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Abstract: High lead bronze alloys are found in applications for sleeve bearings. The counter-gravity pouring method was em-

ployed to cast C93800 bronze alloy in the investment shell moulds. The mechanical properties have decreased with tempera-

ture. The wear loss was very low under full-film operating conditions.  
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1. INTRODUCTION  
Bronze bearings are the most extensively used sleeve bearing type, industry-wide. Even so, there seems to be a few misappre-

hensions about these multitalented products concerning their applicability, performance and most of all – their cost effective-

ness [1-2]. Every bearing designer knows that spherical bearings are among the most complex to design, and they are unques-

tionably the most expensive to manufacture. In practical terms it is almost unaffordable to prototype a spherical rolling-element 

bearing because of the high costs involved. But making one, or two, or a hundred spherical bronze sleeve bearings is no more 

involved – or costly - than making a conventional bearing. So prototyping bronze sleeve bearings can be an economical part of 

the design process, and that alone gives the designer a lot more freedom. Sleeve bearings, and especially bronze sleeve bear-

ings, operate efficiently over a wider range of pressure and velocity (PV) values than any other type, with allowable PV values 

up to 3,000,000+ with the proper lubrication. At the low end of the PV scale, the generous load distribution and favorable fati-

gue characteristics inherent to sleeve bearings make them the natural choice for oscillating, intermittent-motion or less-than 

360-degree rotation jobs. Their inherently low friction characteristics make them natural choices for mixed film or boundary 

lubrication conditions, and those are the modes most bearings operate in most of the time. There are soft and ductile bronzes 

for jobs that require conformability and the ability to embed occasional dirt particles; there are hard bronzes for maximum 

strength and load-carrying capacity. The bronzes are well known for their inherently low frictional coefficients; all have out-

standing corrosion resistance and excellent shelf life, and they are unsurpassed when it comes to handling shock loads or damp-

ing out noise and vibration. Bronze bearings operate at higher temperatures without losing ability to carry loads without creep 

and at sub-zero temperature without becoming hard and brittle. They have excellent heat dissipation for high loads and speeds. 

 

Many millions of bearings operate successfully in the boundary and mixed-film modes for their entire service lives. The only 

penalty this entails is an increase in friction compared to hydrodynamically lubricated bearings and consequently higher energy 

expenditure. Bearing life, however, will depend very heavily on the choice of bearing material. Even hydrodynamic bearings 

pass through boundary and mixed-film modes during start-up, and shutdown, or when faced with transient upset conditions. 

This means that material selection is an important design consideration for all sleeve bearings, no matter what their operating 

mode. The general attributes of a good bearing material are: 

• A low coefficient of friction versus hard shaft materials, 

• Good wear behavior against steel journals, 

• The ability to absorb and discard small contaminant particles, 

• The ability to adapt and adjust to the shaft roughness and misalignment, 

• High compressive strength, 

• High fatigue strength, 

• Corrosion resistance, 

• Low shear strength at the bearing-to shaft interface, 

• Structural uniformity, and 

• Reasonable cost and ready availability. 

 

A material's inherent frictional characteristics are extremely important during those periods when the bearing operates in the 

boundary mode. A low coefficient of friction is one factor in a material's resistance against welding to, and therefore scoring, 
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where, D is the shaft diameter; W is the steady load; Z is the absolute viscosity of lubricant; Clearance factor, m =2� 	⁄ ; C is 

the radial clearance; and N is the rotational speed. 

 

If load, speed and other factors can be adjusted such that A falls between 0.0005 and 0.50 the bearing should operate in the 

full-film mode. A bearing and its journal operate in practice with a given eccentricity, i.e., with the shaft positioned slightly off 

the bearing's true center by a distance, e, ( Figure 1). We can then define an eccentricity ratio, E, as: 

 

E = 
�

�
             (2) 

where, e is the eccentricity or radial journal displacement. 

 

A diagram in terms of A, E and the bearing's L/D (bearing length/shaft diameter) ratio is shown in figure 5. It describes differ-

ent operating modes based on A, E and the L/D ratio. Bearings, which fall inside the heart-shaped area, operate in the full-film 

or hydrodynamic mode. Since the bearing and journal are not in contact in the hydrodynamic mode, frictional coefficients can 

be as low as 0.001. Also, since there is no metal-to-metal contact there can be no wear and bearing life should be indefinite. 

Theoretically, the only important material property consideration for full-film bearings is that the bearing alloy be strong 

enough to support the applied load. Hydrodynamic bearings normally can sustain changes in load or shock loads up to ten 

times the design load for limited periods of time. 

 

4. CONCLUSIONS 
All mechanical properties of C39800 bronze alloy was decreased with temperature. As there is no metal-to-metal contact, the 

wear loss of sleeve bearing was very low. 
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