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Abstract: A hexagonal array unit cell/2-D octahedron particulate RVE models were employed to predict interfacial debonding 

using cohesive zone method. The particulate metal matrix composites are TiN/AA7020 alloy at volume fractions of 10%, 20% 

and 30% TiN. The average particle size of TiN in composite was near 100 nm and it was well dispersed in octahedron shape. 

The cohesive zone analysis of interface debonding shows that the requirement of shear stress increases with increase of volume 

fraction of TiN for the occurrence of separation between nanoparticle and matrix.  
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1. INTRODUCTION  

Particulate metal matrix composites are being applied increasingly in structures due to their attractive characteristics like high 

stiffness-to-weight and strength-to-weight ratios. However, it is known that they are prone to develop internal damage, like 

matrix cracking and debonding, which can be particularly dangerous for structural stability leading to premature catastrophic 

failure. Consequently, the measurement of interfacial debonding becomes an important subject on these materials. The strength 

strongly depends on the stress transfer between the particles and the matrix. For well-bonded particles, the applied stress can be 

effectively transferred to the particles from the matrix [1]. The mechanical properties of particulate–polymer composites 

depend strongly on the particle size, particle–matrix interface adhesion and particle loading. A fundamental understanding of 

meta/ceramic interfaces has been elusive, despite their technological importance [2-15]. 

 

In this paper, cohesive zone method was applied to predict interfacial debonding in AA7020 alloy / titanium nitride 

nanocomposite. The compositions and micromechanics of AA7020/TiN nanocomposite were analyzed and characterized. 

Representative volume elements (RVEs) models were taken from the periodic 2-D octahedron particulates in a hexagonal array 

distribution (figure 1). 

 
Figure 1: The RVE model. 

2. MATERIALS AND METHODS 

The volume fractions of TiN were chosen to be 10%, 20%, and 30% in the matrix of AA7020 alloy.  Initially, both AA5050 

and boron nitride were kept in contact along the interface in the x–y plane with zero separation distance. The simulation 
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domain is divided into three regions: Boron nitride nanoparticle, interface and AA505 alloy matrix. PLANE183 element was 

used for the matrix and the nanoparticulates. The cohesive element is implemented as a linear element with four nodes for the 

interface between TiN nanoparticle and AA7020 alloy matrix. Initially, the interface between the matrix material and the 

inclusion is assumed to be perfectly bonded. The finite element analysis was carried out for the single inclusion model 

undergoing a tensile load. The elastic material properties are given by Em = 72.0 GPa, Ep = 251 GPa, νm = 0.33 and νp = 0.25. 

 

Shear-log model is based on the assumption that all of the load transfer from matrix to particulate occurs via shear stresses 

acting on the particulate interface between the two constituents. The rate of change of the stress in the particulate to the 

interfacial shear stress at that point and the particulate radius, ‘r’ is given by: 

 
����� = − ��	
            (1) 

which may be regarded as the basic shear lag relationship. 

 

The stress distribution in the particulate is determined by relating shear strains in the matrix around the particulate to the 

macroscopic strain of the composite. Some mathematical manipulation leads to a solution for the distribution of stress at a 

distance ‘x’ from the mid-point of the particulate which involves hyperbolic trig functions: 

 �� = ����1 − ���ℎ��� �⁄ ����ℎ�����         (2) 

where εc is the composite strain, s is the particulate aspect ratio (length/diameter) and n is a dimensionless constant given by: 

 � = � �� ���!"# �$%&!"#�'(!/�           (3) 

in which vm is the Poisson ratio of the matrix. The variation of interfacial shear stress along the particulate length is derived, 

according to Equation (1), by differentiating this equation, to give: 

 *+ = %,-� ��.�ℎ /%�
 0 ���ℎ����          (4) 

The equation for the stress in the particulate, together with the assumption of a average tensile strain in the matrix equal to that 

imposed on the composite, can be used to evaluate the composite stiffness. This leads to: 

 �� = �� 12�� /1 − 34%5�%6�%6 0 + &1 − 2�'89        (5) 

The expression in square brackets is the composite stiffness. The stiffness is a function of particulate aspect ratio, 

particulate/matrix stiffness ratio and particulate volume fraction.  

 

If the particle deforms in an elastic manner (according to Hooke’s law) then, 

 τ = ;� σ=             (6) 

If interfacial debonding/yielding is considered to occur when the interfacial shear stress reaches its shear strength 

 τ = τmax             (7) 

For particle/matrix interfacial fracture can be established whereby, 

 τ>?@ < ;BC�             (8) 

This approach suggests that the outcome of a matrix crack impinging on an embedded particle depends on the balance between 

the particle strength and the shear strength of the interface. For plane strain conditions, the macro stress- macro strain relation 

is as follows: 

 D ��EEE�FEEE*�FEEEEG = H
I!!EEEE I!�EEEE 0I�!EEEE I��EEEE 00 0 IKKEEEEL × D

��N�FNO�FEEEEG         (9) 

The interfacial tractions can be obtained by transforming the micro stresses at the interface as given in Eq. (3): 

 P = QPRP%P3 S = T�            (10) 

 where, T = U 0 0 0����V �.��V 2�.�V���V−�.�V���V �.�V���V ����V − �.��VX 
 

3. RESULTS AND DISCUSSION 

The tensile and compressive moduli were nearly constant for three volume fractions of TiN as shown in figure 2a.  The shear 

modulus increased with increase in the volume fraction of TiN in the composites (figure 2b).  The major Poisson’s ratio 

decreased with volume fraction of TiN. The stiffness mismatch between TiN nanoparticulate and AA7020 alloy matrix is 179 
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GPa. The condition τ>?@ < nσ= 2⁄  is satisfied for the occurrence of debonding in the composites with 10%, 20% and 30% TiN 

(figure 3).  The strain energy densities induced in the composites are shown in figure 4. The strain energy density is higher at 

the interface region around TiN nanoparticle than that for the matrix alloy and nanoparticle. The raster images obtained from 

the finite element analysis are shown in figure 5. The raster images indicate clearly the reduction strain energy at the interface 

due to separation of TiN nanoparticle from the AA7020 alloy matrix. 

 

 
Figure 2: Effect of volume fraction on effective material properties. 

 

 
Figure 3: Fracture criteria of interface debonding.  

 

 
Figure 4: Effect of volume fraction on strain energy density. 
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The normal and tangential tractions are plotted in figure 6. Because of symmetry considerations, the variations of the interface 

stresses with circumferential location are plotted only for the range 0
o
 ≤ θ ≤ 90

o
. The normal traction in the region of interface 

is high along the axis of tensile loading and it gradually reduced to zero at 71
o
 form axis of loading. The tangential traction 

becomes zero at an angle of 12
o
 from the axis of tensile loading. Even though, the separation begins at along the axis of tensile 

loading, it reaches progressively maximum at 71
o
 from the axis of loading along the interface. For the cause of interface 

debonding, the shear stress increased with increase of volume fraction of TiN in AA7020 alloy matrix.  

 

 
 

Figure 5: FEA results of strain energy densities. 

 

 
Figure 6: Normal and tangential: (a) tractions and (b) displacements. 

 

4. CONCLUSION 

The interface debonding occurred in the composites containing 10%, 20% and 30% volume fractions TiN. The shear stress 

increased with increase of volume fraction of TiN in AA7020 alloy matrix for the separation of nanoparticle from the matrix.  
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