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Abstract: In the present work, the AA3003/TiN metal matrix composites were manufactured at 10% and 30% volume fractions 

of TiN. The composites were subjected to mechanical and thermal loads. The microstructure of AA3003 alloy/TiN reveals the 

fracture of interphase and TiN particle. 
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1. INTRODUCTION  

Thermo-elastic composites constitute an important class of materials with a wide variety of applications ranging from 

aerospace structures and electronic printed circuit boards to recreational and commercial equipment. Some of the most 

important and useful properties of these composites are lightweight, high strength and stiffness, excellent frictional properties, 

good resistance to fatigue and retention of these properties at high temperatures. Many authors have developed techniques to 

study the elastic behavior of particulate composites. They take into account the existence of an intermediate layer between the 

matrix and the particle [1]. These thin layers are called interphases or interfacial zones between particle and matrix. Although 

small in thickness, interphases can significantly affect the overall mechanical properties of the particle-reinforced composites. 

It is the weakest link in the load path, and consequently most failures in particle reinforced composites, such as debonding and 

matrix cracking, occur in or near this region. Thus, it is crucial to understand the mechanism and effects of the interphases on 

the overall material properties of fiber reinforced composites. Several homogenization techniques have been developed to 

obtain a suitable constitutive model to be inserted at the macroscopic level [2-17]. The macroscopic properties are determined 

by a homogenization process, which yields the effective stresses and strains acting on the effective, homogenized sample of 

material. The sample of material is often called as statistically representative volume element (RVE) or unit cell [18]. 

 

 
Figure 1: The interphase in a nanoparticle-reinforced composite. 

 

 

Titanium nitride (TiN) oxidizes at 800 °C at normal atmosphere. It is chemically stable at room temperature and is attacked by 

hot concentrated acids. A well-known use for TiN coating is for edge retention and corrosion resistance on machine tooling, 

such as drill bits and milling cutters, often improving their lifetime by a factor of three or more. s a coating it is used 
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in aerospace and military applications and to protect the sliding surfaces of suspension forks of bicycles and motorcycles as 

well as the shock shafts of radio controlled cars. Due to their high biostability, TiN layers may also be used as electrodes 

in bioelectronic applications like in intelligent implants or in-vivo biosensors that have to withstand the severe corrosion 

caused by the body fluid. In the current work, the effect of temperature on the fracture in AA3003 alloy/TiN composites was 

examined. The shape TiN nanoparticle considered in this work is spherical. The periodic particle distribution was a square 

array as shown in figure 1. Both microscopic and micromechanics methods were employed to assess fracture in the composites. 

 

2. MATERIALS METHODS 

The matrix material was AA3003 alloy. The reinforcement material was TiN nanoparticles of average size 100nm (figure 2). 

The mechanical properties of materials used in the present work are given in table 1. 

 

Table 1: Mechanical properties of AA3003 matrix and TiN nanoparticles 

 

Property AA3003 TiN 

Density, g/cc 2.73 5.22 

Elastic modulus, GPa 68.9 251.0 

Coefficient of thermal expansion, 10
-6 

1/
o
C 21.08 9.35 

Specific heat capacity, J/kg/
o
C 893 757 

Thermal conductivity, W/m/
o
C 163 19.2 

Poisson’s ratio 0.33 0.25 

 

 
Figure 3: Tensile testing: UTM with temperature controlled chamber and (b) shape and dimensions of tensile specimen. 

 

AA3003 alloy/TiN composites were fabricated by the stir casting process and low pressure casting technique with argon gas at 

3.0 bar. The composite samples were give solution treatment and cold rolled to the predefined size of tensile specimens. The 

heat-treated samples were machined to get flat-rectangular specimens (figure 3) for the tensile tests. The tensile specimens 

were placed in the grips of a Universal Test Machine (UTM) with temperature controlled chamber at a specified grip separation 

and pulled until failure. The test speed was 2 mm/min. A strain gauge was used to determine elongation. In the current work, a 

cubical representative volume element (RVE) was implemented to analyze the tensile behavior AA3003/TiN nanoparticle 

composites at two (10% and 30%) volume fractions of TiN and at different temperatures. The large strain PLANE183 element 

was used in the matrix in all the models. In order to model the adhesion between the matrix and the particle, a CONTACT 172 

element was used.  
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3. RESULTS AND DISCUSSION 

The optical micrograph as shown in figure 4 reveals uniform distribution of TiN particles in AA3003 alloy matrix.  

