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Abstract: A hexagonal array unit cell/2-D rectangular particulate RVE models were employed to assess interfacial
debonding using cohesive zone analysis. The particulate metal matrix composites are zirconium carbide/AA8090
alloy at different volume fractions of zirconium carbide. Interface debonding was observed in all the composites. The
strain energy density has increased with ease of interfacial debonding.
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1. INTRODUCTION

The relation between ply uniaxial strengths and constituent properties of structure is obtained through the composite
micromechanics. An external load applied to a composite is partly borne by the matrix and partly by the reinforcement. The
load carried by the matrix across a section of the composite is given by the product of the average stress in the matrix and its
sectional area. The load carried by the reinforcement is determined similarly. In studying the interfacial bonding behavior of
composites under tensile stress, Cox [1] and Piggott [2] derived the interfacial shear strength as a function of tensile strain of
matrix and composite, elastic modulus of fiber, aspect ratio of fiber and distance from center to end of fiber. Nan and Clarke
[3] analyzed the mechanical properties of the particle reinforced composites using the dislocation theory from the materials
sciences point of view. Micromechanics are adopted for 10%, 20% and 30% of the volume fraction of particle and for several
particle shapes through finite element simulation by using unit cell models [4-17].

In the present research, interfacial debonding analysis was carried out using cohesive zone models in AA8090/zirconium
carbide nanoparticulate-reinforced metal matrix composites. Representative volume elements (RVEs) models were taken from
the periodic 2-D rectangular particulates in a hexagonal array distribution.
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Figure 1: The RVE model.
2. MATERIALS AND METHODS

The volume fractions of zirconium carbide used in the present work were 10%, 20%, and 30%. The matrix material was
AAB090 alloy. The periodic model for the representative volume element (RVE) scheme was constructed from 2-D rectangular
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particulates in a hexagonal array particulate distribution (figure 1). PLANE183 element was used for the matrix and the
nanoparticulates. The cohesive zone can be incorporated in the continuum formulation by applying the cohesive tractions as
boundary conditions. The cohesive element is implemented as a linear element with four nodes. The iso-parametric formulation
is chosen for the element, meaning that shape and displacements are interpolated by the same shape functions.

Shear-log model is based on the assumption that all of the load transfer from matrix to particulate occurs via shear stresses
acting on the particulate interface between the two constituents. The rate of change of the stress in the particulate to the

interfacial shear stress at that point and the particulate radius, ‘r’ is given by:
dop _ _2u

(1

dx r
which may be regarded as the basic shear lag relationship.

The stress distribution in the particulate is determined by relating shear strains in the matrix around the particulate to the
macroscopic strain of the composite. Some mathematical manipulation leads to a solution for the distribution of stress at a
distance x’ from the mid-point of the particulate which involves hyperbolic trig functions:

oy = Epec[1 — cosh(nx/r)sech(ns)] 2)
where ¢. is the composite strain, s is the particulate aspect ratio (length/diameter) and » is a dimensionless constant given by:

2By, 1/2
= [Ep(1+vm)ln(1+vp) )

in which v, is the Poisson ratio of the matrix. The variation of interfacial shear stress along the particulate length is derived,
according to Equation (1), by differentiating this equation, to give:

T, = %Epsinh (nr—x) sech(ns) @)
The equation for the stress in the particulate, together with the assumption of a average tensile strain in the matrix equal to that
imposed on the composite, can be used to evaluate the composite stiffness. This leads to:

O, = & [vap (1 - mn:S(ns)) + (1 - vp)Em] &)
The expression in square brackets is the composite stiffness. The stiffness is a function of particulate aspect ratio,
particulate/matrix stiffness ratio and particulate volume fraction.

