUMERICAL METHODS
(Open Elective)

M.Tech, SE. III-Sem

L T P C
3 0 0 3

OUTCOME:
➢ Will be able to model numerically using one of the methods for various problems.
➢ Can apply various numerical approaches to solve complex problems with simple operations.

UNIT- I
Approximations and Errors in Numerical Methods; Solutions of Algebraic and Transcendental Equations, Bisection, False Position, Secant & Iterative Methods, Newton-Raphson, Horner’s Methods; Comparison of Iterative Methods.

UNIT- II

UNIT- III
Matrix Inversion and Eigen value Problems – Power, Jacobi Methods; Calculus of Finite Differences – Differences, Difference Formulae, Difference Table, Factorial Notation; Interpolation – Lagrange’s, Newton’s, Hermite’s, Spline, Inverse Interpolation; Applications.

UNIT- IV
Numerical Differentiation – Derivatives, Maxima and Minima of a Tabulated Function; Numerical Integration – Quadrature, Romberg’s, Euler-Maclaurin, Double Integration; Applications.

UNIT- V

REFERENCE:
2. Indian culture values and professional ethics by PSR Murthy, BS Publications
5. Ethics in Engineering, Mike W.Martin & Roland Schinzinger. TMH Publishers
CONSTRUCTION MANAGEMENT
(Open Elective)

M.Tech, SE. III-Sem

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

OUTCOME:

- Able to plan, coordination, and control of a project from beginning to completion.
- Adopting the most effect method for meeting the requirement in order to produce a functionally and financially viable project.

UNIT -I

UNIT-II

UNIT-III
Resource planning - planning for manpower, materials, costs, equipment. Labour, -Scheduling .Forms of scheduling - Resource allocation. budget and budgetary control methods

UNIT-IV

UNIT-V

REFERENCE:
FINITE ELEMENT METHODS
(Open Elective)

M.Tech, SE. III-Sem L T P C
3 0 0 3

OUTCOME:
➢ To obtain an understanding of the fundamental theory of the Finite Element Method, and apply the
tool to solve soil behavior under external loads.

UNIT-I
Introduction: Concepts of FEM, Steps involved in Finite Element Analysis Procedure, Merits and
Demerits. Principles of Elasticity: Stress equations, Strain-Displacement relationships in matrix form, Plane
stress, Plane strain and axi-symmetric bodies of revolution with axi-symmetric loading.

UNIT-II
Element Properties: Concept of an element, various element shapes, Displacement models, Generalized
coordinates, Shape functions, Convergent and Compatibility requirements, Geometric invariance, Natural
coordinate system - area and volume coordinates.

UNIT-III
Generation of Element Stiffness and Nodal Load Matrices, Isoparametric Formulation: Concept,
Different isoparametric elements for 2D analysis, formulation of 4-noded and 8-noded isoparametric
quadrilateral elements, Lagrangian elements, Serendipity elements.

UNIT-IV
Assemblage of Elements: Discretization of a structure, numbering systems, Aspect ratio its effects,
Assemblage, Direct Stiffness method.

UNIT-V
Geotechnical Applications Sequential construction, Excavations and embankments, Bearing capacity and
Settlement analysis.

REFERENCE:
1. Finite Element Computations by E. Hinton and DBJ owner
 Company (1972).
6. Tirupati & Belgundu
7. Finite element method computation by E.Hinton and DBJ owen
ARTIFICIAL INTELLIGENCE: TECHNIQUES

(Open Elective)

M.Tech, SE. III-Sem L T P C
 3 0 0 3

OUTCOME:
➢ Asses the applicability, strengths and weakness of problems and methods for particular engineering problem.
➢ Can develop intelligent system for particular problem.

UNIT-I
Introduction to Neural Networks: ANN definition, components, input, output and hidden layers, threshold value, weights. Relationship of ANN with other technologies.

UNIT-II
Neural Networks Models: Perceptron model, Feedforward network-back propagation, Hopfeild network, Adaline and Madaline models.

UNIT-III
Learning and Training: Objective of learning, Supervised and Unsupervised learning, Hebb’s rule, Delta Rule.

UNIT-IV

UNIT-V

REFERENCE:
2. Artificial Neural Networks by Robert J. Schalokoff.
OUTCOME:

Students should be able to apply the dynamic programming to solve problems of discrete and continuous variables.

- Students should be able to apply the concept of non-linear programming
- Students should be able to carry out sensitivity analysis
- Students should be able to model the real-world problem and simulate it.

UNIT-I

Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex Techniques, Sensitivity Analysis, Inventory Control Models

UNIT-II

Formulation of a LPP - Graphical solution revised simplex method - duality theory - dual simplex method - sensitivity analysis - parametric programming

UNIT-III

Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow problem - CPM/PERT

UNIT-IV

Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.

UNIT-V

Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation

REFERENCES:

OUTCOME:
- Student can know how to take safety measures in executing works
- Can identify the need for maintenance (or) replacement of equipment
- Can understand the need for periodic and preventive maintenance

UNIT-I
Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.

