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Abstract— The aim of the present work was to calculate the bursting pressure of natural gas pipelines. The external corrosion was due to 
sulphate reducing bacteria. The failure of the pipes was evaluated based on the Tresca, von Mises criteria, Weibull criteria and finite 
element analysis. The significance of crack dimensions was recognized using Taguchi techniques. The highly influencing crack dimension 
was crack depth. The results obtained by the modified ASME B31G have been more realistic to the actual burst of pipes. 

Index Terms— Natural gas, high carbon steel, crack depth, crack length, bursting pressure, Tresca criterion, von Mises criterion. 
——————————      —————————— 

1. INTRODUCTION                                                                    
ORROSION is one of the leading causes of failures in 
onshore transmission pipelines.  For the year 2014-15, 
production of natural gas is 33.656 Billion Cubic Meters 

(BCM) which is 4.94 % lower than production of 35.407 BCM 
in 2013-14 (figure 1) [1]. The corrosion was accountable for 18 
percent of the significant incidents in the 20-year period from 
1988 through 2008 in United States. The significant corrosion 
incidents were 52 per year on pipelines during the past 20 
years [2]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
External corrosion causes more than 90 percent of corrosion-

related failure in distribution pipelines. The transmission lines 
experiences the internal corrosion. For external corrosion, the 
environment could be groundwater or moist soil for onshore 
pipelines and seawater for offshore pipelines. For internal cor-
rosion, the environment could be water holding sodium chlo-
ride, hydrogen sulfide and carbon dioxide. MIC (Microbiolog-
ically influenced corrosion) is caused by microbes whose ac-
tions instigate the corrosion cycle. The main types are suphate-
reducing bacteria (SRB) and acid-producing bacteria (APB). 
Bacteria can encourage external corrosion by depolarizing the 
pipe through the utilization of hydrogen gas formed at the 
pipe surface by the cathodic protection currents [3]. Once the 
pipe is depolarized, corrosion can take place. The internal cor-
rosion can happen by bacteria forming an acidic biofilm that 
traps electrolytes and acids. The corrosion mechanism is illus-
trated schematically in figure 4.  The external and internal cor-
rosions are showed in figure 5. The consequence of pipeline 
corrosion is the reduction of pipe strength. Even if the pres-
sure in the gas pipeline is not increased the pipeline may burst 
due to deduction of pipe strength resulting property and pub-
lic loss. 
 
 

 

 

 

 

 
The natural gas pipeline burst at Nagaram village, Andhra 

Pradesh, India, Friday, June 27, 2014 is shown in figures 6 and 
7. The death toll in the GAIL pipeline blast, which occurred at 
Nagaram village in East Godavari district of Andhra Pradesh 
rose to 16. The pipeline, which caught fire and exploded, 
claimed 15 lives on the spot. GAIL is being criticized by the 
villagers for "gross negligence" in maintaining the pipelines 
which led to the accident. In another incident flames shoot 
into the air after a natural gas pipeline explosion in Texas, this 
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Fig. 1. Crude oil and natural gas production in India. 
 

 

 

Fig. 2. Causes of significant incidents in onshore and offshore 
pipelines [2]. 

 
 

 
Fig. 4. Corrosion: (a) external and (b) internal. 
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killed one man and injured seven others (figure 8). 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Even if research on fracture mechanics of the pipelines is 

well-to-do, there is no judgment method that is accurate and 
largely acknowledged.  Most popular failure pressure meth-
ods for pressurized pipes with active corrosion defects are 
ASME B31G [4, 5] and modified ASME B31G [6], DNV-RP-
F101 [7, 8], SHELL-92 [9, 10], RSTRENG [11, 12], PCORRC [13, 
14], LG-18 [15, 16], Fitnet FSS [17, 18] and Choi criteria. Finite 
element methods have been applied to predict total defor-
mation, von Misess stress, stress intensity factors and J-
integral for the applied pressure on the pipes [20-22].  

The present work was to predict the dependability of burst-
ing strength on corrosion of natural gas pipelines. The corro-
sion was also investigated in terms of suphate-reducing bacte-
ria (SRB) and acid-producing bacteria (APB). The bursting 
pressure was evaluated using ASME B31G, modified ASME 
B31G, DNV-RP-F101, SHELL-92, PCORRC, LG-18, RSTRENG, 
Fitnet FSS and Choi criteria. The Weibul criterion was applied 
to find the reliability of pipes. The finite element analysis was 
used to verify the results obtained by the computational 
methods. 

