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Abstract: AA1100/TiO2 metal matrix composites were fabricated by stir casting practice and bottom-up pouring technique to investigate 

the effect of clustering and porosity on their mechanical and wear properties. Tension and wear tests were conducted on specimens 

reinforced with different volume fractions of TiO2. Two types of finite element models were used to estimate the strength of the MMCs. The 

microstructures of AA1100/TiO2 composites have revealed the occurrence of particle clustering and porosity. The normalized tensile 

strength and elastic modulus decrease with porosity and clustering of TiO2 nanoparticles. The wear rate of AA1100/TiO2 composites 

has decreased with increase of volume fraction of TiO2 in AA2024 alloy matrix. 
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1. INTRODUCTION  

In manufacturing industry there is continues demand to develop light weight, inexpensive and strong material. This demand 

has led to the development of aluminum alloy metal matrix composites. The reinforcements for MMCs can be broadly divided 

into four major categories, viz. Continuous fibers, discontinuous fibers, whiskers, and particulates [1]. The reinforcements are 

generally ceramic; which can be oxides, carbides and nitrides which are used because of their excellent combination of specific 

strengths and stiffness at both ambient and elevated temperatures. The different techniques employed for metal matrix 

composites are powder metallurgy, spray deposition, liquid metal infiltration, squeeze casting, stir casting, etc. All of them 

have their own advantages and disadvantages. Among the various processing techniques available for particulate or 

discontinuous reinforced metal matrix composites, stir casting is the technique which is in use for large quantity commercial 

production. In the particulate metal matrix composites, the particle size varies from micron to nano.  Advantage of using 

nanoparticles as reinforcement is that their size is smaller than the critical crack length that typically initiates failure in 

composites. However, agglomeration of nanoparticles is the major problem. In fact, several investigations have shown that 

small levels of agglomeration can decrease the strain-to- failure by several tens of percent [2-14]. The major obstacle is the 

formation porosity during materials processing [15-26]. 

 

The present investigation has been focused on the micromechanical and wear behavior of AA1100/titanium oxide metal matrix 

composites with different composition (10%, 20% and 30% by volume of AA1100 alloy of titanium oxide (TiO2). Bottom-up 

pouring was used to produce the composites. Tensile and sliding wear test were conducted on these MMCs. Also, the effects of 

particle clustering and porosity on micromechanical behavior were analyzed using experimental procedure and finite element 

method (FEM). Two models were used in the computational framework. The first one is uniform distribution of nanoparticles 

without clustering and porosity. The second one is with clustering and porosity. 

 

2. MATERIALS METHODS 

The matrix material was AA1100 alloy. The reinforcement material was TiO2 nanoparticles of average size 100nm. AA1100/ 

TiO2 metal matrix composites were fabricated by the stir casting process with bottom-up pouring technique (figure 1). The test 

samples were machined to get flat-rectangular specimens (figure 2b) for the tensile tests. The tensile specimens were placed in 

the grips of a Universal Test Machine (UTM) at a specified grip separation and pulled until failure (figure 2a). The test speed 

was 2 mm/min. A strain gauge was used to determine elongation (figure 2a). The wear test was conducted on pin-on-disc 

machine. In the current work, a unit cell comprising of nine particles was implemented to analyze the tensile behavior 

AA1100/ TiO2 metal matrix composites at three (10%, 20% and 30%) volume fractions of TiO2 with and without clustering 

and porosity. The large strain PLANE183 element was used in the matrix in all the models. In order to model the adhesion 

between the matrix and the particle, a CONTACT 172 element was used. The shape of TiO2 nanoparticle considered in this 

work is spherical. The periodic particle distribution was a square array. The tensile stress, elastic modulus and shear modulus 

are, respectively, normalized with tensile strength, elastic modulus and shear modulus of the matrix alloy. 
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Figure 1: Concept of bottom-up pouring of composite metal. 

 

 
Figure 2: Testing of composites: (a) tensile testing and (b) dimensions (mm) of tensile specimen. 

