M. Tech Thesis Department of Mechanical Engineering, University College of Engineering, Osmania University, Hyderabad

Fracture Behavior of Al/Alumina and Al/Boron Carbide Metal Matrix Composites

B. Prakash Raj

M.Tech Student, Department of Mechanical Engineering, Osmania University, Hyderabad

Under the Guidance of Dr. A. Chennakesava Reddy, Associate Professor, Department of Mechanical Engineering, Vasavi College of Engineering Hyderabad.

ABSTRACT

This project was aimed at the manufacturing of pure aluminum matrix composites reinforced with about 50 %vol. of Al_2O_3 and B_4C particles (30µm average diameter). The two materials have reported to be the measured ultimate tensile strengths of 120 and 200 MPa, respectively, for the Al/Al_2O_3 and AL/B_4C composites. Internal damage of these composites was monitored in terms of elastic modulus and density. These data are related to microstructural observations which indicate two distinct damage mechanisms: (i) particle fracture predominant in the Al/Al_2O_3 composite, and (ii) nucleation and growth of voids in the matrix of the Al/B_4C composite.

Figure 1: Stress-strain curves of (a) pure aluminum, (b) Al/Al₂O₃ composite, and (c) Al/B₄C composite.

The damage parameter as determined from strain-induced degradation of Young's Modulus,

De, is classically defined as

$$D_e = 1 - E/E_o \tag{1}$$

where E_0 is the initial Young's modulus of the composite and E is the instantaneous modulus

measured after each unloading.

The density-derived damage parameter, D_r , is a direct measure of void content and is defined as

$$D_e = 1 - E/E_o \tag{2}$$

where r_0 is the initial density of the composite and r is the instantaneous density after each level of plastic straining.

The two measurement techniques reveal different trends that can be correlated with the micro-mechanisms of damage in the two materials.

Figure 2: Fracture Mechanism in: (a) Al/Al₂O₃ composite, and (b) Al/B₄C composite.

In the Al/Al_2O_3 composite, metallographic examination reveals that damage takes two forms: (i) particle fracture which is the dominant damage mode, and (ii) matrix voiding. Damage in the Al/B_4C composite is in the form of matrix voids, most often nucleated at or near the particle-matrix interface.

References:

- 1. A. C. Reddy, Studies on fracture behavior of brittle matrix and alumina trihydrate particulate composites, Indian Journal of Engineering & Materials Sciences, Vol.9, No.5, pp.365-368, 2003.
- 2. H. B. Niranjan, A. C. Reddy, Computational Modeling of Interfacial Debonding in Fused Silica/AA7020 Alloy Particle-Reinforced Metal Matrix Composites, 3rd International

Department of Mechanical Engineering, University College of Engineering, Osmania University, Hyderabad

Conference on Composite Materials and Characterization, Chennai, India, 11-12 May 2001, pp.222-227.

