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Abstract: A hexagonal array unit cell/spherical ZrC nanoparticle RVE models were used to estimate micromechanical beha-

vior and interfacial debonding in AA1100/ZrC composites. The AA1100/ZrC particulate metal matrix composites were fabri-

cated at different volume fractions of ZrC. The heat treated specimens were tensile tested.  The frqcture of ZrC nanoparticle 

was observed in all the composites. 
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1. INTRODUCTION  

Representative volume element (RVE) approach is a novel method for simulating the behavior of composite materials by mak-

ing use of the capabilities of a finite element software package. Particles reinforced metal matrix composites exhibits hetero-

geneity with regard to microstructure. This heterogeneity can be attributed to the presence of dispersed particulates in a matrix 

and the mechanical behavior of these composites largely depends on the size, shape and properties of these particulates. Con-

ducting a large number of experiments in an effort to determine the macroscopic response of these materials, on a number of 

material samples, for various phase properties, volume fraction and loading conditions are difficult and expensive. The RVE is 

defined as the minimum volume of laboratory scale specimen such that the results obtained from this specimen can still be re-

garded as from a representative of the continuum. A variety of shapes such as spherical [1-3], ellipsoidal [4], hexagonal [5-8], 

rectangular [9-10] and rhombus [11-14] of the reinforced particles at different volume fractions were studied and the results 

from a unit cell with uniformly distributed particles were compared. Hill [15], Hashin [16] and AC Reddy [2, 4, 5, 9, 11, 12] 

played an important role in introducing and developing this approach that takes mechanical properties like elastic modulus, 

Poisson’s ratio, mass density etc of the individual phases to predict the macroscopic properties of the heterogeneous material. 

A study was conducted on the silane interfacial effect on the fracture process of embedded single E-glass fiber [17]. The inter-

facial reinforcement reflects the progressed fracture rather than the instantaneous fracture. 

 

Like most carbides of refractory metals, zirconium carbide is sub-stoichiometric, i.e., it contains carbon vacancies. At carbon 

contents higher than approximately ZrC0.98 the material contains free carbon. ZrC is stable for a carbon-to-metal ratio ranging 

from 0.65 to 0.98. ZrC seems suitable for use in re-entry vehicles, rocket/SCRAM jet engines or supersonic vehicles in which 

low densities and high temperatures load-bearing capabilities are crucial requirements. The purpose of this paper was to ana-

lyze debonding microprocess and interfacial interfacial strength of AA1100 alloy/zirconium carbide (ZrC) nanoparticle com-

posites using RVE model through finite Element analysis. Shape of the reinforced particle considered in this work is a spheri-

cal. The periodic particle distribution was hexagonal array.  

 
Figure 1: A hexagonal RVE containing a spherical nanoparticle. 
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2. THEORETICAL BACKGROUND 

The strains along x- and y-directions can be determined as using the following equations: 
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The effective elastic moduli and Poisson’s ratio in the transverse direction (xy-plane) as follows:  
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Once the change in lengths along x- and y- direction (∆x and ∆y) are determined for the square RVE from the FEA, Ey and Ex 

and vxy can be determined from Eqs. (3) and (4), correspondingly. Considering adhesion, formation of precipitates, particle 

size, agglomeration, voids/porosity, obstacles to the dislocation, and the interfacial reaction of the particle/matrix, the formula 

for the strength of composite is stated below: 
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where, vv and vp are the volume fractions of voids/porosity and nanoparticles in the composite respectively, mp and mm are the 

possion’s ratios of the nanoparticles and matrix respectively, dp is the mean nanoparticle size (diameter) and Em and Ep is elastic 

moduli of the matrix and the particle respectively. Elastic modulus (Young’s modulus) is a measure of the stiffness of a materi-

al and is a quantity used to characterize materials. Elastic modulus is the same in all orientations for isotropic materials. Aniso-

tropy can be seen in many composites. 

The upper-bound equation is given by 
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The lower-bound equation is given by 
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where, mp EEδ = . 

The transverse modulus is given by 
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3. MATERIALS METHODS 

The matrix material was AA1100 aluminum alloy. The reinforcement material was ellipsoidal zirconium carbide (ZrC) nano-

particles of average size 100nm. The mechanical properties of materials used in the present work are given in table 1. 

Table 1: Mechanical properties of AA1100 matrix and ZrC nanoparticles 

 

Property AA1100 ZrC 

Density, g/cc 2.71 6.73 

Elastic modulus, GPa 68.9 430 

Ultimate tensile strength, MPa 110 874 

Poisson’s ratio 0.33 0.25 

 

AA1100 alloy/ZRC composites were manufactured by the stir casting process and low pressure casting technique with argon 

gas at 3.0 bar. The composite samples were give solution treatment and cold rolled to the predefined size of tensile specimens. 

The heat-treated samples were machined to get flat-rectangular specimens (figure 2) for the tensile tests. The tensile specimens 

were placed in the grips of a Universal Test Machine (UTM) at a specified grip separation and pulled until failure. The test 

speed was 2 mm/min (as for ASTM D3039). A strain gauge was used to determine elongation.  

