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Pilot Studies on Single Point Incremental 
Forming Process for Hyperbolic Brass Cups  
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Abstract— Incremental sheet forming is a sheet metal forming technique wherein a sheet is formed into the final part by series of small incre-
mental deformations. It is a relative new sheet forming process which offers the possibility of forming complex parts without dedicated dies using 
only a single point tool and a standard 3-axis CNC machine. This paper presents the preliminary studies on the finite element modelling of single 
point incremental sheet forming process for hyperbolic cups using 60-40 brass alloy. ABAQUS 6.14 software code was used for finite element 
analysis. Though the experimental strains obtained were within the allowable limits, the sheet fractured as the maximum equivalent stress in-
duced was 548.3 MPa which exceeds ultimate tensile strength of brass that is 470 MPa. 
 
Index Terms— Brass, single point incremental forming process, hyperbolic cups.   

——————————      —————————— 

1 INTRODUCTION                                                                     
ETAL forming is the backbone of modern manufacturing 
industry besides being a major industry in itself. 
Throughout the world, hundreds of million tons of met-

als go through metal forming processes every year. As much as 
15–20% GDP of industrialized nations comes from metal form-
ing industry. Single Point Incremental Forming (SPIF) is a sheet 
metal forming technique in which sheet is formed using a sin-
gle, small tool as opposed to a large die. In SPIF, the tool makes 
a series of (x-y) contour passes around the periphery of the part, 
stepping down in the third (z) axis between each pass as shown 
in figure 1. The sheet is thus formed into the desired shape 
based on the tool path. Unlike conventional sheet metal forming 
techniques such as stamping or spinning, SPIF is able to form 
complex asymmetrical parts, without the need for a die. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
In a series of research on deep drawing process, a rich inves-

tigation have been carried out on warm deep drawing process 
to improve the super plastic properties of materials such as 
AA1050 alloy [1], [2], [3], [4], [5,] [6], AA2014 alloy [7], AA2017 

alloy [8], AA2024 alloy [9], AA2219 alloy [10], AA2618 alloy 
[11], AA3003 alloy [12], AA5052 alloy [13], AA5049 alloy [14], 
AA5052 alloy [15], AA6061 alloy [16], Ti-Al-4V alloy [17], EDD 
steel [18], gas cylinder steel [19]. 

Unlike in the conventional sheet forming there are many pa-
rameters which affect the process mainly step depth, tool di-
ameter, sheet thickness, friction coefficient, type of lubricant, 
tool path, increments along X&Y directions, spindle speed, feed 
rate, wall angle [20], [21]. 

Kopac et al. [22] given importance to the tool movement 
along the tool path, i.e tool path from center to the end of the 
sheet has good effect and also concluded that the optimal incli-
nation of walls on the product are 45°, bigger angles may cause 
errors, cracks, and product failure. 

Malwad et al. [25] described the deformation mechanism by 
variation of wall angles. Greater formability can be achieved in 
cups which have wall angle less than 75º. As the wall angle re-
duces shearing plays an important role in deformation and bi-
axial starching takes place at the corners so the sheet cracks at 
corners than sides. The numerical simulations of frustum of 
cone and pyramid with different slope angles were performed 
using LS-DYNA and analysed the formability.                                                                                                                                            

 Bagade et al. [23] has described the deformation behaviour 
and microstructure of EDD steels in incremental sheet forming. 
In which optimum wall angle are 73 , thickness is drastically 
reduced by 75% of sheet thickness and grain size decreased due 
to strains developed. Induced biaxial stretching causes failure in 
sheet. 

 Tisza, et al. [24] has stated that due to the special incremen-
tal nature of deformation process, significantly higher deforma-
tion can be achieved compared to conventional sheet metal 
forming processes and it also follows from its unique deforma-
tion characteristics that materials with lower formability in con-
ventional forming may be manufactured in an economic way. 
Fiorotto, et al. [25] has stated that choosing an aluminium sheet 
as a diaphragm and using a vacuum bag wrinkle-free part have 
formed in an incremental fashion even though resin tends to 
accumulate. 

The purpose of present project work was to estimate the 
formability of 60-40 Brass alloy to fabricate hyperbolic cups us-
ing single point incremental forming (SPIF) process. 

M 
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Fig. 1. Single point incremental forming process. 
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2 MATERIALS AND METHODS 
60-40 brass sheet was used in this study of single point incre-
mental sheet forming to fabricate hyperbolic cups. 
Brass is made of copper and zinc with compositions as given 
in Table 1. The mechanical properties of brass are given in 
Table 2. 
 

TABLE 1 
COMPOSITION OF STAINLESS STEEL 304 

 
TABLE 2 

MECHANICAL PROPERTIES OF STAINLESS STEEL 304 

Density 8.2 g/cc 
Young's modulus 470 MPa 

Tensile strength 0.31 

Poisson's ratio 102 GPa 

 
Plasticity data was obtained by conducting tensile test of 

60-40 Brass, from which the data obtained is represented in 
figure 1. The obtained values were taken as material proper-
ties-plasticity for simulation of SPIF process. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
2.1 FEM Pre-processing 
The finite element method (FEM) has become an important tool 
for the numerical solutions of engineering problems. It is the 
piecewise approximation of object where the object is divided 
into number of small elements, the integration of all such small 
elemental analysis finally give the solutions [27]. The finite ele-
ment modelling of SPIF process was carried out using ABAQUS 
(6.14) software to fabricate hyperbolic cups. In geometric model-
ling a square sheet of dimensions 150 mm×150 mm and tool of 
cylindrical rod having hemispherical end 6 mm radius was 
created. The sheet and tool were modelled as deformable, ana-
lytical rigid body respectively and assembled together as shown 
in figure 2. In order to reduce the complexity of the model the 

other parts like tool holder, work holder were simulated by 
boundary conditions, hence this is a simplified model. Tool was 
given a reference point for governing tool motion. Contact was 
the interaction between tool and the sheet. Since the sheet un-
dergoes the localised deformation at the contact, modelling of 
contact should be correct. The contact was modelled as friction-
al contact. Coefficient of friction was considered at different 
levels as 0.15. 