TABLE 1 
Control factors and their levels 

Factor Symbol Level–1 Level–2 Level–3 
Thickness, mm A 3 4 5 

Length of crack, mm B 200 250 300 
Depth of crack C 40%t 50%t 60%t 

Grade of high carbon steel D 1060 1095 1080 

where t is pipe thickness. 
 

TABLE 2 
Orthogonal Array (L9) and control factors 

Treat No. A B C D 
1 1 1 1 1 
2 1 2 2 2 
3 1 3 3 3 
4 2 1 2 3 
5 2 2 3 1 
6 2 3 1 2 
7 3 1 3 2 
8 3 2 1 3 
9 3 3 2 1 

2. MATERIAL AND METHODS 

 
Fig. 5. The Andhra Pradesh Chief Minister N. Chandrababu 

Naidu and Petroleum Minister Dharmendra Pradhan inspecting 
the blast site of GAIL gas pipeline blast. (AP Photo) 

 

 

Fig. 7. Causalities due to GAIL gas pipeline blast. 
 

 

 

Fig. 8. Flames shoot into the air after a natural gas pipeline ex-
plosion in Texas. 
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The material of pipes was stainless steel. In the present study, 
the dimensions of the test pipe were 150 mm outer diameter 
and 5000 mm length.  The chosen control parameters are 
summarized in table 1.  The control factors were assigned to 
the various columns of orthogonal array (OA), L9 [23] is given 
in table 2. The dimensions of notch are given in figure 9.  
 

 
 
 
 
 
 
 
 
 
 

The Tresca criterion is the first classical yield criterion in the 
strength theory for isotropic ductile materials, often referred to as 
the maximum shear stress criterion. In principal stress space (σ1, 
σ2, σ3), the Tresca criterion can be expressed as 
 
τmax = max�|σ1−σ2|

2
, |σ2−σ3|

2
, |σ1−σ3|

2
� = σYS

2
     (1) 

where τmax is the maximum shear stress and σuts is the ultimate 
tensile strength in tension. 
The von Mises criterion is the second classical yield criterion in 
strength theory, often referred to as the octahedral shear stress 
criterion. It can be expressed by the principal stresses in the form: 
 

τvm = �1
6

[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2] = σYS
√3

      (2) 

where τvm is the von Mises effective shear stress. 
The von Mises yield surfaces in principal stress coordinates 

circumscribes a cylinder with radius �2 3⁄ σ around the hydro-
static axis. Also shown is Tresca's hexagonal yield surface (figure 
6). Intersection of the von Mises yield criterion with the σ1, 
σ2 plane, where σ3 = 0 (figure 9). 
 
 
 

 
 
 
 
 
 
 
 
 
 

3. RESULTS AND DISCUSSION 
The bursting pressures computed from PCORRC, ASME 
B31G, modified ASME B31G, DNV-RP-F101, SHELL-92, 
RSTRENG, Fitnet FSS and Choi criteria are given in figure 11. 
The lower limit represents the results obtained from ASME 

31G criterion and the upper limit stands for the results ob-
tained from RESTRENG criterion. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

TABLE 3 
ANOVA summary of the bursting pressure based on modified 

ASME 31G criterion. 

Source Sum 1 Sum 2 Sum 3 SS v V F P 

A 40.33 54.00 66.53 114.5 1 114.5 24710.43 55.29 

B 51.39 55.16 54.30 2.61 1 2.61 563.27 1.26 

C 64.04 53.10 43.71 69.06 1 69.06 14903.95 33.35 

D 47.65 988.52 160.85 20.9 1 20.9 4510.46 10.09 

e    0.018535 4 0.004634 1.00 0.01 

T 203.40 1150.79 325.39 207.0885 8   100 

Note: SS is the sum of square, v is the degrees of freedom, V is the variance, F is 
the Fisher’s ratio, P is the percentage of contribution and T is the sum squares due 
to total variation. 

3.1 Influence of Crack Dimensions and Tube Material on 
Bursting Strength 
Table 3 gives the ANOVA (analysis of variation) summary of 
bursting pressure. Even if all the process parameters could 
satisfy the Fisher's test at 90% confidence level, pipe thickness, 
crack depth and grade of high carbon steels had major role in 
the total variation of bursting pressure. The pipe thickness (A), 
crack depth (C) and grade of high carbon steels (D) had given, 
respectively, 55.29%, 33.35% and 10.09% in the total variation 
of the bursting pressure. The crack length (B) was insignifi-
cant. 