 

In this research, a cubical representative volume element (RVE) was implemented to analyze the tensile behavior AA1100/ZrC 

nanoparticle composites at three (10%, 20% and 30%) volume fractions of ZrC. The large strain PLANE183 element was used 
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in the matrix in all the models. In order to model the adhesion between the matrix and the particle, a CONTACT 172 element 

was used.  

 
 

Figure 2: Shape and dimensions of tensile specimen 

 

4. RESULTS AND DISCUSSION 

The micromechanical behavior is discussed in terms of tensile elastic moduli, Ex, shear modulus, Gxy and major Poisson’s ratio, 

vxy. The fracture behavior is conversed in terms of interface debonding and particle fracture. 

 

 
Figure 3: Effect of volume fraction on micromechanical behavior of AA1100/ZrC composites. 

 

4.1 Micromechanical Behavior 

Figure 3a depicts the normalized tensile strengths of the AA1100 alloy/ZrC composites obtained by FEA, present mathematical 

model, and experimental test. The tensile strength is normalized with ultimate tensile strength of AA1100 alloy matrix. The 
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mathematical model includes the effect of voids present in the composite. The difference between the FEA results and the test 

results varies from 68 to 99 MPa.  This difference can be attributed to the presence of voids in the composites and distribution 

of particles in the matrix. The distribution of ZrC nanoparticles was greatly affected by the density difference between the na-

noparticles and the matrix. The difference between the results obtained from present mathematical model and the experimenta-

tion varies from 7 to10 MPa. The difference between the results obtained from present mathematical model and the FEA varies 

from 58 to 91 MPa. This is due to the ignorance of voids and agglomeration of ZrC nanoparticles in the (RVE models. The test 

and mathematical results of tensile strength increase with increase of volume fraction of ZrC in the composite; while the FEA 

results decrease with increase of volume fraction of ZrC.  

 

The normalized elastic modulus is shown in figure 3b. The elastic modulus is normalized with the elastic modulus of AA1100 

alloy matrix. From the results obtained from the mathematical computation and test procedure, the stiffness of the composites 

increases with increase of volume fraction of ZrC. The FEA results show decreasing trend of stiffness with increase in content 

of ZrC. The upper limit (UL) values computed by the present mathematical model are higher than those values obtained by the 

‘Role of Mixtures (ROM)’and FEA. This is because of consideration of voids in the present mathematical model. The shear 

strength of the composites decreases with increase in the volume fraction of ZrC (figure 3c). The major Poisson’s ratio increas-

es with increase of volume fraction of ZrC particles above 20% of ZrC (figure 3d). 

 

4.2 Fracture Analysis 

If the particle deforms in an elastic manner (according to Hooke’s law) then, 

 τ = D
2 σ1            (9) 

where σp is the particle stress. If particle fracture occurs when the stress in the particle reaches its ultimate tensile strength, 

σp,uts, then setting the boundary condition at 

 σp= σp, uts           (10) 

The relationship between the strength of the particle and the interfacial shear stress is such that if 

 σF,H@I < 2K
D                  (11) 

Then the particle will fracture. From the figure 4b, it is observed that the ZrC nanoparticle was fractured as the condition in Eq. 

(11) is satisfied. For the interfacial debonding/yielding to occur, the interfacial shear stress reaches its shear strength: 

 τ = τmax            (12) 

For particle/matrix interfacial fracture can occur if the following condition is satisfied: 

 τ�LM < DN#
2 			           (13) 

It is observed from figure 4a that the interfacial debonding does not occur between ZrC nanoparticle and AA1100 alloy matrix 

as the condition in Eq.(13) is not satisfied.  

 
Figure 4: Criterion interfacial debonding (a) and for particle fracture (b). 

 

As seen from 5 the von Mises stress developed in the matrix are lower than those induced in the nanoparticle. The von Mises 

stresses induced around the nanoparticle is much lower than those induced in the ZrC particle. Hence, the interfacial debonding 

was not occurred between the particle and the matrix. Owing to the high stress in the nanoparticles, the plastic deformation 
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becomes concentrated at several locations in the matrix. The localized strain was observed around the particle because of the 

high load-transfer effect into the particles. Zirconium carbide (ZrC) is an extremely hard refractory ceramic material, commer-

cially used in tool bits for cutting tools. The strong covalent Zr-C bond gives this material a very high melting point 

(~3530 °C), high modulus (430 GPa) and hardness (25 GPa). 

 

 
 

Figure 5: Images of von Mises Stress obtained from FEA. 

 

5. CONCLUSION 

There is likelihood of ZrC nanoparticle fracture in the AA1100/ZrC composites. The strong covalent Zr-C bond gives this ma-

terial high modulus (430 GPa) and hardness (25 GPa). The difference between the FEA results and the test results can be attri-

buted to the presence of voids in the composites and distribution of particles in the matrix. 
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