ACADEMIC REGULATIONS
COURSE STRUCTURE AND
DETAILED SYLLABUS

CIVIL ENGINEERING

For

M. Tech. (Transportation Engineering)
(Two Year Full Time Programme)

JNTUH COLLEGE OF ENGINEERING HYDERABAD
(Autonomous)
Kukatpally, Hyderabad – 500 085, Telangana, India.

2018
I – SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Core 1</td>
<td>Urban Transportation Policy & Planning</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Core 2</td>
<td>Pavement Material Characterization</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Program Elective I</td>
<td>1.Traffic Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.Road Safety Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.Applied Statistics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Program Elective II</td>
<td>1.Remote sensing & GIS</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.Advanced Concrete Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.Airport Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Core Lab I</td>
<td>Highway Material Characterization Lab</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Core Lab II</td>
<td>Traffic Characterization Lab</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>MLC</td>
<td>Research Methodology & IPR</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>Audit 1</td>
<td>Audit Course-1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td>16</td>
<td>0</td>
<td>4</td>
<td>18</td>
</tr>
</tbody>
</table>

II – SEMESTER

<table>
<thead>
<tr>
<th>S.No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Core III</td>
<td>Traffic Analysis</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Core IV</td>
<td>Land use & Transportation Modelling</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Program Elective III</td>
<td>1.Highway Project Formulation & Economics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.Environmental Impact Assessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Engineering of Ground</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Program Elective IV</td>
<td>1.Transportation Infrastructure Design</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.Rural Roads</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Transportation Systems Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Core Lab III</td>
<td>Pavement Evaluation & Performance Lab</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Core Lab IV</td>
<td>Traffic & Transportation Planning Studio Lab</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Core</td>
<td>Mini project with Seminar</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>Audit 2</td>
<td>Audit Course-2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td>14</td>
<td>0</td>
<td>8</td>
<td>18</td>
</tr>
</tbody>
</table>

III – SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Program Elective - V</td>
<td>1.Intelligent Transportation System</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.Pavement Construction Maintenance & Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Mass Transportation System Planning & Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Open Elective</td>
<td>1.Disaster Analytics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. GIS & IoT For Planning & Policy Making For Smart Cities/Urban Areas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Dissertation</td>
<td>Dissertation Phase -I</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>16</td>
</tr>
</tbody>
</table>
IV – SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dissertation</td>
<td>Dissertation Phase-II</td>
<td>0</td>
<td>0</td>
<td>32</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>16</td>
</tr>
</tbody>
</table>

Audit Course 1 & 2:-

1. English for Research Paper Writing
2. Disaster Management
3. Sanskrit for Technical Knowledge
4. Value Education
5. Constitution of India
6. Pedagogy Studies
7. Stress Management by yoga
8. Personality Development Through Life Enlightenment Skills
URBAN TRANSPORTATION POLICY AND PLANNING

M.Tech, (TE). I-Sem

Prerequisites:- Nil

Objectives:

- The course introduces students to the fundamentals of Urban transportation planning.
- It familiarizes students with contemporary transportation planning issues and methods of analysis.
- Relationships between transportation and urban land use systems and new tools to address environmental and quality of life impacts of transportation are presented.
- Transportation investment decisions (or lack thereof) have been held accountable for increased economic prosperity or spiraling economic decline.

Course Outcomes:
At the end of the course, the student will be able to:

- Identify Urban transportation problems.
- Estimate Urban travel demand.
- Plan Urban transport networks.
- Identify Urban transport corridors.
- Prepare Urban transportation plans

UNIT - I:
Introduction: Role of transportation in the Economic development of Nations, Overview of transport modes, growth trends, National Transport Policy of India – Case studies, Transportation planning in the developing world; and comparative International transportation policies; Fundamentals of transportation, Principles of planning, evaluation, selection, adoption, financing, and implementation of alternative urban transportation systems; formulation of community goals and objectives, inventory of existing conditions; transportation modeling trip generation, distribution, modal choice, assignment

UNIT - II:

UNIT - III:
Travel Demand issues: Trends, Overall Planning process, Long term Vs Short term planning, Demand Function, Independent Variables, Travel Attributes, Assumptions in Demand Estimation, Detailed approach on 4 step travel demand estimation; Sequential and Simultaneous Approaches, Aggregate and Disaggregate Techniques.

UNIT - IV:
Demand and Supply planning : Planning for sustainable urban mobility, positive and negative externalities in urban transport, congestion pricing, parking policy, demand management ,Urban travel and transportation system characteristics - a systems perspective, Data management and use in decision making , Demand analysis , Urban activity analysis, Supply analysis; Plan Preparation And Evaluation: Travel Forecasts to Evaluate Alternative Improvements, Impacts of New Development on Transportation Facilities. Master plans, Selection of Corridor, Corridor Identification, Corridor deficiency Analysis

UNIT - V:
Metropolitan Cities: Design issues in urban mobility, integrating land use and transport planning; Overview of urbanization process, city structure and urban activity and infrastructure systems, Economic and social significance of urban infrastructure systems; Transport’s Role in tackling Social Inclusion, Economic Impacts of Transport Policy

Reference Books:
1. Introduction to Transportation Planning – M.J.Bruton; Hutchinson of London Ltd.
2. Introduction to Urban System Planning - B.G.Hutchinson; Mc Graw Hill.
3. Traffic Engineering and Transport Planning - Kadiyali L.R., Khanna Publishers
4. Lecture notes on UTP - Prof. S. Raghavachari , R.E.C.Warangal.
PAVEMENT MATERIAL CHARACTERIZATION

M.Tech, (TE). I-Sem

Prerequisites:- Nil

Objectives:
- The main objective of this course is to provide students with a thorough understanding of the important factors in pavement design and analysis.
- The focus will be on practices of pavement design of highway agencies.

Course Outcomes:
At the end of the course, students will be able to
- Determine the proportions of ingredients required for the mix design of both asphalt mixtures and cement concrete.
- Characterize the pavement materials including soil, aggregate, cement, asphalt mixtures, cement concrete.
- Select appropriate asphalt binder for construction of a flexible pavement depending upon the traffic and climatic conditions.
- Choose appropriate stabilization technique for pavement.
- Understand the basic of cement & cement concrete mix characterization.

UNIT - I:
Subgrade Soil Characterization: Properties of subgrade layers; different types of soils, Mechanical response of soil; Soil Classification; Index and other basic properties of soil; A critical look at the different laboratory and in-situ procedures for evaluating the mechanical properties of soils viz. SPT, DCPT, CPT, CBR, Plate Load test & resilient modulus; Suitability of different type of soil for the construction of highway embankments and pavement layers; Field compaction and control. Dynamic properties of soil: FWD test.

UNIT - II:

UNIT - III:
Aggregate Characterization: Origin, Classification, Types of aggregates; Sampling of aggregates; Mechanical and shape properties of aggregates, Aggregate texture and skid resistance, polishing of aggregates; Proportioning and Blending of aggregates: Super pave gradation, Fuller and Thompson’s Equation, 0.45 power maximum density graph; Use of locally available materials in lieu of aggregates.

