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Abstract: Square array unit cell/octagonal particle RVE models are used for micromechanical modeling of titanium boride/AA4015 alloy 

metal matrix composites.  The analysis is carried out employing two-dimensional finite element methods under plane strain conditions. De-

bonding at particle-matrix interfaces is calculated through interfacial tractions for different volume fractions. 
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1. INTRODUCTION  
Compared with conventional materials, particle reinforced nanocomposites exhibits low density, high strength to weight ratio 

and high stiffness to weight ratio, high toughness with improved creep resistance and wear resistance. Combining high stif-

fened nanoparticles to the low modulus polymer matrix, improves the load carrying capacity [1-7].  The impact of shape and 

size of reinforcement on the mechanical properties of composite material can be estimated through micromechanics using finite 

element method. Micromechanical research of the past two decades has produced a number of models of interface decohesion 

in heterogeneous materials such as metal matrix composites, which often represents the main source of distributed damage in 

composite materials [8-19].  

 

The goal of this paper is to estimate debonding and stress bridging based on the elastic moduli, major Poisson’s ratio and inter-

facial tractions of titanium boride/AA4015 alloy metal matrix composites. Finite element analysis (FEA) of TiB2/AA4015 al-

loy metal matrix composites was executed RVE models comprising of square array cell/octagonal particle.  

 
Figure 1: The RVE model: (a) particle distribution and (b) RVE scheme. 

 

2. MATERIALS AND METHODS 
The matrix material was AA4015 alloy. The volume fractions of titanium boride particulate reinforcement were 10%, 20%, and 

30%.  The representative volume element (RVE) scheme is shown in figure 2. The perfect adhesion was assumed between tita-

nium boride particle and AA4015 alloy matrix. PLANE183 element was used for the matrix and the nanoparticle. The interface 

between particle and matrix was modeled using a COMBIN14 spring-damper element.  
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A linear stress–strain relation at the macro level can be formulated as follows: 

 �� = ��̅���            (1) 

where �	� is macro stress, and �	� represents macro total strain and �	� and is macro stiffness matrix. 

 

For plane strain conditions, the macro stress- macro strain relation is as follows: 

 	 �
���������
�����
 = �������� ������� 0������� ������� 00 0 �������� × 	 �
�����
�����
        (2) 

 

The interfacial tractions can be obtained by transforming the micro stresses at the interface as given in Eq. (3): 

 � = ������� � = ��           (3) 

 where, � = � 0 0 0�� �!  "#�! 2 "#!�� !− "#!�� !  "#!�� ! �� �! −  "#�!& 
 

3. RESULTS AND DISCUSSION 
Figure 2a exhibits a slender increase in moduli with increasing volume fraction of titanium boride in the matrix AA4015 alloy.  

Figure 2b indicates nearly constant major Poisson's ratio for three volume fractions if titanium boride. Figure 2c indicates a 

fluctuation in the shear modulus as volume fraction increases from 10%Vp to 30%Vp.  

 

 
 

Figure 2: Effect of volume fraction on effective material properties. 

 

 
 

Figure 3: Stress concentrations in TiB2/AA4015 alloy metal matrix composites. 

 

Figure 3 shows shear stress induced in a unit cell of square array under tensile stress. The shear stress is of same magnitude in 

the titanium boride and AA4015 alloy matrix for three volume fractions except at the interface region between the matrix and 

the particle.  For the interfacial normal traction, tn, the angle between maximum amplitude to minimum amplitude is 150
o
 (fig-

ure 4a). For the interfacial tangential traction, tt, the angle between minimum amplitude to maximum amplitude is 90
o
 (figure 

4b). Both normal and normal tractions become zero at 75
o
 from the axis of tensile loading.  For the normal traction to fall from 

maximum to zero the angle of normal traction is 75
o
, while the angle of tangential traction is 45

o
 to rise tangential traction from 

minimum to zero. It is also observed that the tangential zone is shorter than the compressed zone around the interface between 

the particle and the matrix. The debonding area is clearly visible at the interface along the tensile loading in figure 3.  
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Figure 5: Interfacial tractions along the angle due to tensile loading: (a) normal and (b) tangential. 

 

4. CONCLUSION 
The shear stress is of same magnitude in the titanium boride and AA4015 alloy matrix for three volume fractions. For the octa-

gonal particulate in AA4015 alloy matrix, the angle of traction between maximum amplitude to minimum amplitude is 150
o
 for 

the normal interfacial traction and it is 90
o
 for the interfacial tangential traction between minimum amplitude to maximum am-

plitude. The possibility of debonding is along the direction of tensile loading. 
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