- H. B. Niranjan, A. C. Reddy, Nanoscale Characterization of Interfacial Debonding and Matrix Damage in Titanium Carbide/AA8090 Alloy Particle-Reinforced Metal Matrix Composites, 3rd International Conference on Composite Materials and Characterization, Chennai, India, 11-12 May 2001, pp.228-233.
- S. Sundara Rajan, A. C. Reddy, Assessment of Temperature Induced Fracture in Boron Nitride/AA1100 Alloy Particle-Reinforced Metal Matrix Composites, 3rd International Conference on Composite Materials and Characterization, Chennai, India, 11-12 May 2001, pp.234-239.
- S. Sundara Rajan, A. C. Reddy, Estimation of Fracture in Zirconia/AA2024 Alloy Particle-Reinforced Composites Subjected to Thermo-Mechanical Loading, 3rd International Conference on Composite Materials and Characterization, Chennai, India, 11-12 May 2001, pp.240-245.
- P. M. Jebaraj, A. C. Reddy, Finite Element Predictions for the Thermoelastic Properties and Interphase Fracture of Titanium Nitride /AA3003 Alloy Particle-Reinforced Composites, 3rd International Conference on Composite Materials and Characterization, Chennai, India, 11-12 May 2001, pp.246-251.
- P. M. Jebaraj, A. C. Reddy, Effect of Thermo-Mechanical Loading on Interphase and Particle Fractures of Titanium Oxide /AA4015 Alloy Particle-Reinforced Composites, 3rd International Conference on Composite Materials and Characterization, Chennai, India, 11-12 May 2001, pp.252-256.
- A. C. Reddy, Effect of CTE and Stiffness Mismatches on Interphase and Particle Fractures of Zirconium Carbide/AA5050 Alloy Particle-Reinforced Composites, 3rd International Conference on Composite Materials and Characterization, Chennai, India, 11-12 May 2001, pp.257-262.
- 9. A. C. Reddy, Behavioral Characteristics of Graphite /AA6061 Alloy Particle-Reinforced Metal Matrix Composites, 3rd International Conference on Composite Materials and Characterization, Chennai, India, 11-12 May 2001, pp.263-269.
- A. C. Reddy, Prediction of CTE of Al/TiB2 Metal Matrix Composites, 3rd International Conference on Composite Materials and Characterization, Chennai, India, 11-12 May 2001, pp.270-275.
- 11. A. C. Reddy, Significance of Testing Parameters on the Wear Behavior of AA1100/B4C Metal Matrix Composites based on the Taguchi Method, 3rd International Conference on Composite Materials and Characterization, Chennai, India, 11-12 May 2001, pp.276-280.
- 12. A. C. Reddy, Mechanisms of Load Transfer in Tension to Estimate Interfacial Behaviour of Kevlar 29 / Epoxy Composites by Laser Raman Spectroscopy, National Conference on Advances in Manufacturing Technologies (AMT-2001), Pune, 9-10 March 2001, pp.205-207.
- B. Kotiveera Chari, A. C. Reddy, Finite Element Modeling and Experimental Validation of Interphase Debonding and Particle Fracture in Titanium Carbide/AA1100 Alloy, 3rd National Conference on Materials and Manufacturing Processes, Hyderabad, India, 22-25 February 2002, pp.156-161.
- B. Kotiveera Chari, A. C. Reddy, Interphase Cracking in Titanium Nitride/2024 Alloy Particle-Reinforced Metal-Matrix Composites, 3rd National Conference on Materials and Manufacturing Processes, Hyderabad, India, 22-25 February 2002, pp.162-167.
- 15. V. V. Satyanarayana, A. C. Reddy, Computation of Interphase Separation and Particle Fracture of Titanium Oxide/3003 Particle Reinforced Composites: The Role of Thermo-Mechanical Loading, 3rd National Conference on Materials and Manufacturing Processes, Hyderabad, India, 22-25 February 2002, pp.168-173.
- 16. V. V. Satyanarayana, A. C. Reddy, Micromechanical Modeling of Reinforcement Fracture in Zirconium Carbide/4015 Particle-Reinforced Metal-Matrix Composites, 3rd National Conference on Materials and Manufacturing Processes, Hyderabad, India, 22-25 February 2002, pp.174-178.

M. Tech Thesis

Department of Mechanical Engineering, University College of Engineering, Osmania University, Hyderabad

- A. C. Reddy, Two dimensional (2D) RVE-Based Modeling of Interphase Separation and Particle Fracture in Graphite/5050 Particle Reinforced Composites, 3rd National Conference on Materials and Manufacturing Processes, Hyderabad, India, 22-25 February 2002, pp.179-183.
- A. C. Reddy, Simulation of MgO/AA6061 Particulate-Reinforced Composites Taking Account of CTE Mismatch Effects and Interphase Separation, 3rd National Conference on Materials and Manufacturing Processes, Hyderabad, India, 22-25 February 2002, pp.184-187.
- Ch. Rajanna, A. C. Reddy, Effects of Interphase and Interface Characteristics on the Tensile Behavior of Boron Nitride/7020 Particle Reinforced Composites Subjected to Thermo-Mechanical Loading, 3rd National Conference on Materials and Manufacturing Processes, Hyderabad, India, 22-25 February 2002, pp.188-191.
- 20. Ch. Rajanna, A. C. Reddy, Modeling of Interphases in SiO2/AA8090 alloy Particle -Reinforced Composites under Thermo-Mechanical Loading Using Finite Element Method, 3rd National Conference on Materials and Manufacturing Processes, Hyderabad, India, 22-25 February 2002, pp.192-195.
- 21. A. C. Reddy, Evaluation of Thermal Expansion of Al/B4C Metal Matrix Composites, 3rd National Conference on Materials and Manufacturing Processes, Hyderabad, India, 22-25 February 2002, pp.196-200.
- 22. A. C. Reddy, Wear Resistant Titanium Boride Metal Matrix Composites, 3rd National Conference on Materials and Manufacturing Processes, Hyderabad, India, 22-25 February 2002, pp.201-205.