 

Considering adhesion, formation of precipitates, particle size, agglomeration, voids/porosity, obstacles to the dislocation, and 

the interfacial reaction of the particle/matrix, the formula for the strength of composite is stated below: 
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where, vv and vp are the volume fractions of voids/porosity and nanoparticles in the composite respectively, mp and mm are the 

possion’s ratios of the nanoparticles and matrix respectively, dp is the mean nanoparticle size (diameter) and Em and Ep is elastic 

moduli of the matrix and the particle respectively. Elastic modulus (Young’s modulus) is a measure of the stiffness of a 
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material and is a quantity used to characterize materials. Elastic modulus is the same in all orientations for isotropic materials. 

Anisotropy can be seen in many composites. 
 

 

The upper-bound equation is given by 
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The lower-bound equation is given by 
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where, mp EEδ = . 

Wear rate which relates to the mass loss to sliding distance (L) was calculated using the expression, 

 .� = ∆�
0            (4) 

where, ∆m is the moss loss in grams. 

 

The volumetric wear rate Wv of the composite is relate to density (ρ) and the abrading time (t), was calculated using the 

expression, 

 .� = ∆�
1×3           (5) 

 

3. RESULTS AND DISCUSSION 

The clustering of TiO2 particles (red circles) and porosity (red arrows) are seen in the microstructures. The clustering of 

nanoparticles increased with increase of volume fraction.  

 

    
 

Figure 3: Microstructure showing distribution of TiO2 nanoparticles, clustering and porosity in AA1100 alloy matrix. 

 

The density of AA1100/ TiO2 metal matrix composites increased as shown in figure 4a with increase of volume fraction of 

TiO2 nanoparticles in AA1100 alloy matrix. The densities of AA1100 alloy matrix and TiO2 nanoparticles are, respectively, 

2.71 g/cc and 4.05 g/cc. In order to characterize the mechanical properties of AA1100 alloy/ TiO2 composites, the strengths 

have been normalized with respect to AA1100 alloy matrix. The tensile stresses obtained from the finite element analysis 

(FEA) were higher than those obtained from the mathematical expression mentioned in Eq.(1) and the experimental procedure 

as shown in figure 4b. This is owing to the occurrence of stress concentrations at voids and clustered regions. The tensile 

strength was increased without porosity and clustering in AA1100/ TiO2 metal matrix composites. As shown in figure 4b, the 

normalized tensile strength was very low at higher TiO2 contents, mostly due to the increased amount of clustering and voids. 

The normalized elastic modulus increased with increase of volume fraction of TiO2 nanoparticles in AA1100 alloy matrix 

without porosity and clustering in the composites; while it was low with porosity and clustering (figure4c). The normalized 

shear modulus is constant with increase of volume fraction of TiO2 with and without porosity and clustering (figure 4d).  

 

In all the finite element models (figure 5), the amount of porosity and volume of clustering were maintained constant. With or 

Without porosity in the composites, the stress intensity decreased with increase of volume fraction of TiO2 in AA1100 alloy 

matrix. However, the stress intensity levels were higher in the composites having porosity and clustering than those in the 

composites without porosity and clustering. This is attributed to the fact of the stress concentration in the vicinity of the 

porosity and clustering. This trend is in agreement with the results obtained from experimental procedure and mathematical 

computation. 
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Figure 4: Effect of volume fraction on (a) density (b) normalized tensile stress, (c) normalized tensile elastic modulus and (d) normalized 

shear modulus of AA1100/ TiO2 composites. 

 

 
Figure 5: Images of von Mises stresses obtained from FEA: (a) without clustering and porosity and (b) with clustering and porosity. 

 

The dry sliding wear tests were carried out for the specimens of AA1100 alloy, metal matrix composites having reinforcement 

with different volume fraction of 10%, 20% and 35% TiO2. Wear rate was estimated by measuring the mass loss in the 

specimen after each test. The mass loss increases as the load value increases at constant sliding velocity (figure 6a). Also seen 

that the mass loss of the composites decrease with increase in the percentage of TiO2. The rate of wear in case of AA1100 
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sample was extremely high in comparison to metal matrix composites. The volumetric wear has low value for the specimen 

having higher volume fraction of TiO2 (figure 6b). 

 

 
Figure 6: Wear analysis of AA1100/TiO2 composites: mass loss and (b) volumetric wear rate. 

 

4. CONCLUSION 

AA1100/ TiO2 metal matrix composites had clusters and porosity voids. The stress intensity was increased with porosity and 

clustering of graphite nanoparticles. The wear loss has decreased with increase of volume fraction of TiO2 in AA1100 alloy 

matrix.  
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