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ABSTRACT 

 

The demand for mobile communication has been steadily increasing in recent years. With 

the limited frequency spectrum, the problem of channel assignment becomes increasingly 

important, i.e., how do we assign the calls to the available channels so that the 

interference is minimized while the demand is met? This problem is known to belong to a 

class of very difficult combinatorial optimization problems. In this paper, we apply the 

formulation of Ngo and Li with genetic algorithms to ten benchmarking problems. 

Interference-free solutions cannot be found for some of these problems; however, the 

approach is able to minimize the interference significantly. The results demonstrate the 
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effectiveness of genetic algorithms in searching for optimal solutions in this complex 

optimization problem.  

 

Keywords: genetic algorithms, channel assignment, mobile communications, wireless 

network, optimization. 

 

1 INTRODUCTION 

 

As cellular phones become ubiquitous, there is a continuously growing demand for 

mobile communication. The rate of increase in the popularity of mobile usage has far 

outpaced the availability of the usable frequencies which are necessary for the 

communication between mobile users and the base stations of cellular radio networks.  

This restriction constitutes an important bottleneck for the capacity of mobile cellular 

systems. Careful design of a network is necessary to ensure efficient use of the limited 

frequency resources. 

 

One of the most important issues on the design of a cellular radio network is to determine 

a spectrum-efficient and conflict-free allocation of channels among the cells while 

satisfying both the traffic demand and the electromagnetic compatibility (EMC) 

constraints. This is usually referred to as channel assignment or frequency assignment. 

 

 There are three types of constraints corresponding to 3 types of interference [1], namely: 

1) Co-channel constraint (CCC) 
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• where the same channel cannot be assigned to certain pairs of radio cells 

simultaneously 

2) Adjacent channel constraint (ACC) 

• where channels adjacent in the frequency spectrum cannot be assigned to   

adjacent radio cells simultaneously 

3) Co-site constraint (CSC) 

• where channels assigned in the same radio cell must have a minimal 

separation in frequency between each other. 

 

One of the earlier aims of the channel assignment problem (CAP) is to assign the 

required number of channels to each region in such a way that interference is precluded 

and the frequency spectrum is used efficiently. This problem (called CAP1 in [2]) can be 

shown to be equivalent to a graph coloring problem and is thus NP-hard.  

 

As demand for mobile communications grows further, interference-free channel 

assignments often do not exist for a given set of available frequencies. Minimizing 

interference while satisfying demand within a given frequency spectrum is another type 

of channel assignment problem (called CAP2 in [2]).  

 

Over the recent years, several heuristic approaches have been used to solve various 

channel assignment problems, including simulated annealing [3], neural networks 

[4][5][2], and genetic algorithms [6]-[16]. In particular, [8],[13]-[16] used GA for CAP1. 

[6], [7], and [11] formulated CAP2; however, they were interested only in interference-
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free situations. [12] gives a unique formulation of CAP2 in terms of GA; however, no 

simulation results were presented. Ngo and Li [11] developed an effective GA-based 

approach that obtains interference-free channel assignment by minimizing interference in 

a mobile network. They demonstrated that their approach efficiently converges to 

conflict-free solutions in a number of benchmarking problems. 

 

In this paper, we apply Ngo and Li's approach to several benchmarking channel 

assignment problems where interference-free solutions do not exist. The organization of 

this paper is as follows. Section 2 states the channel assignment problem (CAP). Section 

3 summarizes Ngo and Li's approach to solving CAP with genetic algorithms. Section 4 

describes the tests carried out and results obtained, with many choices of parameters. 

Finally, we conclude the paper in section 5. 

 

2     CHANNEL ASSIGNMENT PROBLEM  

 

The channel assignment problem arises in cellular telephone networks where discrete 

frequency ranges within the available radio frequency spectrum, called channels, need to 

be allocated to different geographical regions in order to minimize the total frequency 

span, subject to demand and interference-free constraints (CAP1), or to minimize the 

overall interference, subject to demand constraints (CAP2). In this paper, we are 

interested in CAP2, since it is more relevant in practice compared to CAP1. 
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There are essentially two kinds of channel allocation schemes - Fixed Channel Allocation 

(FCA) and Dynamic Channel Allocation (DCA). In FCA the channels are permanently 

allocated to each cell, while in DCA the channels are allocated dynamically upon request. 

