Manufacturing and Machining of AA2024/SiC_p Metal Matrix Composites

B. Venkatesh
PG Student, Department of Mechanical Engineering, JNT University, Hyderabad

Under the Guidance of Dr. A. Chennakesava Reddy, Associate Professor, JNTUH College of Engineering, JNT University, Hyderabad.

ABSTRACT

Machinability of MMCs has received considerable attention because of the high tool wear associated with machining. Although efforts have been made to produce near-net-shape MMCs products by casting or hot forging, the need for machining cannot be completely eliminated and the resulting near-net-shape products still have to be machined to the designed shape and dimension. MMCs reinforced with SiC_p particles are extremely difficult to machine (turning, milling, drilling, threading) due to their extreme abrasive. As the presence of hard reinforcement particles makes them extremely difficult to machine as they lead to rapid tool wear.

Figure 1: Turning of AA2024/SiC_p metal matrix composites.
The present study has been carried out to investigate the machinability of the AA2024/SiCp metal matrix composites at different weight fraction of SiCp with the help of tungsten carbide tool. The influences of machining parameters such as cutting speed and depth of cut at constant feed rate on surface roughness and the cutting forces (tangential, feed and radial forces) have been investigated.

Figure 2: Size of chips during machining of as cast AA2024/SiCp MMCs reinforced with (a) 10 wt % SiCp, (b) 12.5 wt % SiCp and (c) 15 wt % SiCp.

The size of chips produced during machining of AA2024/SiCp metal matrix composites reinforced with 10 wt% SiCp are longer in comparison to the size of chips produced in case of 12.5 and 15 wt% SiCp reinforced MMCs. As the presence of SiCp in cast MMCs increases the brittleness of the material, the sizes of chips are gradually decreases. The cutting forces (Ft, Ff and Fr) increased on increasing the depth of cut at constant feed rate and different cutting speed. The cutting force components Ft, Ff and Fr were decreased on increasing the cutting speed of the composites. The surface roughness of MMCs increased on increasing the weight percentage of SiCp in the matrix metal and it increases on increasing the depth of cut at constant feed rate and different cutting speed.

References:
Nanoparticulate Metal Matrix Composites, National Conference on Materials and
7. A. C. Reddy, Cohesive Zone Finite Element Analysis to Envisage Interface Debonding in
AA7020/Titanium Oxide Nanoparticulate Metal Matrix Composites, 2nd International
Conference on Composite Materials and Characterization, Nagpur, India, 9-10 April 1999,
pp.204-209.
8. A. C. Reddy, Micromechanical Modelling of Interfacial Debonding in AA1100/Graphite
Nanoparticulate Reinforced Metal Matrix Composites, 2nd International Conference on
9. A. C. Reddy, Micromechanical and fracture behaviors of Ellipsoidal Graphite Reinforced
AA2024 Alloy Matrix Composites, 2nd National Conference on Materials and Manufacturing
Processes, Hyderabad, India, 10-11 March 2000, pp.96-103.
10. A. C. Reddy, Constitutive Behavior of AA5050/MgO Metal Matrix Composites with Interface
Debonding: the Finite Element Method for Uniaxial Tension, 2nd National Conference on
11. A. C. Reddy, Effect of CTE and Stiffness Mismatches on Interphase and Particle Fractures of
Zirconium Carbide/AA5050 Alloy Particle-Reinforced Composites, 3rd International
Conference on Composite Materials and Characterization, Chennai, India, 11-12 May 2001,
pp.257-262.
Matrix Composites, 3rd International Conference on Composite Materials and Characterization,
Conference on Composite Materials and Characterization, Chennai, India, 11-12 May 2001,
pp.270-275.
14. A. C. Reddy, Significance of Testing Parameters on the Wear Behavior of AA1100/B4C Metal
Matrix Composites based on the Taguchi Method, 3rd International Conference on Composite
15. A. C. Reddy, Mechanisms of Load Transfer in Tension to Estimate Interfacial Behaviour of
Kevlar 29 / Epoxy Composites by Laser Raman Spectroscopy, National Conference on
16. A. C. Reddy, Fracture behavior of brittle matrix and alumina trihydrate particulate
composites, Indian Journal of Engineering & Materials Sciences, vol. 9, no. 5, pp. 365-368,
2002.
17. A. C. Reddy, Two dimensional (2D) RVE-Based Modeling of Interphase Separation and
Particle Fracture in Graphite/5050 Particle Reinforced Composites, 3rd National Conference
on Materials and Manufacturing Processes, Hyderabad, India, 22-25 February 2002, pp.179-
183.
18. A. C. Reddy, Simulation of MgO/AA6061 Particulate-Reinforced Composites Taking Account
of CTE Mismatch Effects and Interphase Separation, 3rd National Conference on Materials
19. A. C. Reddy, Evaluation of Thermal Expansion of Al/B4C Metal Matrix Composites, 3rd
National Conference on Materials and Manufacturing Processes, Hyderabad, India, 22-25

