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Abstract: In the present work, the AA6061 alloy-titanium carbide metal matrix composites were manufactured. The test matrix varied par-

ticle size of 100µm, 150µm and 200µm. The design of experiments was carried out based on Taguchi’s factorial techniques. Dry sliding 

wear behavior of AA6061 alloy-titanium carbide composites was investigated employing a pin-on-disc wear test rig. Results exposed that the 

wear rate increased with increasing size of titanium carbide particles. The mathematical modeling was validated with experimental results. 
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1. INTRODUCTION  

Metal matrix composites have been extensively studied in terms of mechanical properties, but a particular material system may 

behave differently as particle size, morphology, composition, and distribution of the hardening phase varies. Matrix phases are 

generally chosen based upon their reactivity to the carbides of interest and the intrinsic properties of the matrix itself, including 

corrosion resistance and wear resistance, depending on the target application [1-16]. Wear resistance is one key aspect where 

the intrinsic properties of metal matrix composites may be exploited [17-25]. Often an amount of the hard particle constituent 

dissolves into the liquid metal matrix due manufacture of the metal matrix composites and then precipitates as either the same 

primary particle composition or as secondary particles. The effect of the composite particle dimension has been studied [26-

30]. It was found that the material loss increased with increase of reinforced particle size. Rhee [31] found that the total wear of 

a polymer-matrix is a function of the applied load F, speed V and sliding time t according to 

 

 ∆� = �����	
           (1) 

where ∆W is the weight loss of the friction material and K, a, b and c are empirical constants. 

 

In the current work, dry sliding wear of AA6061 alloy-titanium carbide composites with different particle sizes were studied 

under different combinations of sliding speed, normal load, sliding distance and particle size based on Taguchi techniques [32, 

33].  

 

2. MATERIALS AND METHODS 
AA6061 alloy-titanium carbide composites were fabricated by the stir casting process. The volume fraction of titanium carbide 

in the composites was 30%. The particle size of titanium carbide was varied at 100µm, 150 µm and 200 µm. The T8 heat-

treated samples were machined to get cylindrical specimens of 10 mm diameter and 30 mm length for the dry wear tests. The 

levels chosen for the controllable wear parameters are précised in Table 1. The orthogonal array, L9 was ideal to carry out wear 

experiments (Table 2). A pin-on-disc wear monitor (ASTM G99) was employed to assess the wear behavior of AA6061 alloy- 

titanium carbide composite specimens against hardened ground steel (En32) disc (figure 1). 

 

 
Figure 1: Tests carried out in the present work: (a) Pin-on-disc wear test and (b) Surface roughness test. 

Table 1: Wear parameters and levels 
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Factor Symbol Level–1 Level–2 Level–3 

Particle size, µm A 100 150 200 

Load, N B 10 20 30 

Speed, m/s C 2 3 4 

Sliding distance, m D 500 750 1000 

 
Table 2: Orthogonal array (L9) and control parameters 

 
Treat No. A B C D 

1 1 1 1 1 

2 1 2 2 2 

3 1 3 3 3 

4 2 1 2 3 

5 2 2 3 1 

6 2 3 1 2 

7 3 1 3 2 

8 3 2 1 3 

9 3 3 2 1 

 

 

In the present work, the wear formulation was attempted based on the following expression: 

� = �	�����
���           (2) 

where, W is the wear rate in g/m; d is the particle size of reinforcement, mm; F is the normal load, N;  S is sliding speed, m/s 

D is the sliding distance, mm and; K, a, b, c and d are empirical constants.  
 

3. RESULTS AND DISCUSSION 

The analysis of variance (ANOVA) is presented in Table 3. All process parameters are acceptable as they prove to Fisher’s test 

at 90% confidence level.  For variation in the wear rate, the percent contribution of titanium carbide particle size (A), normal 

load (B),  sliding speed (C) and sliding distance (D) are, correspondingly, 83.20%,  8.18%,  4.05% and  4.58%.  The R-squared 

values of %titanium carbide, normal load, sliding speed and sliding distance are, respectively, 0.9900, 0.9673, 0.9350 and 

0.9618 as stated in figure 3. The resemblance of R-squared values is on par with mean values obtained by Taguchi techniques.  

Table 3: ANOVA summary of the effective stress 

 

Source Sum 1 Sum 2 Sum 3 SS v V F P 

A 2.46E-02 4.16E-02 5.32E-02 1.38E-04 1 1.38E-04 1.28E+15 83.20 

B 3.57E-02 3.90E-02 4.47E-02 1.36E-05 1 1.36E-05 1.26E+14 8.18 

C 4.26E-02 4.04E-02 3.64E-02 6.73E-06 1 6.73E-06 6.21E+13 4.05 

D 3.66E-02 5.16E-04 1.19E-01 7.62E-06 1 7.62E-06 7.03E+13 4.58 

e    4.34E-19 4 1.08E-19 1.00 0.00 

T 1.40E-01 1.21E-01 2.54E-01 1.66E-04 8   100.00 

Note: SS is the sum of square, v is the degrees of freedom, V is the variance, F is the Fisher’s ratio, P is the percentage of contribution and T is the sum 

squares due to total variation. 

 

The wear rate was increased with increase in particle size of titanium carbide as shown in figure 3a. The observed wear-out 

trace testifies to a combination of abrasion wear and adhesion wear. The plastic deformation was observed on the wear-out 

trace edges. The decreased wear of the composite was detected with small size of reinforcing particles in the friction region. 

Figure 3b characterizes an increase in wear rate with increase of normal load. An increase in applied load increases the pressure 

on the pin resulting in an increase in the interfacial temperature, leading to the softening of the material and an increase in the 

plastic flow. When the loads are greater than transition load, severe wear occurs which leads to seizure of material. Probably 

due to poor bonding between particles and matrix and during wear, this has resulted in dislodging of titanium carbide particles 
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hence, more wear rate. The wear loss of the AA6061 alloy-titanium carbide composites tended to decrease when the sliding 

speed was increased from 2 m/s to 4 m/s. Wear resistance increases when increasing the sliding speed at constant load regard-

less of size of titanium carbide particles. It can be observed form figure 3d that the wear of the AA6061 alloy-titanium carbide 

composites material increases as the sliding distance is increased.  

 

 
Figure 3: Wear rate as a function of (a) particle size, (b) applied load, (c) sliding speed and (d) sliding distance. 

 

 

Figure 5: Validation of mathematical modeling with experimental results. 
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The mathematical relation between wear and volume fraction of reinforcement, applied load, sliding speed and sliding distance 

were obtained by curve fitting in terms of power laws as follows: 

 W = 1.40 × 10��	�d�.����F�.�� !S��.�� !D�.� �$�       (3) 

 

Archard interpreted K factor as a probability of forming wear debris from asperity encounters [32]. Typically for mild 

wear, K ≈ 10
−8

, whereas for severe wear, K ≈ 10
−2

.  As the value of K ≈ 10
−2

, the wear of AA6061 alloy-titanium carbide com-

posites is severe because the composite was made of micro-sized reinforced particles. The wear rate values determined by the 

Equation (3) are within the tolerable limits of experimental results as seen from figure 4.  For this rationale, the mathematical 

modeling is rich enough to describe the severity of wear of AA6061-titanium carbide metal matrix composites.  

 

4. CONCLUSIONS 

The effect of micro-size particles on the severity of wear was modeled and validated with experimental results of AA6061 al-

loy-titanium carbide composites. The AA6061 alloy-titanium carbide composites have experienced severe wear due to plastic 

deformation and seizure of material during wear tests.  
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