DCA is desirable, but under heavy traffic load conditions FCA outperforms most known 

DCA schemes. Since heavy traffic conditions are expected in future generations of 

cellular networks, efficient FCA schemes become more important [11]. The fixed 

channel assignment problem, or in other words, assigning channels to regions in order to 

minimize the interference generated has been shown to be a graph coloring problem and 

is therefore NP-hard.  

 

A cellular network is assumed to consist of N arbitrary cells and the number of channels 

available is given by M. The channel requirements (expected traffic) for cell j are given 

by Dj. Assume that the radio frequency (RF) propagation and the spatial density of the 

expected traffic have already been calculated. The 3 types of constraints can be 

determined. The electromagnetic compatibility (EMC) constraints, specified by the 

minimum distance by which two channels must be separated in order that an acceptably 

strong S/I ratio can be guaranteed within the regions to which the channels have been 

assigned, can be represented by an N × N matrix called the compatibility matrix C.  

 

In this matrix C:  

• Each diagonal element Cii represents the co-site constraint (CSC), which is the 

minimum separation distance between any two channels at cell i. 



 6 

• Each non-diagonal element Cij represents the minimum separation distance in 

frequency between any two frequencies assigned to cells i and j, respectively. 

• Co-site constraint (CSC) is represented by Cij = 1. 

• Adjacent channel constraint (ACC) is represented by Cij = 2. 

• Cells that are free to use the same channels are represented by Cij = 0. 

 

 For example, suppose the number of cells in the network is N = 4, there are M = 11 

channels available and the demand for the channels for each of these cells is given by D = 

(1,1,1,3). Consider the compatibility matrix suggested by Sivarajan et al [1]: 

 

C = 

��
�
�
�

�

�

��
�
�
�

�

�

5210
2500
1054
0045

    (1) 

 

The diagonal terms Cii = 5 indicate that any two channels assigned to cell i must be at 

least 5 frequencies apart in order that no co-site interference exists. Channels assigned to 

cells 1 and 2 must be at least C12 = 4 frequencies apart. Off diagonal terms of Cij = 1 and 

Cij = 2 correspond to co-channel and adjacent channels constraints, respectively. 

 

 

 1 2 3 4 5 6 7 8 9 10 11 

1                       

2                       

3                       

4                       
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Figure 1.  An interference-free assignment for a 4-cell and 11-channel network 
 

The solution space is represented by F as an N × M binary matrix, where N is the total 

number of radio cells and M is the total number of available channels. Each element fjk in 

the matrix is either one or zero such that 

 

fjk = 
�
�
	

0
1

 if channel k is 
�
�
	



�
�

assignednot

assigned
 to cell  j                (2) 

 

This matrix F can be represented by the figure below. 

 

 Figure 2. Representation of F, an N × M binary matrix. 

 

The cellular network is expected to meet the demand of the traffic and to avoid 

interference. The first requirement imposes a demand constraint on F. Therefore, for cell 

i , a total of di channels are required . This implies that the total number of ones in row i 

of F must be di . If the assignment to cell i violates the demand constraint, then 

��
�

�
��
�

�
−


=

m

q
ijq df

1

  � 0                                     (3) 

The second requirement depends on the compatibility matrix C. It is made up of CSC, 

CCC and ACC. In order to satisfy the CSC, if channel p is within distance Cii from an 

fjk Channel Number 

 1 2 3 …   m Row Sum 

1 0 1 0 … 0 1 0 d1 

2 0 0 1 … 0 0 1 d2 

3 0 0 1 … 1 0 0 d3 

…         

 

 

Cell 

Number 

n 1 0  … 1 0 1 dn 
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already assigned channel q in cell i, then channel p must now be assigned to cell i. This 

can be seen from the equation below. 