UNIT - IV:
Bitumen and Bituminous Concrete Mix Characterization: Bitumen sources and manufacturing, Chemistry of bitumen, bitumen structure, Rheology of bitumen, Elastic modulus, Dynamic modulus, visco-elastic and fatigue properties, creep test, stiffness modulus of bitumen mixes using shell nomographs; Resilient, Diametral Resilient and Complex (Dynamic) Moduli of Bituminous Mixes, Permanent Deformation Parameters and other Properties.Modified bitumen: Crumb Rubber Modified bitumen, Natural rubber modified bitumen, polymer modified bitumen; Introduction to emulsified bitumen and its characterization; Long term and short term ageing and its effect on bitumen performance, Tests to simulate ageing of bitumen viz. RTFOT and PAV.
Desirable properties of bituminous mixes, Design of bituminous mixes: Modified Marshall’s specifications, Hubbard Field method of mix design, Hveem’s method of mix design; Introduction to super pave mix design procedure

UNIT - V:
Cement and Cement Concrete Mix Characterization:
Types of cements and basic cement properties, Special cements; Quality tests on cement; Tests on cement concrete including compressive strength, flexural strength, modulus of elasticity and fatigue
properties; Introduction to advanced concretes like self compacted concrete, Light weight concrete, Roller Compacted Concrete for pavement application; IS method of cement concrete mix design with case studies; Role of different admixtures in cement concrete performance; Joint fillers for Jointed Plain Cement Concrete Pavements and their characterization; Nano technology applications in cement concrete.

Reference Books:
3. Relevant IRC and IS Codes of Practices (Separate List will be given).
5. Relevant IRC and IS codes
TRAFFIC ENGINEERING
(Program Elective-I)

M.Tech, (TE). I-Sem

L T P C

3 0 0 3

Prerequisites:- Nil

Objectives:
- This module focuses on traffic, its properties, measurement, simulation and control. It deals with traffic flow variables and their measurement. Survey methods and data analysis techniques required by traffic engineers are presented.
- Introduction to highway capacity & level of service is dealt.
- Parking analysis, traffic safety, traffic signal control, regulation, signal design are discussed.
- Detrimental effects of traffic on environment, Air and Noise pollution are discussed.

Course Outcomes:
At the end of the course, students will be able to
- Analyze design issues related to parking & traffic signal.
- To understand the detrimental effect of traffic on environment.
- To know the good understanding of traffic engineering and basic quantitative methods required by traffic engineers.
- To understand how different road user groups interact and the consequences for traffic engineering.

UNIT - I:
Traffic Characteristics Measurement And Analysis: Basic traffic Characteristics - Speed, Volume and Concentration. Relationship between Flow, Speed and Concentration. Traffic Measurement and Analysis - Volume Studies - Objectives, Methods; Speed studies – Objectives, Definition of Spot Speed, time mean speed and space mean speed; Methods of conducting speed studies; Presentation of speed study data; Head ways and Gaps; Critical Gap; Gap acceptance studies.

UNIT - II:
Highway Capacity And Level Of Service: Basic definitions related to capacity; Level of service concept; Factors affecting capacity and level of service; Computation of capacity and level of service for two lane highways, Multilane highways and free ways.

UNIT - III:
Parking Analysis and Traffic Safety: Types of parking facilities – On-street parking and Off-street Parking facilities; Parking studies and analysis- Parking Inventory Study, Parking Usage Study By Patrolling, Questionnaire Survey, Cordon Surveys; Evaluation of parking parameters; Parking accumulation, Parking Load, Parking Turnover, Parking Index, Parking Volume. Traffic Safety - Accident studies and analysis; Causes of accidents - The Road, The vehicle, The road user and the Environment; Engineering, Enforcement and Education measures for the prevention of accidents.

UNIT - IV:

UNIT - V:
Traffic and Environment: Detrimental effects of Traffic on Environment, Air pollution; Noise Pollution; Measures to curtail environmental degradation due to traffic. Sustainable Transportation: Sustainable modes, Transit Oriented Development, ITS based benefits for Environment.

Reference Books:
ROAD SAFETY ENGINEERING
(Program Elective-I)

M.Tech, (TE). I-Sem

Prerequisites: Nil

Objectives:
- This course discusses the fundamentals of traffic engineering & some of the statistical methods to analyze the traffic safety.
- The accident investigation and risk involved with measures to identify the causes are dealt.
- The various traffic management systems for safety & safety improvement strategies are dealt.

Course Outcomes:
At the end of the course, students will be able to
- To understand fundamentals of road safety engineering.
- To investigate & determine the collective factors & remedies of accidents involved.
- To design & plan various road geometrics.
- To manage the traffic system from road safety point of view.

UNIT - I:

UNIT - II:
Accident Investigations and Risk Management, Collection and Analysis of Accident Data, Condition and Collision Diagram, Causes and Remedies, Traffic Management Measures and Their Influence on Accident Prevention, Assessment of Road Safety, Methods to Identify and Prioritize Hazardous Locations and Elements, Determine Possible Causes of Crashes, Crash Reduction Capabilities and Countermeasures, Effectiveness of Safety Design Features, Accident Reconstruction

UNIT - III:
Road Safety in Planning And Geometric Design: Vehicle And Human Characteristics, Road Design and Road Equipments, Redesigning Junctions, Cross Section Improvements, Reconstruction and Rehabilitation of Roads, Road Maintenance, Traffic Control, Vehicle Design and Protective Devices, Post Accident Care

UNIT - IV:
Role of Urban infrastructure design in safety: Geometric Design of Roads; Design of Horizontal and Vertical Elements, Junctions, At Grade and Grade Separated Intersections, Road Safety in Urban Transport, Sustainable Modes and their Safety.

UNIT - V:

References Books:
3. Transportation Engineering – An Introduction, C.Jotin khisty, B. Kent Lall
4. Fundamentals of Traffic Engineering, Richardo G Sigua
6. Road Safety by NCHRP
APPLIED STATISTICS
(Program Elective-I)

M.Tech, (TE). I-Sem

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Prerequisites:- NIL

Objectives:
The students of Transportation Engineering will acquire knowledge to

- Understand the qualitative and quantitative study of the frequency distributions
- Identify the scientific methods of sampling and fitting the suitable distribution to the available data
- Learn the basic concepts of Probability theory
- Apply the concept of probability in testing the Hypothesis to accept or reject at a given level of significance
- Learn the methods for analysing multivariate data by finding the relationship between the variables both qualitatively (Correlation) and quantitatively (Regression)
- Analyse the multivariable data through ANOVA.

Course outcomes :-
At the end of the course, students will be able to

- Find the statistical constants of the frequency distributions which helps in understanding the distribution pattern of the given data points
- Design sampling strategies depending on the objective of the study of the concerned real world problems
- Find the probability of the events that arise in random experiments
- Test the Null hypothesis against alternative Hypothesis in taking decisions to accept or reject the Null hypothesis with certain probability
- Study the quality of relationship between two or more dependent variables
- Find mathematical equation for the relationship between the variables
- Analyse the variations of the data from their means and apply ANOVA.

UNIT - I
Introduction to Sampling Techniques and Statistical Distributions: Frequency distribution; Mean; Standard deviation; Standard error, Skewness; Kurtosis; Definitions and Applications; Simple random sampling; Stratified sampling; Systematic sampling; Sample Size determination; Applications in Traffic Engineering; Statistical Distributions: Binomial, Poisson, Exponential and Normal distributions; Fitting of distributions; Mean and variance; Chi-square test of goodness-of-fit; Chi-square distribution; Students T-distribution; Snedecors, F- Distribution. Applications in Traffic Engineering.

UNIT - II
Probability: Laws of Probability; Conditional probability and Independent events; Laws of expectation. Theorem of total probability and Baye’s theorem

UNIT - III
Regression and Correlation: Linear regression and correlation; Multiple correlation; Multiple correlation coefficient; Standard error of estimate; Curvilinear regression models; Applications in Transportation Engineering.

