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Figure 2: The RVE model: (a) particle distribution and (b) RVE scheme. 

 

A linear stress–strain relation at the macro level can be formulated as follows: 

 �� = ��̅���            (1) 

where �	� is macro stress, and �	� represents macro total strain and �	� and is macro stiffness matrix. 

 

For plane strain conditions, the macro stress- macro strain relation is as follows: 

 	 �
���������
�����
 = �������� ������� 0������� ������� 00 0 �������� × 	 �
�����
�����
        (2) 

 

The interfacial tractions can be obtained by transforming the micro stresses at the interface as given in Eq. (3): 

 � = ������� � = ��           (3) 

 where, � = � 0 0 0�� �!  "#�! 2 "#!�� !− "#!�� !  "#!�� ! �� �! −  "#�!& 
 

3. RESULTS AND DISCUSSION 

Figure 3a exhibits an increase in moduli with incrementally increasing volume fraction of titanium boride in the matrix 

AA3003 alloy.  Figure 3b indicates a marginal increase in the major Poisson's ratio. Figure 3c indicates a significant drop in 

the shear modulus decreases as volume fraction increases from 10%Vp to 30%Vp.  

 

 
 

Figure 3: Effect of volume fraction on effective material properties. 
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Figure 4 shows stress concentrations induced in a unit cell of square hexagonal array under tensile stress. In a unit cell of 

square hexagonal array under tensile stress, maximum stress concentrations particle (green color) are observed in the titanium 

boride. The regions of minimum stress (blue color) concentrations occur at the particle-matrix interface in the transverse direc-

tion of tensile loading. The stress distribution in and around the particle is symmetric with respect to the mid-point of the par-

ticle. The quantity of stress bridging is decreased with the increase of volume fraction of titanium boride in the matrix AA3003 

alloy as the stress levels are raised in the titanium boride particles due to more load transfer the matrix to the particle. 

 

 
 

Figure 4: Stress concentrations in TiB2/AA3003 alloy metal matrix composites. 

 

 
Figure 5: Interfacial tractions along the angle due to tensile loading: (a) normal and (b) tangential. 

 

To understand the effects of stress distribution on the debonding process, the normal and tangential interfacial stresses tn and tt 

are plotted from θ = 0° (the loading direction) to θ = 180°, in figure 5. The interfacial normal traction, tn decreases with as θ 

increases from 0
o
 to 135

o
 (figure 5a). The direction of macro load coincides with the direction of tn at θ =0

o
, so tn attains its 

minimum at 135
o
 due to compression by the Poisson’s effect. As for tangential traction tt, whose variation with θ is shown in 

figure 5b, its value decreases as θ increases from 0
o
 to 15

o
, and then increases until θ =105

o
. The normal stress plots are sym-

metric about the angular position θ = 0°, while the tangential stresses are antisymmetric about this angle. Prior to debonding, 

the normal stress is maximum at θ = 0°. With progressive debonding, the peak tensile stress tn initially increases in magnitude 

but subsequently decreases. This behavior may be explained as a consequence of two competing phenomena, viz. an increase 

in average stress due to increasing debond length and a decrease in the normal component of stress with increasing angular 

orientation. The compressive region also increases with increasing decohesion. For the tangential stress tt, the maximum value 

at the debonding region is also found to first increase slightly and then decrease with progressive debonding. 

 

4. CONCLUSION 

For effective material properties, variations of Ex, Ey, Gxy and v12 with respect to volume fraction, are predicted. Additionally, 

in unit cells with different particle volume fractions, variations of interfacial tractions along particle perimeter under tension 
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loading. The progress of interfacial debonding is estimated in terms of normal and tangential tractions and interfacial separa-

tion. In these relations, the traction increases with separation reaches a maximum and subsequently subsides to zero traction, 

signaling debonding. The boundary conditions include periodicity conditions. Even with periodic geometric features, a distinct 

non-periodic debonding path evolves at higher volume fractions. 
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