If the particle deforms in an elastic manner (according to Hooke’s law) then,
n
T=20p (6)
If particle fracture occurs when the stress in the particulate reaches its ultimate tensile strength, o, ., then setting the boundary
condition at
Op= Op, uss (7
and substituting into Equation (6) gives a relationship between the strength of the particle and the interfacial shear stress such

that if
2
Op,uts < :T (8)
Then the particle will fracture. Similarly if interfacial debonding/yielding is considered to occur when the interfacial shear
stress reaches its shear strength

T= Tinax (€))
For particle/matrix interfacial fracture can be established whereby,
no;
Tmax Tp ( 1 0)

This approach suggests that the outcome of a matrix crack impinging on an embedded particle depends on the balance between
the particle strength and the shear strength of the interface.

For plane strain conditions, the macro stress- macro strain relation is as follows:

%) [Cn e 0] (&
9y e=[Cx Gz 0 |X4% (an
Txy 0 0 Cs Vxy
The interfacial tractions can be obtained by transforming the micro stresses at the interface as given in Eq. (3):
tZ
t= ;tn} =To (12)
tt
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—sinfcosf sinBcosd cos?0 — sin’6

3. RESULTS AND DISCUSSION

The tensile modulus increased with volume fraction of zirconium carbide as shown figure 2a. Compression modulus is,
respectively, 159.96 GPa, 152.23 GPa and 158.03 GPa of AA8090/10%ZrC, AA8090/20%ZrC and AA8090/30%ZrC
composites. The shear modulus decreased with increase in the volume fraction of ZrC in the composites (figure 2b). The major
Poisson's ratios are, respectively, 0.52, 0.52 and 0.51 for AA8090/10%ZrC, AA8090/20%ZrC and AA8090/30%ZrC
composites (figure 2c¢). The difference in the elastic moduli of ZrC particulates and AA8090 alloy matrix is 353 GPa. The
Poisson’s ratios of AA8090 alloy matrix and ZrC particulates are, respectively, 0.33 and 0.25.
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Figure 2: Effect of volume fraction on effective material properties.

The condition T, < noy,/2 satisfied for the occurrence of debonding in the composites including 10%, 20% and 30% ZrC
(figure 4b). The ZrC particulate fracture was not found in the AA8090/ZrC composites as shown in figure 3b as the condition
G, < 21/n did not satisfied.
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Figure 3: Fracture criteria of: (a) interface debonding and (b) particulate fracture.

The strain energy density decreased at the interface with an increase in the volume fraction of ZrC (figure 4). Also, the strain
energy density of ZrC decreased in the composites. This characterizes the debonding affinity at the interface between
AA8090alloy matrix and ZrC nanoparticulates. The normal and tangential tractions are plotted in figure 5a. Because of
symmetry considerations, the variations of the interface stresses with circumferential location are plotted only for the range 0°
< 0 < 90°. For AA8090/30%ZrC composites, the normal tractions are lower than that for AA8090/10%ZrC and
AA8090/20%ZrC composites. The interface debonding occurred between 0° < 0 < 65°. The normal and tangential
displacements are also plotted in figure 5b. The normal and tangential displacements are higher for AA8090/10%ZrC
composites than those for AA8090/20%ZrC and AA8090/30%ZrC composites. For AA8090/10%ZrC, the jump in normal and
tangential displacements is due to high volume fraction of AA8090 alloy matrix.
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Figure 4: Effect of volume fraction on strain energy density.
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Figure 5: Normal and tangential: (a) tractions and (b) displacements.

As the raster images (figure 6) obtained from finite element analysis, the interface debonding is highest in AA8090/30%ZrC
composites. On account of interface debonding the strain densities decreased with increase of ZrC volume fraction in the

composite.

ONNREEANC

Figure 6: Strain energy densities of cohesive zones obtained from finite element analysis fo

r debonding.
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4.

CONCLUSION

The interface debonding occurred in the composites containing 10%, 20% and 30% volume fractions ZrC. The interface
debonding increased with an increase of volume fractions of ZrC in the composites. The strain energy density decreased with
an increase of interfacial debonding in AA8090/ZrC composites.
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