UNIT - VI
Multivariate data analysis: Types of data; Basic vectors and matrices, Dispersion, Variance and covariance, Analysis of Variance; Correlation matrices; Principal component analysis, Time series analysis

UNIT - V
Tests of Significance & Confidence Interval: Large sample and small sample tests; Tests for single mean, Means of two samples, Proportions, two variances, two observed correlation coefficients, Applications. Intervals for mean, variance and regression coefficients; Applications in Traffic Engineering problems.
References Books:
 Multivariate Data Analysis –Cootey W.W & Cohens P.R; John Wiley & Sons.
REMOTE SENSING & GIS
(Program Elective-II)

M.Tech, (TE). I-Sem

Prerequisites:- Nil

Objectives:
This course will focus on introducing students to the use of Geographic Information Systems in the urban environment for transportation engineering.

Students successfully completing this course should be able to:
- Understand the purposes of GIS and the kinds of problems to which GIS is applied.
- Understand the fundamental types of GIS data, including raster and vector data.
- Be able to explain and perform spatial data retrieval tasks.
- Use GIS operators to perform a number of kinds of analysis.
- Be prepared to use GIS to support personal and professional decision making.
- Be aware of Geographic Information that is available on the World Wide Web.
- Understand the limitations of Geographic Information systems and of geographic data in general.

Course outcomes:
At the end of the course, students will be able to
- Describe the functional basis of a GIS
- Appreciate the potential uses of GIS in transportation engineering
- Consider the benefits and shortcomings of using GIS for transportation engineering
- Outline the key data quality issues involved in using GIS for transportation engineering
- Develop a strategy to implement an effective GIS for transportation engineering

UNIT - I:

UNIT - II:
Pre-Processing of Remotely Sensed Data: Introduction, cosmetic operation; Geometric connection and registration, atmospheric correction.
Image Transforms: Introduction, arithmetic operations, empirically based image transforms, principal component analysis, multiple discriminant analysis etc.

UNIT - III:

UNIT - VI
Application of GIS in Transportation Engineering – I: Intelligent information system for road accessibility study, GIS data base design for physical facility planning, Decision support systems for land use planning.

UNIT - V
References Books:
8. GIS for Urban & Regional Planning, Scholten & Stillwen 1990, Kulwer Academie
9. GIS A management, Perspenfi Stan Aronoff, WDL Publisher
10. GIS By Stonffer
ADVANCED CONCRETE TECHNOLOGY
(Program Elective-II)

M.Tech, (TE). I-Sem

Prerequisites:- Nil

Objectives:
This course will provide the students with
- State-of-the-art knowledge on durable and sustainable cement and concrete, on the various mineral additions and chemical admixtures to enhance the workability, strength, durability and sustainability of concrete,
- It will empower them in the decision making process regarding the various concrete products, construction procedures and performance test methods that will improve the durability and sustainability of concrete civil infrastructure.
- This course will empower students to become technical leaders in the concrete. The materials science aspects of concrete production will be explored in the context of various performance criteria with emphasis on durability and sustainability.
- The process of material selection, proportioning, mixing, transporting, placing and curing concrete will be the main focus, augmented with technology of admixtures use; green cements and concrete products.
- This comprehensive course is designed to provide students with an in-depth understanding of the fundamentals of concrete. Covered in detail is information about constituent materials, specification and production, concrete properties and performance as well as basic practical applications.
- The course is widely acknowledged by industry as the first step in obtaining a recognized qualification for candidates with some prior knowledge or experience in the field.

Course Outcomes:
At the end of the course, students will be able to
- Identify Quality Control tests on concrete making materials
- Understand the behavior of fresh and hardened concrete
- Design concrete mixes as per IS and ACI codes
- Understand the durability requirements of concrete
- Understand the need for special concretes
- Design form work

UNIT - I

UNIT - II
Fresh and Hardened Concrete: Fresh Concrete – workability tests on Concrete – Setting Times of Fresh Concrete – Segregation and bleeding.
Hardened Concrete: Abrams Law, Gel space ratios, Maturity concept – Stress strain behavior – Creep and Shrinkage – Durability Tests on Concrete – Non Destructive Testing of Concrete.

UNIT - III
High Performance Concrete – Requirements and Properties of High Performance Concrete – Design Considerations

UNIT - IV
Special Concretes: Self Compacting concrete, Polymer Concrete, Fibre Reinforced Concrete – Reactive Powder Concrete – Requirements and Guidelines – Advantages and Applications.
Concrete Mix Design: Quality Control – Quality Assurance – Quality Audit - Mix Design Method – BIS Method – DOE Method – Light Weight Concrete, Self Compacting Concrete.
UNIT - V
Form work – materials – structural requests – form work systems – connections – specifications –

References Books:
AIRPORT ENGINEERING
(Program Elective-II)

M.Tech, (TE). I-Sem

Prerequisites:- Nil

Objectives:
- The module introduces the Airport planning issues along with the designing of Runway.
- The visual aids required from Airport Traffic operating is dealt with the necessary inputs required for efficient drainage system has a significance in maintenance the airport.

Course Outcomes:
At the end of the course, the student will be able to:
- Understand the region planning for an airport.
- Design the runway length after considering the correction required for basic runway length.
- Understand the visual aids required for safe landing and takeoff operation of airport.
- Analyze and design the Airport drainage.

UNIT - I:
Airport Planning: General- Regional Planning- Development of New Airport- Data Required Before Site Selection- Airport Site Selection- Surveys for Site Selection- Drawings to be prepared- Estimation of Future Air Traffic Needs.

UNIT - II:
Runway Design: Runway Orientation- Basic Runway Length- Corrections for Elevation, Temperature and Gradient- Airport Classification- Runway Geometric Design- Airport Capacity- Runway Configurations- Runway Intersection Design.

UNIT - III:

UNIT- IV:
Visual Aids: General- Airport Marking- Airport Lighting.

UNIT - V:
Airport Grading And Drainage: General- Computation of Earthwork- Airport Drainage- Special Characteristics and Requirements of Airport Drainage- Design Data- Surface Drainage Design- Subsurface Drainage Design.

Reference Books:-
2. Highway Engineering including Expressways and Airport Engineering by Dr.L.R. Kadyali, Dr.N.B. Lal.
3. Highway Engineering including Airport Pavements by Dr.S.K. Sharma.
4. Transportation Engineering by S.P.Chandola.
HIGHWAY MATERIAL CHARACTERIZATION LAB

M.Tech, (TE). I-Sem L T P C 0 0 4 2

Prerequisites:- Nil

Objectives:
The students will acquire knowledge about
• Objective material characterization of aggregates.
• Fundamental tests on Bitumen

Course Outcomes:
At the end of the course, students will be able to:
• Characterize the pavement materials.
• Perform quality control tests on pavements and pavement materials.
• Conduct test on Aggregate & bitumen.

(A) Aggregate Characteristics
1. Crushing Strength
2. Impact test
3. Shape tests

Sieve analysis on Fine & Coarse aggregate (Gradation for different layers in highway)

(B) Bitumen
4. Penetration test
5. Softening point test
6. Ductility test
7. Flash & Fire point test

References Books:
TRAFFIC CHARACTERIZATION LAB

M.Tech, (TE), I-Sem

Prerequisites:- Nil

Objectives:
The students will acquire knowledge about
- Analyzing characteristics of traffic
- Various parameter related to delay, speeds and headways

Course Outcomes:
At the end of the course, students will be able to:
- Gain Knowledge about various traffic surveys
- Analyze traffic parameters for various studies.

