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Figure 2: Relation b

 

2. MATERIALS METHODS 
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Figure 2: Tensile testing: UTM 
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heat-treated samples were machined to get cylindrical specimens (figure 2) for the tensile tests. The tensile specimens were 

placed in the grips of a Universal Test Machine (UTM) with temperature controlled chamber at a specified grip separation and 

pulled until failure. The test speed was 2 mm/min. A strain gauge was used to determine elongation. In the current work, a cub-

ical representative volume element (RVE) was implemented to analyze the tensile behavior AA5050/Z SiO2 nanoparticle com-

posites at two (10% and 30%) volume fractions of SiO2 and at different temperatures. The shape SiO2 nanoparticle considered 

in this work is spherical. The periodic particle distribution was a square array and corresponding representative volume element 

(RVE) as shown in figure 3. The large strain PLANE183 element was used in the matrix in all the models. In order to model 

the adhesion between the matrix and the particle, a CONTACT 172 element was used.  

 
Figure 3: Square array of particles (a), Representative volume element (b) and Discretization of RVE (c). 

 

3. RESULTS AND DISCUSSION 

 

3.1 Thermo-Mechanical Behavior 

Figure 5 represents micromechanical properties of AA5050/ SiO2 composites. The elastic modulus is normalized with the elas-

tic modulus of AA5050 alloy. The normalized stiffness of the composites decreases with increase of temperature. The stiffness 

of AA5050 alloy/30% SiO2 composites is higher than that of AA5050 alloy/10% SiO2 composites. The normalized stiffness 

along the normal direction is lower than that along the load direction.  The normalized shear modulus is constant with increase 

of temperature for AA5050 alloy/30% SiO2 composites; but it decreases above 200
o
C for AA5050 alloy/10% SiO2 composites 

(figure 5b). The major Poisson’s ratio increases with temperature (figure 5c). 

 

 
Figure 5: Effect of volume fraction on micromechanical properties of AA5050/ SiO2 composites. 

 

3.2 Fracture Analysis 

If the particle deforms in an elastic manner (according to Hooke’s law) then, 

 τ =
�

�
σ�            (1) 

where σp is the particle stress. If particle fracture occurs when the stress in the particle reaches its ultimate tensile strength, 

σp,uts, then setting the boundary condition at 

 σp= σp, uts           (2) 
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The relationship between the strength of the particle and the interfacial shear stress is such that if 

 σ�,��	 <
�τ

�
                 (3) 

Then the particle will fracture. From the figure 6a, it is observed that the SiO2 nanoparticle was fractured as the condition in 

Eq. (3) is satisfied above 275
o
C and 150

o
C for the composites AA5050/10% SiO2 and AA5050/30% SiO2 composites, respec-

tively. This is due to CTE and stiffness mismatches between SiO2 nanoparticles and AA5050 alloy matrix. For the interfacial 

debonding/yielding to occur, the interfacial shear stress reaches its shear strength: 

 τ = τmax            (4) 

For particle/matrix interfacial debonding can occur if the following condition is satisfied: 

 τ��
 <
�σ�

�
			           (5) 

It is observed from figure 6b that the interphase debonding occurs between SiO2 nanoparticle and AA5050 alloy matrix as the 

condition in Eq.(5) is satisfied at all temperatures for the composites AA5050/10% SiO2 composites and above 200
o
C for the 

composites AA5050/30% SiO2. The debonding phenomenon is high in the composites comprising of 10% SiO2. 

 

 
Figure 6: Criterion for interfacial debonding (a) and for particle fracture (b). 

 

 
Figure 7: Images of von Mises stresses obtained from FEA: (a) AA5050/10% SiO2 and (b) AA5050/30% SiO2 composites. 

 

The von Mises stress induced at the interface are higher than that induced in the nanoparticle (figure 7). Hence, the interfacial 

interphase fracture was occurred between the particle and the matrix. The particle fracture is initiated in AA5050/30% SiO2 

composites at 200
o
C of thermal loading and in AA5050/ 10% SiO2 composites at 30

o
C of thermal loading, respectively, due to 

thermal shock. The microstructure shown in figure 8 confirms the occurrence of interphase and particle fractures in the compo-

sites. The transformation from α-quartz to beta-quartz takes place abruptly at 573 °C. Since the transformation is accompanied 

by a significant change in volume it can easily induce fracturing of SiO2. Even though the temperature is below 573
o
C, the 
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SiO2 nanoparticle fracture was occurred because of combined thermal and tensile loading. Hence, the particle fracture was in-

itiated well below 573
o
C.  

 

 
Figure 8: SEM images showing particle fracture and interphase debonding. 

 

4. CONCLUSION 

The shear stress is high at the interface resulting to interphase debonding in AA5050/ SiO2 composites. The particle fracture is 

also initiated at 30
o
C and 200

o
C of thermal loading of AA5050/ 10% SiO2 and AA5050/ 30% SiO2 composites, respectively. 

The microstructure obtained from the experimental samples confirms the fracture of interphase between the SiO2 particles and 

AA5050 alloy matrix and particle fracture. 
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