−+

≤≤
≠

−−=

)1(

1

)1(

ii

ii

cp

mq
pq

cpq

fiq > 0    (4) 

To satisfy the requirements for CCC and ACC, if channel p in cell i is within distance Cij 

from an already assigned channel q in cell j, where Cij  > 0 and i � j, then channel p must 

not be assigned to cell i. This is represented as shown.  
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Therefore, the cost function can be expressed as 

C(F) = 


= =

n
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m
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       (6) 

 

where � and � are weighting factors. Eq.6 comes from a combination of eqs.(3), (4), and 

(5), since the 3 terms in eq.(6) become positive if any of the constraints represented by 

eqs.(3), (4), and (5) are not satisfied. 
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3 SOLVING CHANNEL ASSIGNMENT PROBLEM WITH 

GENETIC ALGORITHMS 

 

We use a minimum-separation encoding scheme also by Ngo and Li [11]. In this scheme, 

a p-bit binary string represents an individual with q fixed elements and the minimum 

separation between consecutive elements is represented by dmin. The concept of this 

scheme is to represent the solution in a way such that a one is followed by (dmin – 1) zeros 

encoded as a new “one”, denoted as �. For example, an individual with p = 10 and q = 3 

can be encoded as follows: 

~~~

11011000100100
EncodedOriginal

�  

The length of representation is substantially reduced. 

 

Using the minimum separation scheme, the CSC requirement from the cost function 

derived earlier can be eliminated and further reduces the search space. Hence, the cost 

function of the channel assignment problem can be simplified to  

C(F) = 


= =

n

i

m

p1 1 �
�
�

�

�
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�
�
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�
fip    (7) 

The cost function can be further simplified by exploiting the symmetry of the 

compatibility matrix C. Hence, the final cost function is represented by 
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C(F) = 
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  (8) 

 

In this genetic algorithm approach, the solution space represented by F, a N x M matrix is 

treated as a chromosome in the population. This means that if a population is to contain n 

chromosomes, there will be n F solution matrices in the population, each representing a 

chromosome.  These n F solution matrices are randomly generated and are all possible 

solutions for the channel assignment problem. The number of chromosomes in a 

population is stated by the population size, which is a parameter that should be 

manipulated to obtain an optimized solution [17]. The setting of population size, for any 

genetic algorithm, is generally quite ad hoc.  

 

Each channel assignment in the network, represented by either a 1 or 0 in the F solution 

matrix, represents the genes in each chromosome. These genes encode information about 

which channels have been assigned and vice versa, forming the chromosomes, and thus 

the F solution matrix. After randomly generating a population of chromosomes, the 

fitness of each chromosome should be evaluated. Therefore, all F solution arrays in the 

population are evaluated for their fitness values, by using the final cost function. The 

lower the cost function value, the fitter the chromosome. 

 

The next step in the genetic algorithm is to generate a new population, using genetic 

algorithm operators, such as selection, crossover and mutation. The selection process 

consists of selecting 2 parent chromosomes from a population according to their fitness, 
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i.e., individuals with better fitness have higher chances to be selected. Each F solution 

array in the population stands a chance to be selected for crossover and mutation, as a 

parent chromosome.  

 

After selection and encoding, the selected parent chromosomes, or selected F solution 

arrays (encoded), will undergo crossover, with a probability of crossover, and mutation 

with a probability of mutation. Crossover probability and mutation probability are 

parameters that should be manipulated to obtain an optimized solution. The settings of 

these parameters, like the population size parameter, are on a trial-and-error basis.  

 

Therefore, after crossover and mutation, the new offspring of the parent chromosomes are 

placed in the new population. For parents whereby no crossover or mutation is 

performed, they will be placed in the new population too. 

 

The selection, crossover and mutation processes will be repeated until the new 

population, which has the same size as the old population, is formed. After this 

procedure, all new rows in the F solution matrix, or chromosomes, will be used for a 

further run of the entire genetic algorithm until an optimized solution is found. 

 

4 SIMULATION RESULTS 

 

The data sets used to test the performance of the above algorithm originated from various 