Traffic Characteristics Survey :-

1. Classified Volume counts
2. Spot Speed
3. Gap Acceptance
4. Headway-space & time mean
5. Delay studies
6. Volume-capacity-Competency for different highways
7. Lane discipline and its impact
8. Vehicle- Road-Median-clave impact analysis
RESEARCH METHODOLOGY & IPR

M.Tech, (TE). I-Sem

Course Outcomes:
At the end of this course, students will be able to
- Understand research problem formulation.
- Analyze research related information and follow research ethics.
- Understand that today’s world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity.
- Understand that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis the need of information about Intellectual Property.
- Right to be promoted among students in general & engineering in particular.
- Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.

UNIT – I
Meaning of research problem, Sources of research problem, Criteria ,Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

UNIT - II
Effective literature studies approaches, analysis Plagiarism, Research ethics,

UNIT - III
Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee

UNIT - IV

UNIT - V

UNIT - VI:
New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

References Books:
2. Wayne Goddard and Stuart Melville, “Research Methodology: An Introduction”
TRAFFIC ANALYSIS

M.Tech, (TE). II-Sem

Prerequisites:- Nil

Objectives:
• This module focuses on traffic, its properties, measurement, simulation and control.
• Traffic flow variables and their measurement. Traffic flow and queuing theory is introduced. Survey methods and data analysis techniques required by traffic engineers are presented.
• Analysis of pedestrian delays and warrants.

Course Outcomes:
At the end of the course, students will be able to
• Estimate basic characteristics of traffic stream.
• Conduct traffic studies and analyze traffic data.
• Understand traffic queue system.
• Understand the pedestrian delays & gaps.
• Understand simulation techniques.

UNIT - I

UNIT - II

UNIT - III
Queuing Analysis: Fundamentals of Queuing Theory, Demand Service Characteristics, Deterministic Queuing Models, Stochastic Queuing Models, Multiple Service Channels, Analysis of M/M/1 system; Assumptions and Derivation of System State Equations; Application of M/M/1 analysis for parking Garages and Toll Plazas- numerical Examples; Analysis of D/D/1 system for delay characteristics; Traffic Signal analysis as D/D/1 system; Computation of delays and queue dissipation Time – Numerical Examples.

UNIT - IV
Pedestrian Delays And Gaps: Pedestrian Gap acceptance and delays; Concept of Blocks, Anti-blocks, Gaps and Non-Gaps; Underwood’s analysis for Pedestrian Delays; Warrants for Pedestrian Crossing Facilities – Minimum Vehicular Volume Warrant, Minimum Pedestrian Volume Warrant, Maximum Pedestrian Volume Warrant;

UNIT - V

References Books:
LAND USE & TRANSPORTATION MODELLING

M.Tech, (TE). II-Sem

Prerequisites: - Nil

Objectives:
- This course covers the fundamentals of land use theory
- Various land use and travel demand models are discussed
- Concepts of network planning and advanced spatial analysis are discussed

Course Outcomes:
At the end of the course, students will be able to
- Understand the fundamentals of land use theory.
- Apply land use theories for urban region development.
- Apply evolving understanding of development to provide a interactive environment for development.
- Develop travel demand models.

UNIT - I
Land Use And Transportation Engineering: Transportation modeling in Planning; Models and their role, Characteristics of Transport demand and supply, Equilibrium of supply and demand, Modeling and decision making, Issues in Transportation modeling and structure of the classic transport model.

UNIT- II
Land Use Transportation and Activity Models: Introduction to Land Use Planning; Relation between Transportation and Land Use Planning; The economic base mechanism and allocation mechanism; Spatial allocation and employment interrelationship; Garin Lowry models.; Activity modeling

UNIT - III
General Travel Demand Models and Regional Transport Models: Aggregate, Disaggregate models; Behavioral models; Recursive and direct demand Models; Linear, Non-Linear models; Logit, discriminant and Probit models; Mode split models - Abstract mode and mode specific models. Regional Transport Models: Factors affecting goods and passenger traffic; Prediction of traffic; Growth factor models; Time function iteration models; internal volume forecasting models.

UNIT - IV

UNIT - V
Advanced Spatial analysis Modelling: Applications of Artificial Neural networks, Cellular automata, Fuzzy logic systems, Genetic algorithms, artificial intelligence concepts to transportation Modelling

Reference Books:-
4. Land Use Transportation Planning Notes - S.R.Chari, REC Warangal.
7. Behavioral Travel Demand Models - Peter R. Stopher ARNIM.H.MEYBURG.
8. Introduction to Transportation Engineering and Planning, Morlok EK, McGraw Hill
HIGHWAY PROJECT FORMULATION AND ECONOMICS
(Program Elective- III)

M.Tech, (TE). II-Sem

L T P C
3 0 0 3

Prerequisites :- Nil

Objectives:
The student needs to
- Understand the need & scope of project formulation.
- Learn evaluation of economics of highway projects.
- Understand the concepts of economic analysis and shadow pricing
- Learn to deal with project analysis and environmental impact assessment.

Course Outcomes:
At the end of the course, students will be able to
- Understand project formulations & project evaluation.
- Analysis the feasibility of highway projects.
- Demonstrate the need for environmental impact assessment.

UNIT - I

UNIT - II

Economic Evaluation : Need for Economic Evaluation; Stages involved in Economic Analysis; Cost and Benefit components; Discounting Criteria; Welfare economics; Social costs; Rate of Return; Road User Cost study in India; Value of Travel time Savings – Economic concept of evaluation of travel time savings; Issues connected with evaluation of travel time savings. Vehicle operating costs – Components of VOC, Accident costs; Methodologies for economic evaluation of an accident.

UNIT - III

Economic Analysis; Basic Concepts of Economic Analysis, Principles of Economic Analysis; Cash flow diagrams; Time value of Money; Development of cash flow Diagrams; Methods of Economic Evaluation –Equivalent Uniform Annual Cost Method; Present worth of cost method; Equivalent uniform annual net return method; Net present value method; Benefit cost ratio method; Rate of Return Method. Applications of these methods to highway projects.

UNIT - IV

Project appraisal by shadow pricing with case studies; Toll system analysis, Financial analysis; Budgeting.

UNIT - V

Learning outcomes.

Reference Books:
4. Road User Cost Study, CRRI
5. Road Project Appraisal, for Developing Countries, J.W.Dickey, John Wiley & Sons.
ENVIRONMENTAL IMPACT ASSESSMENT
(Program Elective- III)

M.Tech, (TE). II-Sem

L T P C
3 0 0 3

Prerequisites:- Nil

Objectives:
The students will be able to
- The basic concepts of EIA and its methodologies
- Impact and assessment of activity on environment
- Understand environmental audit and legislations

Course outcomes:
- The student will be able to assess the impact of development on environment and prepare a comprehensive plan for the various parameters.
- The student can Assess and predict the significance of impact of deforestation.

UNIT - I

UNIT - II
Impact of Developmental Activities and Land use. Introduction, Methodology for the assessment of soil and ground water, Delineation of study area, Identification of activities.

UNIT - III

UNIT - IV
Assessment of Impact of development Activities: on Vegetation and wildlife, environmental Impact of Deforestation – Causes and effects of deforestation.