Figure 12 shows the dependence of bursting pressure on the 
pie thickness. As the pipe thickness increased the pressure re-
quired to burst the pipe would also increase. If the crack depth 
increased, the pipe could fail even at low bursting pressure (fig-
ure 13). The required bursting pressure was high (figure 14) for 
the high carbon steel 1080 as compared to the other two grades 
(grades 1060 and 1095 high carbon steels). The yield strength, 
ultimate tensile strength and percentage elongation at break are, 
respectively, 585 MPa, 965 MPa and 17%. 
 
 
 
 

 
Fig. 9. The crack dimensions. 

 

 
Fig. 11. Bursting pressures computed from different methods. 

 

 

Fig. 10. Tresca and von Mises criteria. 
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3.2 Failure Criteria 
Table 4 and 5 give the ANOVA (analysis of variation) sum-
mary of Tresca criterion and von Mises criterion respectively. 
Even though all the process parameters could assure the Fish-
er's test at 90% confidence level, only crack depth and grade of 
high carbon steels had leading roles in the total variation of 

Tresca and von Mises criteria. The crack depth (C) contributed 
nearly 79.53% of the total variation in the Tresca and von Mis-
es criteria. The grade of high carbon steel (D) put in 19.10% of 
the total variation in the Tresca and von Mises criteria. The 
pipe thickness and the crack length were insignificant in the 
variation of Tresca and von Mises criteria. 
 

TABLE 4 
ANOVA summary of the Tresca criterion 

Source Sum 1 Sum 2 Sum 3 SS v V F P 

A 493.98 492.76 482.33 27.37 1 27.37 16579.40 0.43 

B 478.72 495.06 495.29 60.18 1 60.18 36454.08 0.94 

C 576.46 490.57 402.05 5069.81 1 5069.81 3071041.1 79.53 

D 441.14 85466.07 1469.08 1217.33 1 1217.33 737398.55 19.1 

e    0.006603 4 0.001650 1.00 0 

T 1990.3 86944.46 2848.75 6374.683 8   100 

 
TABLE 5 

ANOVA summary of the von Mises criterion 

Source Sum 1 Sum 2 Sum 3 SS v V F P 

A 855.61 853.49 835.42 82.1 1 82.1 33475.61 0.43 

B 829.17 857.47 857.87 180.54 1 180.54 73613.71 0.94 

C 998.45 849.69 696.38 15209.43 1 15209.43 6201521.1 79.53 

D 764.07 256398.2 2544.51 3651.98 1 3651.98 1489065.0 19.1 

e    0.009810 4 0.002452 1.00 0 

T 3447.3 258958.8 4934.18 19124.04 8   100 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As the crack depth increased the level of failure shear stress 
decreased (figure 15). The level of maximum shear stress was 
low for the 1060 high carbon steel and it was high for the 1080 
high carbon steel (figure 16). As observed from figure 17a, 
only pipes 1 and 6 were burst under von Mises failure criteri-
on even though all the pipes were found safe under Tresca 
criterion (figure 17b). With the increase of internal pressure, 
the stress variation through the ligament exhibits three distinct 

 
Fig. 12. Effect of pipe thickness on bursting pressure. 

 
 

 

Fig. 14. Effect of high carbon steels on bursting pressure. 
 

 

 
Fig. 13. Effect of crack depth on bursting pressure. 

 

 

Fig. 15. Effect of crack depth on failure criteria. 
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stages; elastic deformation, plastic deformation and material 
hardening. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Weibull criterion was used to predict the reliability of 
all the pipes. The least reliable criterion was ASME modified 
31G and the most reliable criterion was RESTRENG (figure 
19).  For 80% of reliability the maximum bursting pressure 
were, respectively, 13.34 MPa and 32.43 MPa for ASME modi-
fied 31G and RESTRENG criteria. For test condition 6 the 

 
Fig. 19. Results of test condition 6 obtained by ANSYS software 

code. 
 

 

 
Fig. 16. Effect of high carbon steel on failure criteria 

 

 
Fig. 17. Failure criterion of all pipes: (a) von Mises and (b) Tres-

ca. 
 

 
Fig. 18. Weibull failure criterion of all pipes. 
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bursting pressures were 21.98 MPa at danger level of reliabil-
ity of 0.20. The crack dimensions of text conditions were 
300mm crack length and crack depth 1.6 mm. The finite ele-
ment modeling was carried out using ANSYS software code. 
The pipe and crack were discretized with tetrahedron ele-
ments [24] as shown in figure 19a. The crack opening (figure 
19b) was matched with the experimental one (figure 17). The 
safety factor was about 0.4 across the crack area (figure 19c).  