UNIT-II
Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

UNIT-III
Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications,
 - i. Screw down grease cup,
 - ii. Pressure grease gun,
 - iii. Splash lubrication,
 - iv. Gravity lubrication,
 - v. Wick feed lubrication
 - vi. Side feed lubrication,
 - vii. Ring lubrication,
Definitions, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

UNIT-IV
Fault tracing: Fault tracing-concept and importance, decision tree concept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment’s like,
 - i. Any one machine tool,
 - ii. Pump
 - iii. Air compressor
 - iv. Internal combustion engine,
 - v. Boiler,
 - vi. Electrical motors, Types of faults in machine tools and their general causes.

UNIT-V
Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electricalmotor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of:
i. Machine tools,

ii. Pumps,

iii. Air compressors,

iv. Diesel generating (DG) sets,

Program and schedule of preventive maintenance of mechanical and electrical equipment,

Advantages of preventive maintenance. Repair cycle concept and importance

REFERENCES:
ENGLISH FOR RESEARCH PAPER WRITING
(AUDIT 1 and 2)

OUTCOME:
Students will be able to:

- Understand that how to improve your writing skills and level of readability
- Learn about what to write in each section
- Understand the skills needed when writing a Title Ensure the good quality of paper at very first-time submission

UNIT- I
Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

UNIT- II

UNIT- III
Review of the Literature, Methods, Results, Discussion, Conclusions, Final Check.

UNIT- IV
Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature

UNIT- V
Skills are needed when writing the methods, skills needed when writing the Results, skills are needed when writing the Discussion, and skills are needed when writing the Conclusions

UNIT- VI
Useful phrases, how to ensure paper is as good as it could possibly be the first-time submission

REFERENCE:
3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM.
 Highman’sbook.
DISASTER MANAGEMENT
(AUDIT 1 and 2)

L T P C
2 0 0 0

OUTCOME:
Students will be able to:

- Learn to demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response.
- Critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
- Develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
- Critically understand the strengths and weaknesses of disaster management approaches, planning and programming in different countries, particularly their home country or the countries they work in.

UNIT- I
Introduction
Disaster: Definition, Factors And Significance; Difference Between Hazard And Disaster; Natural And Manmade Disasters: Difference, Nature, Types And Magnitude.

UNIT- II
Repercussions of Disasters and Hazards:

UNIT- III
Disaster Prone Areas in India
Study of Seismic Zones; Areas Prone To Floods and Droughts, Landslides and Avalanches; Areas Prone To Cyclonic and Coastal Hazards with Special Reference to Tsunami; Post-Disaster Diseases and Epidemics

UNIT- IV
Disaster Preparedness and Management
Preparedness: Monitoring of Phenomena Triggering A disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological and other Agencies, Media Reports governmental and Community Preparedness.

UNIT- V
Risk Assessment
Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk assessment and Warning, People’s Participation in Risk Assessment. Strategies for Survival

UNIT- VI
Disaster Mitigation
Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends in Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs Of Disaster Mitigation in India.

REFERENCE:
2. Sahni, Pardeep Et.Al. (Eds.),” Disaster Mitigation Experiences and Reflections”, Prentice Hall of India, New Delhi.
SANSKRIT FOR TECHNICAL KNOWLEDGE
(AUDIT 1 and 2)

OUTCOME:
Students will be able to:

➢ To get a working knowledge in illustrious Sanskrit, the scientific language in the world
➢ Learning of Sanskrit to improve brain functioning
➢ Learning of Sanskrit to develop the logic in mathematics, science & other subjects enhancing the memory power
➢ The engineering scholars equipped with Sanskrit will be able to explore the huge knowledge from ancient literature

UNIT- I

- Alphabets in Sanskrit,
- Past/Present/Future Tense,
- Simple Sentences

UNIT- II

- Order
- Introduction of roots
- Technical information about Sanskrit Literature

UNIT- III

- Technical concepts of Engineering-Electrical, Mechanical,
- Architecture, Mathematics

REFERENCE:

1. “Abhyaspustakam” – Dr. Vishwas, Samskrita-Bharti Publication, New Delhi
2. “Teach Yourself Sanskrit” Prathama Deeksha-VempatiKutumbshastrī, Rashtriya Sanskrit Sansthanam, New Delhi Publication
VALUE EDUCATION
(AUDIT 1 and 2)

OUTCOME:
Students will be able to:

- 1. Knowledge of self-development
- 2. Learn the importance of Human values
- 3. Developing the overall personality

UNIT- I
- Values and self-development – Social values and individual attitudes.
 Work ethics, Indian vision of humanism.
- Value judgements

UNIT- II
- Importance of cultivation of values.
 Truthfulness, Cleanliness.
- Patriotism. Love for nature, Discipline