UNIT - V

Reference Books:
2. Environmental Pollution and Control, by Dr H.S. Bhatia – Galgotia Publication (P) Ltd, Delhi.
ENGINEERING OF GROUND
(Program Elective- III)

M.Tech, (TE). II-Sem

Prerequisites:- Nil

Objectives:
- This course will provide an introduction to the design and philosophy of geotechnical site investigations and a legislation element incorporating contaminated land.
- Students will learn about the range of exploration and testing techniques available to geotechnical engineers.
- Students will also learn how investigations are planned and how the results of investigations relate to the design process.

Course Outcomes:
At the end of the course, students will be able to
- Identify ground conditions and suggest method of improvement
- Design and assess the degree of improvement
- Understand the principles of soil reinforcement and confinement in engineering constructions
- Design reinforced soil structures

UNIT - I
Introduction to Engineering Ground Modification: Need and objectives, Identification of soil types, in situ and laboratory tests to characterize problematic soils; Mechanical, Hydraulic, Physico-chemical, Electrical, Thermal methods, and their applications.

UNIT - II
Mechanical Modification – Deep Compaction Techniques- Blasting Vibrocompaction, Dynamic Tamping and Compaction piles.

UNIT - III
Hydraulic Modification – Objectives and techniques, traditional dewatering methods and their choice, Design of dewatering system, Electro-osmosis, Electro-kinetic dewatering, Filtration, Drainage and Seepage control with Geosynthetics, Preloading and vertical drains,

UNIT - IV
Physical and Chemical Modification – Modification by admixtures, Shotcreting and Guniting Technology, Modification at depth by grouting, Crack Grouting and compaction grouting, Jet grouting, Thermal Modification, Ground freezing.

UNIT - V
Modification by Inclusions and Confinement - Soil reinforcement, reinforcement with strip, and grid reinforced soil. In-situ ground reinforcement, ground anchors, rock bolting and soil nailing.

Text Books

Reference Books:
3. Xianthakos, Abreimson and Bruce - Ground Control and Improvement
TRANSPORTATION INFRASTRUCTURE DESIGN
(Program Elective- IV)

M.Tech, (TE). II-Sem L T P C
3 0 0 3

Prerequisites:- Nil

Objectives:
• Students will develop a good command of the concepts involved in geometric design of intersections, horizontal & vertical alignment of roads & pedestrian facilities.
• Describe the urban street hierarchy and functional classification system.
• Identify and define the elements of a roadway cross-section. Discuss concepts related to the roadway design speed.
• Discuss alignment and grade elements including sight distance; horizontal and vertical curves; terrain and acceptance grades for urban local and collector streets.
• Define the functional area of an intersection. Identify key design elements for intersections.
• Identify pedestrian street crossing issues.

Course Outcomes:
At the end of the course, the student will be able to:
• Design the longitudinal and cross sectional elements of a highway.
• Design the horizontal and vertical alignment of roads.
• Design the intersections, interchanges, and parking facilities.
• Design the facilities for bicyclists and pedestrians.

UNIT - I

UNIT - II
Horizontal Alignment of Roads: Sight Distances – Stopping Sight Distance, Overtaking Sight Distance and Intermediate Sight Distance ; Objectives of horizontal curves; Super elevation; Extra-widening on Curves; Transition Curves – Objectives and Design. Transition Curve setting methods, Introduction to MX Roads software.

UNIT - III
Vertical Alignment of Roads: Gradients – Types of Gradients, Design Standards; Vertical Curves – Summit Curves, Valley Curves and Design criteria for Vertical Curves; Importance of Sight Distances for Horizontal and Vertical Curves ; Combination of Vertical and Horizontal Curves – Grade Compensation

UNIT - IV
Geometric Design of Intersections : Types of Intersections; Design Principles for Intersections; Design of At-grade Intersections – Channelization, Objectives; Traffic Islands and Design standards; Rotary Intersection – Concept, Advantages and Disadvantages; Grade separated Interchanges – Types, warrants and Design standards.

UNIT - V
Miscellaneous Elements: Requirements of Pedestrians; Pedestrian facilities on Urban Roads; Cycle Tracks – Guidelines and Design standards; Bus bays –Types and Guide lines; Design of On-street and Off street Parking facilities – Guidelines for lay out Design, Traffic Signs and Markings.

Reference Books:
4. IRC Codes for Signs, Markings and Mixed Traffic Control in Urban Areas.
RURAL ROADS
(Program Elective- IV)

M.Tech, (TE). II-Sem

Prerequisites:- Nil

Objectives:
- This course focuses on planning of rural roads as well as design of pavements.
- Various specifications for construction of rural roads is discussed
- The importance of quality control construction and maintenance of rural roads is discussed

Course Outcomes:
At the end of the course, students will be able to
- Plan rural road network.
- Gain knowledge of the materials and pavement design for rural roads.
- Understand the construction and specifications for rural roads.
- Understand the importance of quality control in construction and maintenance of rural roads.

UNIT - I
Planning and Alignment: Planning of Rural Roads, Concept of Network planning, rural roads planning, road alignment and surveys, governing factors on route selection, factors considered for alignment.

UNIT - II
Materials and Pavement Design: Introduction, Soil material surveys, embankment and subgrade materials, stabilized Soils, Road aggregates, aggregate for base courses, new materials as stabilizers, materials for desert areas, materials for bituminous constructions and surfacing; materials for rigid pavements, special pavement, climatic suitability of concrete materials. Introduction, design procedure, pavement components, design of flexible and rigid pavements, special pavements design, types of drainage, and general criteria for road drainage, system of drainage, surface and subsurface systems.

UNIT - III
Construction and Specifications: Introduction, selection of materials and Methodology, Embankment and subgrade, sub – base (granular), base(granular), shoulder, bituminous concrete, semi- rigid pavements, construction, concrete pavements, construction of special pavements, equipment required for different procedures.

UNIT - IV
Waste material for pavement construction: Introduction, fly ash for road construction, design & construction, design &construction of fly ash embankment lime fly ash and stabilized soil, lime fly ash pavements, control of compaction, concrete stabilized fly ash with admixtures.

UNIT - V
Quality Control in Construction and Maintenance: Introduction, Pre-requisites, organizational setup, specification and code of practice, Laboratory equipment, Earth and granular layers, bituminous courses, semi- rigid and rigid pavements, special requirements, recovered of quality control data. Distresses/Defects in rigid and flexible pavements, Maintenance and evaluation, inventory roads and inspections, types of Maintenance Activities, Maintenance.

Reference Books:
2. HMSO, Soil Mechanics for rural Engineers in, London
3. IRC related code books
4. NRRDA – guidelines and code books
TRANSPORTATION SYSTEM MANAGEMENT
(Program Elective- IV)

M.Tech, (TE). II-Sem

L T P C
3 0 0 3

Prerequisites:- Nil

Objectives:
- Discuss systems approach of transportation planning
- Discuss various principle of transit vehicles, their differing operating environments and how they affect urban street design.
- Describe bus route networks and issues in route evaluation
- Discuss measure to promote non auto modes
- Study the characteristics of advanced transit technology

Course Outcomes:
At the end of the course, students will be able to
- Understand TSM, the need for TSM and the objectives of TSM.
- Understand the types of TSM strategies.
- Recommend methods to manage a transit system to improve its management efficiency.
- Understand the concepts of bus route networks and issues in route evaluation
- Understand the importance of non auto modes and advanced transit technology

UNIT - I

UNIT - II
Measures to promote transit: Preferential Treatment to high Occupancy Vehicles; Car Polling; Transit Service Improvement Measures; Transit Management Improvement Measure; Transit and Para transit integration; Para Transit Role in urban areas; Multi-Modal Coordination.

