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The matrix material was AA1100 alloy. The reinforcement material was MgO nanoparticles of average size 100nm. AA1100 

alloy/ MgO composites were fabricated by the stir casting process and low pressure casting technique with argon gas at 3.0 bar. 

The composite samples were give solution treatment and cold rolled to the predefined size of tensile specimens. The heat-

treated samples were machined to get rectangular specimens (figure 2) for the tensile tests. The tensile specimens were placed 

in the grips of a Universal Test Machine (UTM) with temperature controlled chamber at a specified grip separation and pulled 

until failure. The test speed was 2 mm/min. A strain gauge was used to determine elongation. In the current work, a cubical 

representative volume element (RVE) was implemented to analyze the tensile behavior AA8090/BN nanoparticle composites 

at two (10% and 30%) volume fractions of MgO and at different temperatures. The shape MgO nanoparticle considered in this 

work is spherical. The periodic particle distribution was a square array and corresponding representative volume element 

(RVE) as shown in figure 3. The large strain PLANE183 element was used in the matrix in all the models. In order to model 

the adhesion between the matrix and the particle, a CONTACT 172 element was used.  

 
Figure 2: Square array of particles (a), Representative Volume Element (b) and Discretization of RVE (c). 

 

3. RESULTS AND DISCUSSION 

3.1 Thermo-Mechanical Behavior 

Figure 3 represents micromechanical properties of AA1100/MgO composites. The elastic modulus is normalized with the elas-

tic modulus of AA1100 alloy. The normalized stiffness of the composites decreases with increase of temperature. The stiffness 

of AA1100 alloy/10% MgO composites is higher than that of AA1100 alloy/30% MgO composites (figure 3a).  The norma-

lized stiffness along the normal direction is lower than that along the load direction.  The normalized shear modulus increases 

with increase of temperature for AA1100 alloy/MgO composites (figure 3b). The major Poisson’s ratio decreases initially from 

room temperature to 100
o
C and later on it increases with temperature (figure 3c). 

 

 
Figure 3: Effect of temperature on micromechanical properties of AA1100/MgO composites. 

 

3.2 Fracture Analysis 

If the particle deforms in an elastic manner (according to Hooke’s law) then, 

 τ =
�

�
σ�            (1) 

where σp is the particle stress. If particle fracture occurs when the stress in the particle reaches its ultimate tensile strength, 

σp,uts, then setting the boundary condition at 
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 σp= σp, uts           (2) 

 

The relationship between the strength of the particle and the interfacial shear stress is such that if 

 σ�,��	 <
�τ

�
                 (3) 

 

Then the particle will fracture. From the figure 4a, it is observed that the MgO nanoparticle was fractured as the condition in 

Eq. (3) is satisfied above 150
o
C for the composites AA1100/30%MgO and above 225

0
C for the composites AA1100/10%MgO. 

This is due to CTE and stiffness mismatches between MgO nanoparticles and AA1100 alloy matrix. For the interfacial debond-

ing/yielding to occur, the interfacial shear stress reaches its shear strength: 

 τ = τmax            (4) 

 

For particle/matrix interfacial debonding can occur if the following condition is satisfied: 

 τ�� <
�σ�

�
			           (5) 

It is observed from figure 4b that the interphase debonding occurs between MgO nanoparticle and AA1100 alloy matrix as the 

condition in Eq.(5) is satisfied at all temperatures for AA1100/30%MgO composites and above 75
0
C for AA1100/10%MgO 

composites. The debonding phenomenon is high in the composites comprising of 10% MgO. 

 

 
 

Figure 4: Criterion for interfacial for (a) particle fracture and (b) debonding. 

 

 
 

Figure 5: Images of von Mises stresses obtained from FEA: (a) AA8090/10% BN and (b) AA8090/30% BN composites. 

At room temperature the von Mises stress induced at the interface are higher than that induced in the nanoparticle (figure 5). 

Above room temperature, the MgO particle has experienced very high von Mises stress. Hence, the MgO nanoparticle has oc-
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curred as a result of thermal and tensile loading.  The microstructure shown in figure 6 confirms the occurrence of particle in 

the composites. 

 
Figure 6: MgO particle fracture in AA1100/30MgO at 300

o
C. 

 

4. CONCLUSION 
The von Mises stress is very high in MgO nanoparticles as that compared in the AA1100 alloy matrix. The particle fracture 

was observed above 100
o
C temperature loading in AA1100/MgO composites. The microstructure obtained from the experi-

mental samples confirms the fracture of MgO particles and AA1100 alloy matrix.  
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