Meshing is the process of discretizing the component. Here 
the sheet was meshed as shown in figure 3 with quad dominat-
ed S4R shell elements [27]. Element size has impact on compu-
tational time and results. Fine mesh gives the good results with 
greater computational time. Coarse mesh leads to inconsistent 
results, penetration and convergence problems during simula-
tion process. A fine mesh of 2mm was generated for consistent 
results. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

TABLE 3 
NODES AND ELEMENTS 

Element size 2mm 
No. of Elements 5777 
No. of Nodes 5626 

 
A simplified model was created by eliminating tool holder 

and work holder, but they are simulated by the boundary con-
ditions. Edges of the sheet are fixed and tool was given four 
degrees of freedom, three translatory along x, y, z directions 
and one rotational around tool axis as shown in figure 4. The 
motion of the tool was controlled by amplitude data in smooth 
step form. 
 

2.2 Experimental Validation 
Initially tool was placed at centre of the square sheet and 
made it as zero position. Tool was moved in a specified con-
tour till it completed the specified path then tool takes a spe-
cific depth in downward direction and moves to a new point. 

Cu Pb Fe Zn Other 

62.5-66.5% 0.8-1.4% Max 0.1% 34% 8-11% 

 

Fig. 1. True stress-strain curve of AA6082 alloy. 

 

 

Fig. 2.  Modeled sheet and Tool. 
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The tool path generated by the CAM package [28] for hyper-
bolic cup is as shown in the figure 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Blank of 150mm × 150mm was cut from large sheet material 
using bench shear machine. Holes are made in the corners of 
the sheet using a drilling machine. Square patterns were 

drawn with 5 mm distance between them on back side of 
blank as shown in figure 6 for the purpose of extracting results 
from finished part. Blank is clamped to the blank holder and 
tool of 6mm diameter if fixed in tool holder. Tool was placed 
at one corner of sheet for hyperbolic cup. This was made zero 
position using inch mode in CNC machine. The part program 
was loaded and checked to eliminate errors. Program was run 
to start the machine (figure 7). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3 RESULTS AND DISCUSSION 
The maximum equivalent stress induced in the hyperbolic cup 
is 548.3 MPa. Maximum equivalent stress is observed in the 
walls of cup as shown in figure 8. Maximum equivalent plastic 
strain obtained is 0.837, it is observed in walls of the last step 
of simulation as shown in figure 9. 
 
 
 

 

Fig. 4.  Boundary conditions. 

 

Fig. 5.  Tool path generation. 

 

Fig. 6.  Prepared sheet. 

 

 

Fig. 3.  Meshed sheet. 

 

Fig. 7.  Simulation of CNC program. 
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Validation of the simulation results was carried out by 

creating finite element grid of 5mm size on front and backside 
of the sheet material. The size of element was 2mm in case of 
simulation results. The stress and strain pattern obtained by 
the finite element method coincides with the pattern on the 
cups.  From the experiments conducted on CNC machine to 
draw hyperbolic cup, fracture occurred at a depth of 12 mm as 
shown in figure 10. The maximum strain obtained was calcu-
lated from the pattern observed on the cup as shown in figure 
10 which is found to be 0.75. Strains obtained from FEA 
represent the maximum values of rupture (figure 11). Though 
the experimental strains obtained were smaller than that of 
FEA and within allowable limits, the sheet was fractured be-
cause the maximum equivalent stress induced was 548.3 MPa 
which exceeds ultimate tensile strength of brass that is 470 
MPa. 

 
 
 

 
 
 

 

 

 

 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

The strain variations are highly non-linear in the first stage 
and linear in the subsequent stages. The strain variation along 
the wall of hyperbolic cup at respective step depths is shown 
in figure 12. The thickness variation along the walls of hyper-
bolic cup is shown in figure 13. The majority of thickness re-
duction takes place in the walls of the cup but not in the flange 
or bottom of the cup. Figure 14 represents the formability dia-
gram for hyperbolic cup. During initial stages of SPIF, the 

 
Fig. 8. Equivalent stress induced in sheet thickness. 

 

 

 
Fig. 12. Strain variation in the wall of the cup on 1mm thick sheet. 

 

 
Fig. 9. Equivalent strain induced in (a) 1mm sheet and (b) 1.2mm 
sheet. 

 

 
Fig. 11. Plot showing equivalent strain vs equivalent stress. 
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shear and compressive stresses were dominating the formabil-
ity of hyperbolic cups of brass. At later stages of plastic de-
formation, the shear stress is highly predominant and uniaxial 
tension is less predominant resulting the fracture of sheet. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4 CONCLUSION 
In the present work, the finite element analysis and validation 
are successfully implemented for single point incremental 
forming process of brass sheet. Even though the experimental 
strains obtained were within the allowable limits, the sheet 
fractured. The maximum equivalent stress induced was 548.3 
MPa which exceeds ultimate tensile strength (470 MPa) of 
brass. Another major parameter is the composition of brass 60-
40, which contains 60% copper and 40% zinc. Though copper 
is ductile in nature, due to the addition of higher amount of 
zinc the ductility of material was reduced which made draw-
ing of the cup difficult resulting in a fracture. So, this material 

is not viable to carry out Incremental deep drawing process. 
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