UNIT - III
Bus Route Network Planning and Management: Type of Bus Route Networks; Suitability for a given Urban Area; Types of routes – Corridor routes, activity routes and residential routes; issues in route networks evaluation – number of route, length of route; route alignment methods; service coverage and accessibility index.

UNIT - IV
Promotion of Non – Auto modes: Measures to promote non-auto modes; Pedestrianisation; Bicycle Transportation - advantages; Planning Bicycle Facilities - class I, Class II and Class III bikeways; Junction Treats for cycle tracks; LOS criteria for Pedestrian and bicycle Facilities.

UNIT - V

Reference Books:
1. Transportation System management Notes: S.R.Chari, REC Warangal
3. The Bicycle Planning, Mike Hudson , Open Books, UK
PAVEMENT EVALUATION & PERFORMANCE LAB

M.Tech, (TE). II-Sem

Prerequisites:- Nil

Objectives:
The students will acquire knowledge about
- The various assessment techniques of the pavement
- The mix design of pavement
- Visual analysis and other pavement characteristics

Course Outcomes:
At the end of the course, students will be able to:
- Design and assess various pavement components
- Analyze pavement failures and their characteristics

Pavement Evaluation

1. Mix Design of Pavement
2. Deflection Assessment on Pavement
3. Density Assessment on Pavement
4. Surface Condition Assessment
5. Visual Condition Analysis of Pavement
6. Pavement Failure-Analysis
7. Impact of Road Geometric on Skid Resistance
TRAFFIC & TRANSPORTATION PLANNING STUDIO LAB

M.Tech, (TE). II-Sem

Prerequisites:- Nil

Objectives:
The students will acquire knowledge about
- The various characteristics of the road network
- Parking and congestion pavements
- Road safety analysis methods and importance of ITS

Course Outcomes:
At the end of the course, students will be able to:
- Analyze various traffic related issues
- Analyze congestion pricing and road safety
- Understand the importance of ITS and Land use to improve traffic conditions.

1. Road Network Characterization
2. Road Geometric Audit
3. Traffic Counting Devices-Design
4. ITS Interface to Traffic Control and Monitoring
5. Land Use and Transportation Infrastructure
6. Parking Structures
7. Congestion Pricing Analysis
8. Road Safety Analysis
MINI PROJECT WITH SEMINAR

M.Tech, (TE). II-Sem

- Mini projects help the students to gain practical knowledge and improve their skill set
- The students get hands on experience in their area of interest.
Prerequisites:- Nil

Objectives:
Within the core module students will have been introduced to some of the basic concepts of Intelligent Transport Systems. The detailed objectives are:

- To develop an understanding of various sensor technology of ITS.
- To describe the of ITS architecture and user needs in functional areas of ITS
- Understand the various applications of ITS
- Understand how to evaluate technologies, applications and services of ITS

Course Outcomes:
At the end of the course, students will be able to
- Differentiate different ITS user services
- Select appropriate ITS technology depending upon site specific conditions.
- Design and implement ITS components

UNIT - I
Fundamentals of ITS: Definition of ITS, the historical context of ITS from both public policy and market economic perspectives, Types of ITS; Historical Background, Benefits of ITS.

UNIT - II
Sensor technologies and Data requirements of ITS: Importance of telecommunications in the ITS. Information Management, Traffic Management Centers (TMC). Application of sensors to Traffic management; Traffic flow sensor technologies; Transponders and Communication systems; Data fusion at traffic management centers; Sensor plan and specification requirements; Elements of Vehicle Location and Route Navigation and Guidance concepts; ITS Data collection techniques – Detectors, Automatic Vehicle Location (AVL), Automatic Vehicle Identification (AVI), GIS, video data collection.

UNIT - III

UNIT - IV
ITS Architecture – Regional and Project ITS architecture; Concept of operations; ITS Models and Evaluation Methods; Planning and human factor issues for ITS, Case studies on deployment planning and system design and operation; ITS and safety, ITS and security, ITS as a technology deployment program, research, development and business models, ITS planning.

UNIT - V
ITS applications: Traffic and incident management systems; ITS and sustainable mobility, travel demand management, electronic toll collection, ITS and road-pricing.; Transportation network operations; commercial vehicle operations and intermodal freight; public transportation applications; ITS and regional strategic transportation planning, including regional architectures: ITS and changing transportation institutions Automated Highway Systems- Vehicles in Platoons – Integration of Automated Highway Systems. ITS Programs in the World – Overview of ITS implementations in developed countries, ITS in developing countries.
Reference Books:
1. Fundamentals of intelligent transportation systems planning By Mashrur A. Chowdhury, Adel Wadid Sadek
2. Lawrence A. Klein, Sensor technologies and Data requirements of ITS
PAVEMENT CONSTRUCTION MAINTENANCE AND MANAGEMENT
(Program Elective- V)

M.Tech, (TE). III-Sem

L T P C

3 0 0 3

Prerequisites: - Nil

Objectives:

- Being able to recognize and use current common pavement design procedures.
- Understanding common design and construction features important to the performance of both asphalt and concrete pavements.
- The ability to design and recognize specification and construction activities that can improve the performance of pavements.
- Evaluating the condition of pavements through surface condition surveys, smoothness, friction, load/deflection and other evaluation techniques.
- Understanding the basic components of pavement management systems and how they can be used to optimize funding expenditures.

Course Outcomes:

At the end of the course, students will be able to

- Prepare quality assurance and quality control plans in an attempt to construct better performing pavements
- Evaluate the pavements based on the functional and structural characteristics
- Understand constructions of non bituminous & bituminous & cement concrete pavements for flexible & rigid pavements.
- Understand the maintenance of bitumen and cement concrete pavement
- Construction of base sub base and drains.

UNIT - I

Pavement management system: Components of PMS and their activities; Major steps in implementing PMS; Inputs; Design, Construction and Maintenance; Rehabilitation and Feedback systems; Examples of HDM and RTIM packages; Highway financing; Fund generation; Evaluating alternate strategies and Decision criteria; Pavement Maintenance Management Components of Maintenance Management and Related Activities – Network and Project Level Analysis; Prioritization Techniques and Formulation of Maintenance Strategies.

UNIT - II

Pavement Inventories, Quality Control and Evaluation: Serviceability Concepts; Visual Rating; Pavement Serviceability Index; Roughness Measurements; Distress Modes – Cracking Rutting Etc; Pavement Deflection – Different Methods and BBD, Skid Resistance, Roughness, Safety – Aspects; Inventory System. Causes of Deterioration, Traffic and Environmental Factors, Pavement Performance Modeling Approaches and Methods of Maintaining WBM, Bitumen and Cement Concrete Roads, Quality Assurance; Quality Control – ISO 9000, Sampling Techniques – Tolerances and Controls related to Profile and Compaction

UNIT - III

Construction of Base, Subbase, Shoulders and Drain: Roadway and Drain Excavation, Excavation and Blasting, Embankment Construction, Construction of Gravel Base, Cement Stabilised Sub- Bases, WBM Bases, Wet Mix Construction; Crushed Cement Bases, Shoulder Construction; Drainage Surface, Turfing Sand Drains; Sand Wicks; Rope Drains, Geo- Textile Drainage; Preloading Techniques

UNIT - IV

Bituminous Construction and Maintenance: Preparation and Laying of Tack Coat; Bituminous Macadam, Penetration Macadam, Built up Spray Grout, Open Graded Premix, Mix Seal, Semi-Dense Asphalt Concrete-Interface Treatments and Overlay Construction, IRC Specifications,
UNIT - V

Cement Concrete pavement Construction and Maintenance: Cement Concrete Pavement Analysis - Construction of Cement Roads, Manual and Mechanical Methods, Joints in Concrete and Reinforced Concrete Pavement and Overlay Construction.

