Failure Analysis of Investment Cast Gas Turbine Blades at High Temperature Conditions

S. Basava Raj

PG Student, Department of Mechanical Engineering, JNT University, Hyderabad

Under the Guidance of Dr. A. Chennakesava Reddy, Associate Professor, JNTUH College of Engineering, JNT University, Hyderabad.

ABSTRACT

Turbine blade is the most important component of the gas turbine. The excellent thermal stability, tensile and fatigue strengths, resistance to creep and hot corrosion, and micro-structural stability possessed by nickel-based super alloy render the material an optimum choice for application in turbine blades. Hot corrosion is an accelerated damage phenomenon that occurs when high temperature turbine blades made of super alloys are operated in an environment containing salt and sulfur. This project work presents the failure analysis of turbine blades used for gas turbine in marine applications. The turbine blade was made of Nickel based super alloys and was fabricated by investment casting method. The turbine blade was operated at elevated temperatures in corrosive environmental attack such as oxidation, hot corrosion and sulphidation. The gas turbine blade was operated for about 10000 hours. Hot corrosion on turbine blades can be intensified by the presence of vanadium, which produces V_20_5 , in combination with the alkalis, while in molten state, can aggressively dissolve metal oxides.

Figure 1: Blades operated at high temperature.

M. Tech Thesis Department of Mechanical Engineering, JNTUH College of Engineering, Kukatpally, Hyderabad

The turbine blade was operated at elevated temperatures from 900° to 950°C for about 10000 hours. There were a large number of cracks at different regions of blades because of operation at high temperatures and stresses over a long period of time as shown in figure 1. There was loss of some material and thickness as well, at the tip of the turbine blade which is attributed to the combined mechanisms such as hot corrosion and fatigue. Very little sulphide formation within the metal was observed. Sulphidation is an important contributing factor to the failure of turbine blades especially in the turbines operating in marine environment. The microstructure at the root of the blade consisting of equiaxed grains of nickel solid solution. Fine particle of γ' precipitated within the matrix and dispersed carbide particle were found in the grain boundaries.

There were a large number of cracks at different regions of blades because of operation at high temperatures and stresses over a long period of time. Intergranular cracks are revealed on fracture surface of blades as shown in figure 2.

Figure 2: Intergranular Fracture Morphology.

References

- 1. A. C. Reddy, K.M. Babu, P.M. Jebaraj and M.P. Chowdaiah, Accelerator for faster investment shell making and its effect on the properties of investment moulds, Indian Foundry Journal, Vol.41, No.10, pp.3-8, 1995.
- A. C. Reddy, H.B. Niranjan and A.R.V. Murti, Optimization of investment shell mould using colloidal silica binder, Indian Journal of Engineering & Materials, Vol.03, No.05, pp.180-184, 1996.
- 3. A. C. Reddy, Coal flyash environmental impact and utilization: A review, Journal of Engineering Advances, Vol.9, No.2, pp.48-49, 1997.
- 4. A. C. Reddy, V.S.R.Murti and S. Sundararajan, Regression modeling approach for the analysis of investment shell moulds from coal-flyash, Foundry Journal, Vol.9, No.5, pp.36-40, 1997.
- 5. A. C. Reddy, V.S.R. Murti, S. Sundararajan, Some aspects of reducing sediments rate of refractory fillers in the investment casting process, Journal of Engineering Advances, Vol.10, No.8, pp.61-63, 1998.

- 6. A. C. Reddy, V.S.R. Murti and S. Sundararajan, Control factor design of investment shell mould from coal flyash by Taguchi method, Indian Foundry Journal, Vol.45, No.04, 93-98, 1999.
- 7. A. C. Reddy, V.S.R.Murti and P.M.Jebaraj, A new technique for measurement of the strength of ceramic shells in the precision casting process, Journal of Testing and Evaluation, Vol. 28, No.3, pp. 224-226, 2000.
- 8. A. C. Reddy, Reuse of coal- flyash in foundry, Journal of Technology Trends, Vol.2, No.1, pp.35-36, 2001.
- 9. A. C. Reddy, V.S.R. Murti and S. Sundararajan, Bonding mechanism in the coal-flyash ceramic shells, Indian Foundry Journal, Vol.47, No.4, pp.21-25, 2001.
- 10. A. C. Reddy, V.S.R. Murti, Studies on Lost-wax process using silox binder, X-ISME Conference on Mechanical Engineering, New Delhi, 09-11th December1996, pp.82-86.
- A. C. Reddy, Characterization of ceramic shells fabricated using yttria as reinforcing filler, National Conference on Advanced Materials and Manufacturing Technologies, Hyderabad, 5-7 December 1997, pp.125-129.
- 12. A. C. Reddy, S. Sundararajan, Characterization of ceramic shells using rutile (titania) as reinforcing filler at casting temperature, National Conference on Advanced Materials and Manufacturing Technologies, Hyderabad, 5-7 December 1997, pp.130-134.
- A. C. Reddy, V.S.R. Murti, S. Sundararajan, Development of a ceramic moulding process from coal flyash for investment casting, 18th AIMTDR Conference, Kharagpur, 21-23rd December 1998, pp.118-122.
- 14. P. Martin Jebaraj, A. C. Reddy, Prediction of thermal shock of ceramic shells using fused silica as reinforcing filler at casting conditions, National Conference on Advances in Production Technology, Bangalore, 7-9 February 1998, pp.52-56.
- 15. H. B. Niranjan, A. C. Reddy, Investment shell moulds using graphite filler to prevent dimensional instability and metal-mould reaction of Ti-alloy castings, National Conference on Advances in Production Technology, Bangalore, 7-9 February 1998, pp.57-62.
- 16. A. C. Reddy, S. Sundararajan, V.S.R. Murti, Dampening of noise parameters for developing ceramic shell from coal fly ash by Taguchi Method, CEMILAC Conference, Ministry of Defence, India, 20-21st August 1999, B91-95.
- 17. V.V. Satyanarayana, A. C. Reddy, S. Sundararajan, Reduction of Casting Porosity in the Lostwax process choosing right coating materials by response surface criteria, CEMILAC Conference, Ministry of Defence, India, 20-21st August 1999, B110-114.
- Ch. Rajana, A. C. Reddy, Interfacial Reaction between Zirconium Alloy and Zirconia Ceramic Shell Mold, National Conference on Advanced Materials and Manufacturing Technologies, Hyderabad, 18-20 March 2000, pp.212-217.
- 19. S. Madhav Reddy, A. C. Reddy, Interfacial Reaction between Magnesium Alloy and magnesia Ceramic Shell Mold, National Conference on Advanced Materials and Manufacturing Technologies, Hyderabad, 18-20 March 2000, pp.218-222.
- 20. A. C. Reddy, Development of Alumina Investment Shell Molds to Cast 7075 Al-Alloy, National Conference on Advances in Manufacturing Technologies (AMT-2001), Pune, 9-10 March 2001, pp.102-104.