 

 
Figure 4: Microstructure showing distribution of TiN nanoparticles in AA3003 alloy matrix. 

 

 
 

Figure 5: FEA results of tensile stress induced along load direction in the composites comprising of: (a) 10% TiN and (b) 30% TiN. 

 

 
Figure 6: Effect of temperature on stiffness of AA3003/TiN composites. 

 

3.1 Thermo-Mechanical Behavior 

Figure 5 represents the tensile stresses induced in the AA3003/TiN composites along the load direction. The tensile stress 

increases with increase of temperature and it decreases with increase of volume fraction of AA3003/TiN in AA3003 alloy 

matrix. This is due to softening of the composite with increase of temperature. The normalized elastic modulus is shown in 

figure 6a. The elastic modulus is normalized with the elastic modulus of AA3003 alloy. The stiffness of the composites 

decreases with increase of temperature. The stiffness of AA3003 alloy/10%TiN composites is higher than that of AA3003 

alloy/30%TiN composites with regard to increase of temperature. The normalized stiffness along the normal direction is lower 
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than that along the load direction.  The normalized shear modulus increases with volume fraction of TiN (figure 6b). Initially, 

the major Poisson’s ratio decrease from 30
o
C to 100

o
C and later on it increases with temperature from 100

o
C to 300

o
C (figure 

6c). 

 

3.2 Fracture Analysis 

If the particle deforms in an elastic manner (according to Hooke’s law) then, 

 τ =
�

�
σ�            (1) 

where σp is the particle stress. If particle fracture occurs when the stress in the particle reaches its ultimate tensile strength, 

σp,uts, then setting the boundary condition at 

 σp= σp, uts           (2) 

The relationship between the strength of the particle and the interfacial shear stress is such that if 

 σ�,	
� <
�

�
                 (3) 

Then the particle will fracture. From the figure 7b, it is observed that the TiN nanoparticle was not fractured as the condition in 

Eq. (3) is not satisfied below 200
o
C, but the particle has occurred above 200

o
C. This is due to CTE mismatch between TiN 

nanoparticles and AA3003 alloy matrix. For the interfacial debonding/yielding to occur, the interfacial shear stress reaches its 

shear strength: 

 τ = τmax            (4) 

For particle/matrix interfacial debonding can occur if the following condition is satisfied: 

 τ��� <
���

�
			           (5) 

It is observed from figure 7a that the interfacial debonding occurs between TiN nanoparticle and AA3003 alloy matrix as the 

condition in Eq.(5) is satisfied. The debonding phenomenon is high in the composites comprising of 30% TiN. 

 

 
Figure 7: Criterion for interfacial debonding (a) and for particle fracture (b). 
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Figure 8: Images of von Mises stresses obtained from FEA: (a) AA3003/10% TiN and (b) AA3003/30% TiN composites. 

The von Mises stress induced at the interface are higher than that induced in the nanoparticle (figure 8). Hence, the interfacial 

debonding was occurred between the particle and the matrix. The microstructure shown in figure 9 confirms the occurrence of 

interfacial debonding in the composites. The debris of the fractured interphase is also seen in the microstructure. The interfacial 

debonding increases with increase of temperature.  

 

 
Figure 9: Microstructure showing the interfacial debonding and particle fracture in AA3003 alloy/TiN composites. 

 

4. CONCLUSION 

The microstructure of AA3003 alloy/TiN composites reveals the uniform distribution of TiN nanoparticles in the matrix. The 

shear stress is high at the interface resulting to interfacial debonding in AA3003/TiN composites. TiN particle fractures above 

200
o
C. The microstructure obtained from the experimental samples confirms the fracture of interphase between the TiN 

particles and AA3003 alloy matrix and the fracture of TiN particle above 200
o
C of thermal loading. 
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