Reference Books:
3. Bridge and Pavement maintenance- Transportation Research Record no.800, TRB
4. Shahin M.Y, 1994- Pavement management for airports, roads and parking lots
5. Bent Thagesan, 1996- Highway and Traffic engineering for developing countries
6. MORTH - Specifications
MASS TRANSPORTATION SYSTEM PLANNING & MANAGEMENT
(Program Elective-V)

M.Tech, (TE). III-Sem
L T P C
3 0 0 3

Prerequisites: - Nil

Objectives:
- To understand the transit system its characteristics and evaluate its performance.
- To estimate transit demand and plan bus route networks.
- To study concepts of bus scheduling and evaluation methods.
- Identify Mass transit corridors, evaluate the various systems and plan transit marketing

Course Outcomes:
At the end of the course, students will be able to
- Understand the concepts of transit system and its operation
- Estimate transit demand and will be able to plan bus route network and patterns
- Identify and evaluate Mass Transit corridors efficiently

UNIT - I

UNIT - II
Estimation Of Transit Demand: Data requirements & Collection techniques, Conventional Methods - Destination Survey - Bus Stop Surveys and Analysis - Mode Split Models - Captive and Choice Riders - Attitudes of Travelers - Patronage Determination.

UNIT - III
Bus Route Network Planning: Route Systems - Route Location, Route Structure, Route Coding Techniques, Route Capacity - Planning of Transit Network - Different Types - Service Area Coverage - Evaluation - Selection of Optimal Network - Path Building Criteria - Integration with UTPS. Scheduling: Patterns of Bus Services - Frequency of Services - Special Services - Single Route Bus Scheduling - Fleet Requirement, Marginal Ridership Concept - Use of Optimization Technique - Load Factor - Depot Location - Spacing of Bus Stops; Bus Stops And Terminal Designs: Type Design – Bus stop capacities – Bus Parking patterns at Terminals and Wayside Stations – Integration.

UNIT - IV

UNIT - V

Reference Books:
DISASTER ANALYTICS
(Open Elective)

M.Tech, (TE). III-Sem

L T P C
3 0 0 3

Prerequisites: - Nil

Objectives:
- The various disasters and the factors contributing to disaster
- Modeling and simulation technique to be applied

Course Outcomes:
At the end of the course, students will be able to
- The various disasters and their impact
- Methods to monitor and mitigation measures disasters

UNIT - I
Disaster Introduction: Disasters-types – Man made & Natural disasters- causes and factors contributing to disasters, Impacts of disasters.

UNIT - II
Disaster – Polices: Policy on infrastructure to counter disasters, policy on safety at common areas, policy on water floods and on urban areas policy with reference to environment emissions in industrial areas.

UNIT - III
Disaster-Technology Interface: Mapping of disasters, sensor technologies to monitor disasters, Power resilient system during disasters of natural, monitoring mechanism on disasters generating from air, water and traffic.

UNIT - IV
Disasters –simulations and communication: Problem defining on disasters, IOT based communication to monitor certain disaster, Modeling to quantify disaster, simulation of disaster for infrastructure plan.

UNIT - V
Case examples on disasters: Mapping and measuring of flood as disaster. Road accidents and its impact on society, pollution in urban cities, congestion pricing and its impact on economy.

Reference Books:
3. Disaster Management act 2005, Published by Govt of India.
5. R.K. Bandari – An overview on Natural and Man-Made Disaster & their Reduction, CSIR , New Delhi
GIS & IOT FOR PLANNING & POLICY MAKING FOR SMART CITIES/URBAN AREAS
(Open Elective)

M.Tech, (TE). III-Sem

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Prerequisites: - Nil

Objectives:
- Introduction and vision of IOT.
- Use of IOT for smart cities along with GIS.
- Various levels of IOT and its advantages.

Course Outcomes:
At the end of the course, students will be able to Understand
- The vision of IOT from global context.
- Application of IOT with GIS.

UNIT - I
Smart Cities: Urban cities-development, Transportation polices, Smart City configurations with reference to land use and Infrastructure, international policies on Urban cities development, National policies, Problems in urban areas of developing counters and developed counters.

UNIT - II
GIS for Urban Cities: GIS- types of architectures-features for spatial planning and spectral planning, application of GIS for time and space based planning, GIS for land use, GIS for infrastructure and supportive infrastructure in design and planning.

UNIT - III
IOT for Smart Cities: Introduction, communication systems, Local server design for data transfer, central sever design for data analytics, sensor and communication system to address various problems in urban cities.

UNIT - IV
GIS and IOT at analytics level: GIS for spatial analytics, IOT for spectral characteristics of urban problem in reference to pollution, security, congestion, accident risk and urban floods - different versions and features of open source GIS.

UNIT - V
Applications of IOT & GIS: Urban Congestion and Mapping, pollution of water and air and measuring, risk of travel and advanced alert systems, urban floods and technology interface, 3rd dimension mapping and IOT interface, supportive infrastructure and smart city conversions. Case studies on World class cities.

Reference Books:
3. Vijay Madisetti and Ashdeep banga “Internet of Things (a hands on approach) 1st edition, VPT,2014
DISSERTATION PHASE –I

M.Tech, (TE). III-Sem

Prerequisites:- NIL

Objectives:-
• The students are required to execute the P.G. Project after taking up a topic approved by the project review committee.

Course Outcomes:
• The PRC will monitor the progress of the project of the students.
Prerequisites: NIL

Objectives:
- The students are required to present the progress of the project after Project Phase-I.

Course Outcomes:
- The PRC will monitor the progress of the project of the students.
ENGLISH FOR RESEARCH PAPER WRITING
(AUDIT COURSE 1 & 2)

Prerequisites:- NIL

Objectives:

- Understand that how to improve your writing skills and level of readability
- Learn about what to write in each section
- Understand the skills needed when writing a Title Ensure the good quality of paper at very first-time submission

UNIT - I
Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

UNIT - II

UNIT - III
Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check.

UNIT - IV
Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature,

UNIT - V
Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, and skills are needed when writing the Conclusions

UNIT - VI
Useful phrases, how to ensure paper is as good as it could possibly be the first-time submission

Reference Books:-
DISASTER MANAGEMENT
(AUDIT COURSE 1 & 2)

Prerequisites:- NIL

Objectives: -
- Learn to demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response.
- Critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
- Develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
- Critically understand the strengths and weaknesses of disaster management approaches, planning and programming in different countries, particularly their home country or the countries they work in.

UNIT - I
Introduction: Disaster: Definition, Factors and Significance; Difference Between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

UNIT - II

UNIT - III
Disaster Prone Areas In India: Study of Seismic Zones; Areas prone to Floods and Droughts, Landslides and Avalanches; Areas prone to Cyclonic and Coastal Hazards with special reference to Tsunami; Post-Disaster Diseases and Epidemics

UNIT - IV
Disaster Preparedness And Management: Preparedness: Monitoring of Phenomena triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological and other Agencies, Media Reports: Governmental and Community preparedness.