The reason for the failure of the pipe was due to the exter-
nal corrosion (figure 20) of the pipeline attributable to (SRB) 
suphate-reducing bacteria. SRB can act as a catalyst in the re-
duction reaction of suphate to sulfide. In the presence of mois-
ture content, the corrosion of metals begins with production of 
enzymes, which can accelerate the reduction of sulphate com-
pounds to H2S. The mechanism of SRB is as follows: 
 
Anodic reaction: 4Fe → 4Fe2+ + 8e− 
Water dissociation: 8H2O → 8H+ + 8OH− 
Cathodic reaction: 8H+ + 8e− → 8H + 4H2 
Hydrogen oxidation: SO4

2− + 4H2 → H2S + 2H2O + 2OH− 
Precipitation: Fe2+ + H2S → FeS + 2H+ 
Precipitation: 3Fe2+ + 6OH− → 3Fe(OH)2 
Total reaction: 4Fe + SO4

2− + 4H2O → FeS + 3Fe(OH)2 + 2OH− 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The solid FeS on the metal surface played the role of absorber of 
molecular hydrogen. The area covered by iron sulfide becomes cath-
ode, while biofilm area behaves as anode. The sour environments are 
exclusively corrosive because of high levels of hydrogen available at 
the metal surface or in a crack because of sulfide activation at the 
cathode. In the first stage, the adsorption of bacterial cells and iron 
sulfide products were taken place (figure 21). In the second stage, 
the metal was encapsulated by a combination film of iron sulfide 
film and extracellular polymeric substances. Bacterial corrosion and 
film stabilization are two major occurrences at this stage. The third 
stage was controlled by a local pH decrease that caused by SRB ac-
tivity on the steel in the presence of HS [25]. 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

4. CONCLUSIONS 
The corrosion was due to suphate-reducing bacteria. The 
bursting pressure is highly dependent on the crack depth 
and grade of high carbon steel. The bursting pressure de-
creases with the increase of crack depth. The von Mises 
criterion is very near the failure pattern of the pipes. The 
failure criteria would satisfy the predicted results from the 
finite element analysis, Weibull criterion and ASME modi-
fied 31G criterion used for the estimation of the bursting 
strength. 

REFERENCES 
[1]  Indian Petroleum and Natural Gas Statistics, Govt. of India, 

New Delhi, 2014-15. 
[2] U.S. Department of Transportation Pipeline and Hazardous 

Materials Safety Administration Office of Pipeline Safety, 
DTRS56-02-D-70036. 

[3] A. W. Peabody, “Peabody's Control of Pipeline Corrosion,” Edited 
by R.L. Bianchetti, 2001. 

[4] American National Standards Institute (ANSI) / American 
Society of Mechanical Engineers (ASME): Manual for deter-
mining the remaining strength of corroded pipelines, ASME 
B31G, 1991. 

[5] A. C. Reddy, “Prediction of bursting pressure of thin walled 
316 stainless steel pipes based on ASME B31G criterion,” Na-
tional Conference on Advances in Design Approaches and 
Production Technologies (ADAPT-2005), Hyderabad, 22-23rd 
August 2005, pp. 225-228. 

[6] A. C. Reddy, “Decent prophecy of bursting strength of natu-
ral gas pipelines based on modified ASME B31G criterion,” 
National Conference on Excellence in Manufacturing and 
Service Organizations: The Six Sigma Way, Hyderabad, 26-27 
August 2010, 112-115. 

[7] Anon, DNV-RP-F101, Corroded Pipelines, Det Norske Veri-
tas, 1999. 

[8] A. C. Reddy, “Estimation of bursting pressure of thin walled 
304 stainless steel pipes based on DNV RP F101criterion,” 
National Conference on Advances in Design Approaches and 
Production Technologies (ADAPT-2005), Hyderabad, 22-23rd 
August 2005, pp. 229-231. 

[9] D. Ritchie and S. Last, “Burst Criteria of Corroded Pipelines - 
Defect Acceptance Criteria,” Paper 32, Proceedings of the 
EPRG/PRC 10th Biennial Joint Technical Meeting on Line 
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Fig. 21. Mechanism for the SRB proposed by Romero [25]. 
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