UNIT- III
- Personality and Behavior Development - Soul and Scientific attitude.
 Positive Thinking, Integrity and discipline.
- Punctuality, Love and Kindness.
- Avoid fault Thinking.
- Free from anger, Dignity of labour.
- Universal brotherhood and religious tolerance.
- True friendship.
- Happiness Vs suffering, love for truth.
- Aware of self-destructive habits.
- Association and Cooperation.
- Doing best for saving nature

UNIT- IV
- Character and Competence – Holy books vs Blind faith.
- Self-management and Good health.
- Science of reincarnation.
- Equality, Nonviolence, Humility, Role of Women.
- All religions and same message.
- Mind your Mind, Self-control.
- Honesty, Studying effectively

REFERENCE:
CONSTITUTION OF INDIA
(AUDIT 1 and 2)

OUTCOME:
Students will be able to:

- Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics.
- Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.

UNIT- I
History of Making of the Indian Constitution:
History Drafting Committee, (Composition & Working)

UNIT- II
Philosophy of the Indian Constitution:
Preamble
Salient Features

UNIT- III
Contours of Constitutional Rights & Duties:
- Fundamental Rights
- Right to Equality
- Right to Freedom
- Right against Exploitation
- Right to Freedom of Religion
- Cultural and Educational Rights
- Right to Constitutional Remedies
- Directive Principles of State Policy
- Fundamental Duties.

UNIT- IV
Organs of Governance:
- Parliament
- Composition
- Qualifications and Disqualifications
- Powers and Functions
- Executive
- President
- Governor
- Council of Ministers
- Judiciary, Appointment and Transfer of Judges, Qualifications
- Powers and Functions

UNIT- V
Local Administration:
- District’s Administration head: Role and Importance,
- Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation.
- Elected officials and their roles, CEO Zilla Pachayat: Position and role.
- Block level: Organizational Hierarchy (Different departments),
- Village level: Role of Elected and Appointed officials,
- Importance of grass root democracy

44
UNIT- VI

Election Commission:
- Election Commission: Role and Functioning.
- Chief Election Commissioner and Election Commissioners.
- State Election Commission: Role and Functioning.
- Institute and Bodies for the welfare of SC/ST/OBC and women.

REFERENCE:

1. The Constitution of India, 1950 (Bare Act), Government Publication.
OUTCOME:
Students will be able to understand:

- What pedagogical practices are being used by teachers in formal and informal classrooms in developing countries?
- What is the evidence on the effectiveness of these pedagogical practices, in what conditions, and with what population of learners?
- How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?

UNIT- I
Introduction and Methodology:
- Aims and rationale, Policy background, Conceptual framework and terminology
- Theories of learning, Curriculum, Teacher education.
- Conceptual framework, Research questions.
- Overview of methodology and Searching.

UNIT- II
- Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries.
- Curriculum, Teacher education.

UNIT- III
- Evidence on the effectiveness of pedagogical practices
- Methodology for the in depth stage: quality assessment of included studies.
- How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?
- Theory of change.
- Strength and nature of the body of evidence for effective pedagogical practices.
- Pedagogic theory and pedagogical approaches.
- Teachers’ attitudes and beliefs and Pedagogic strategies.

UNIT-IV
- Professional development: alignment with classroom practices and follow-up support
- Peer support
- Support from the head teacher and the community.
- Curriculum and assessment
- Barriers to learning: limited resources and large class sizes

UNIT- V.
Research gaps and future directions
- Research design
- Contexts
- Pedagogy
- Teacher education
- Curriculum and assessment
- Dissemination and research impact.
REFERENCE:

DISSERTATION PHASE – I

M.Tech, SE. III-Sem

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>

Course Outcomes:
1. At the end of the course, the student will be able to:
2. Identify structural engineering problems reviewing available literature.
3. Identify appropriate techniques to analyze complex structural systems.
4. Apply engineering and management principles through efficient handling of project

Syllabus Contents:
Dissertation-I will have mid semester presentation and end semester presentation. Mid semester presentation will include identification of the problem based on the literature review on the topic referring to latest literature available.

End semester presentation should be done along with the report on identification of topic for the work and the methodology adopted involving scientific research, collection and analysis of data, determining solutions and must bring out individuals contribution.

Continuous assessment of Dissertation – I and Dissertation – II at Mid Sem and End Sem will be monitored by the departmental committee.
Course Outcomes: At the end of the course, the student will be able to:
1. Solve complex structural problems by applying appropriate techniques and tools.
2. Exhibit good communication skill to the engineering community and society.
3. Demonstrate professional ethics and work culture.

Syllabus Contents:
Dissertation – II will be extension of the to work on the topic identified in Dissertation – I.
Continuous assessment should be done of the work done by adopting the methodology decided involving numerical analysis/ conduct experiments, collection and analysis of data, etc. There will be pre submission seminar at the end of academic term. After the approval the student has to submit the detail report and external examiner is called for the viva-voce to assess along with guide.