UNIT - V

UNIT - VI
Disaster Mitigation: Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends in Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs of Disaster Mitigation in India.

Reference Books:-
2. Sahni, PardeepEt.Al. (Eds.),” Disaster Mitigation Experiences And Reflections”, Prentice Hall Of India, New Delhi.
Prerequisites:- NIL

Course Objectives
- To get a working knowledge in illustrious Sanskrit, the scientific language in the world
- Learning of Sanskrit to improve brain functioning
- Learning of Sanskrit to develop the logic in mathematics, science & other subjects
- Enhancing the memory power
- The engineering scholars equipped with Sanskrit will be able to explore the huge knowledge from ancient literature.

Course outcome:-
At the end of the course, students will be able to
- Understanding basic Sanskrit language
- Ancient Sanskrit literature about science & technology can be understood
- Being a logical language will help to develop logic in students

UNIT - I
Alphabets in Sanskrit,-Past/Present/Future Tense, - Simple Sentences

UNIT - II
Order - Introduction of roots - Technical information about Sanskrit Literature

UNIT - III
Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics

Reference Books:-
1. “Abhyaspustakam” – Dr. Vishwas, Samskrita-Bharti Publication, New Delhi
2. “Teach Yourself Sanskrit” Pratama Deeksha-VempatiKutumbhastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication
VALUE EDUCATION
(AUDIT COURSE 1 & 2)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Objectives:
- Understand value of education and self-development
- Imbibe good values in students
- Let the should know about the importance of character

Course Outcomes:
At the end of the course, students will be able to
- Knowledge of self-development
- Learn the importance of Human values
- Developing the overall personality

UNIT - I

UNIT - II

UNIT - III

UNIT - IV

Reference Book:
CONSTITUTION OF INDIA
(AUDIT COURSE 1 & 2)

Prerequisites:- NIL

Objectives:
- Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
- To address the growth of Indian opinion regarding modern Indian intellectuals’ constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.
- To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.

Course Outcomes:
At the end of the course, students will be able to
- Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics.
- Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.
- Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution.
- Discuss the passage of the Hindu Code Bill of 1956.

UNIT - I
History of Making of the Indian Constitution: History Drafting Committee, (Composition & Working)

UNIT - II
Philosophy of the Indian Constitution:
Preamble
Salient Features

UNIT - III

UNIT - IV

UNIT - V
Local Administration: District’s Administration head: Role and Importance, -Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation.- Pachayati raj: Introduction, PRI: ZilaPachayat - Elected officials and their roles, CEO ZilaPachayat: Position and role. -Block level: Organizational Hierarchy (Different departments), -Village level: Role of Elected and Appointed officials, - Importance of grass root democracy

UNIT - VI
Election Commission: Election Commission: Role and Functioning.- Chief Election Commissioner and Election Commissioners. - State Election Commission: Role and Functioning. - Institute and Bodies for the welfare of SC/ST/OBC and women.
Reference Books:-

1. The Constitution of India, 1950 (Bare Act), Government Publication.
PEDAGOGY STUDIES
(AUDIT COURSE 1 & 2)

Prerequisites:- NIL
Objectives:
• Review existing evidence on the review topic to inform programme design and policy making undertaken by the DfID, other agencies and researchers.
• Identify critical evidence gaps to guide the development.

Course Outcomes
At the end of the course, students will be able to understand
• What pedagogical practices are being used by teachers in formal and informal classrooms in developing countries?
• What is the evidence on the effectiveness of these pedagogical practices, in what conditions, and with what population of learners?
• How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?

UNIT – I
Introduction and Methodology: Aims and rationale, Policy background, Conceptual framework and terminology - Theories of learning, Curriculum, Teacher education.- Conceptual framework, Research questions.- Overview of methodology and Searching.

UNIT - II
Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries. - Curriculum, Teacher education.

UNIT - III
Evidence on the effectiveness of pedagogical practices ,Methodology for the in depth stage: quality assessment of included studies.- How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? - Theory of change.- Strength and nature of the body of evidence for effective pedagogical practices.- Pedagogic theory and pedagogical approaches.- Teachers' attitudes and beliefs and Pedagogic strategies.

UNIT - IV
Professional development: alignment with classroom practices and follow-up support -Peer support - Support from the head teacher and the community. - Curriculum and assessment - Barriers to learning: limited resources and large class sizes.

UNIT - V
Research gaps and future directions
Research design – Contexts - Pedagogy - Teacher education - Curriculum and assessment - Dissemination and research impact.

Reference Books:-
STRESS MANAGEMENT BY YOGA
(AUDIT COURSE 1 & 2)

Prerequisites:- NIL

Objectives
- To achieve overall health of body and mind
- To overcome stress

Course Outcomes:
At the end of the course, students will be able to
- Develop healthy mind in a healthy body thus improving social health also
- Improve efficiency

UNIT - I
Definitions of Eight parts of yog. (Ashtanga)

UNIT - II
Yam and Niyam.
Do’s and Don’t’s in life. i) Ahinsa, satya, astheya, bramhacharya and aparigraha
ii) Shaucha, santosh, tapa, swadhyay, ishwarpranidhan

UNIT - III
Asan and Pranayam
i) Various yog poses and their benefits for mind & body
ii) Regularization of breathing techniques and its effects-Types of pranayam

Reference Books:-
1. ‘Yogic Asanas for Group Tarining-Part-I” :Janardan Swami Yogabhyasi Mandal, Nagpur
2. “Rajayoga or conquering the Internal Nature” by Swami Vivekananda, AdvaitaAshrama
 (Publication Department), Kolkata
PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS
(AUDIT COURSE 1 & 2)

L T P C
2 0 0 0

Prerequisites:- NIL

Objectives
- To learn to achieve the highest goal happily
- To become a person with stable mind, pleasing personality and determination
- To awaken wisdom in students

Course Outcomes
At the end of the course, students will be able to
- Study of Shrimad-Bhagwad-Geeta will help the student in developing his personality and achieve the highest goal in life
- The person who has studied Geeta will lead the nation and mankind to peace and prosperity
- Study of Neetishtataka will help in developing versatile personality of students.

UNIT - I
Neetishtataka-Holistic development of personality
- Verses- 19,20,21,22 (wisdom)
- Verses- 29,31,32 (pride & heroism)
- Verses- 26,28,63,65 (virtue)
- Verses- 52,53,59 (dont’s)
- Verses- 71,73,75,78 (do’s)

UNIT - II
- Approach to day to day work and duties.
- Shrimad BhagwadGeeta : Chapter 2-Verses 41, 47,48,
- Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5,13,17, 23, 35,
- Chapter 18-Verses 45, 46, 48.

UNIT - III
Statements of basic knowledge
- Shrimad BhagwadGeeta: Chapter2-Verses 56, 62, 68
- Chapter 12 -Verses 13, 14, 15, 16,17, 18
- Personality of Role model. Shrimad BhagwadGeeta: Chapter2-Verses 17, Chapter 3-
- Verses 36,37,42, Chapter 4-Verses 18, 38,39
- Chapter18 – Verses 37,38,63

Reference Books:-
1. “Srimad Bhagavad Gita” by Swami SwarupanandaAdvaita Ashram (Publication Department), Kolkata
2. Bhartrihari’s Three Satakam (Niti-sringar-vairagya) by P.Gopinath,
3. Rashtriya Sanskrit Sansthanam, New Delhi.