papers. EX1 is the simple example shown in Fig.1 originally used in [1]. EX2 is a slightly 
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larger network similar to EX1 [2] (Table I). The second set of examples (HEX1-HEX4) 

considered here is based on the 21-cell hexagonal mobile system studied in [18]. The 

final set of test problems (Kunz1-Kunz4) is generated by Kunz [4] from the 

topographical data of an actual 24x21 km area around Helsinki, Finland. More details of 

these data sets can be found in Table I, as well as the original papers [1], [2], [4], [18]. 

 

The costs of the solutions obtained using the above GA-based approach are also given in 

Table I. The results for EX1, EX2, and Kunz4 show that interference-free assignments 

can be found, as evidenced by a zero objective value, whereas no interference-free 

assignments were found for other problems. 

 

Problem Cell 
No. 

 

Channel 
No. 

 

Demand 
Vector 

Cost 
Function 

Ex1 4 11 D1 0 
Ex2 5 17 D2 0 

Hex1 21 37 D3 39 
Hex2 21 91 D4 13.5 
Hex3 21 21 D5 46.5 
Hex4 21 56 D6 14.5 
Kunz1 10 30 D7 13.5 
Kunz2 15 44 D8 24 
Kunz3 20 60 D9 10 
Kunz4 25 73 D10 0 

 
Table I. Problem specification and cost function values. The demand matrices D1, 

D2 ,…, and D10  are shown in the captions of Figures 6-15. 
 

4.1 Convergence Behavior of Genetic Algorithm 
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Figure 3. A typical rate of convergence trajectory based on CPU time. 

 

The CPU time taken for each problem is dependent on the size of the problem. A 

problem with a larger network and more channels tends to take a longer CPU time (Fig.1) 

or more generations (Figs. 3 and 4) for the minimum cost function to be found. 

 

0
10
20
30
40
50
60
70
80
90

100
110
120
130

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

Generations

C
os

t F
un

ct
io

n

Kunz 2

Kunz 1

 

Figure 4. Convergence based on number of generations for Kunz1 and Kunz2 problems. 
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Figure 5. Convergence based on number of generations for Kunz3 and Kunz4 problems. 

 

4.2 Solution Representation for Channel Assignment 

 

We now present the optimal solutions of channel assignment obtained. Each dot in the 

Figs. 6-15 represents a traffic demand for a particular cell and this demand would be 

allocated to a channel in a manner such that the interferences are minimized. For 

example, in problem EX1, there are three demands in cell four, as indicated in Fig.6. 

These demands are then assigned to channel one, six, and eleven, respectively. We 

present the detailed assignments for all the test problems, in case the reader wishes to 

verify or compare with our results. 
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Figure 6. Channel assignment for EX1. Demand matrix D1= {1,1,1,3}.  
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Figure 7. Channel assignment for EX2. Demand matrix D2= {2,2,2,4,3}.  

 
 
 
 
 
 
 
 
 
 

Channel Assignment for EX 2
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Channel Assignment for Hex 1
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Figure 8. Channel assignment for Hex1. Demand matrix D3 
= {2,6,2,2,2,4,4,13,19,7,4,4,7,4,9,14,7,2,2,4,2}.  
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Channel Assignment for Hex 2
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Figure 9. Channel assignment for Hex2. Demand matrix D4 

= {2,6,2,2,2,4,4,13,19,7,4,4,7,4,9,14,7,2,2,4,2}.  
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Channel Assignment for Hex 3
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Figure 10. Channel Assignment for Hex3. Demand matrix D5 
= {1,1,1,2,3,6,7,6,10,10,11,5,7,6,4,4,7,5,5,5,6}.  

 
 
 
 
 
 
 
 
 



 20 

Channel Assignment for Hex 4
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Figure 11. Channel assignment for Hex4. Demand matrix D6 
= {1,1,1,2,3,6,7,6,10,10,11,5,7,6,4,4,7,5,5,5,6}. 
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Channel Assignment for Kunz 1
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= {10,11,9,5,9,4,5,7,4,8}. 
 
 
 
 
 
 
 
 

Figure 12. Channel assignment for Kunz1. Demand matrix D3 
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Channel Assignment for Kunz 2
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= {10,11,9,5,9,4,5,7,4,8,8,9,10,7,7}. 

 
 
 
 
 

 

Figure 13. Channel assignment for Kunz2. Demand matrix D4 
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Channel Assignment for Kunz 3
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= {10,11,9,5,9,4,5,7,4,8,8,9,10,7,7,6,4,5,5,7} 

 
 
 

Figure 14. Channel assignment for Kunz3. Demand matrix D5 
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Channel Assignment for Kunz 4
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Figure 15. Channel assignment for Kunz4. Demand matrix 

D6={10,11,9,5,9,4,5,7,4,8,8,9,10,7,7,6,4,5,5,7,6,4,5,7,5}. 
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4.3 Crossover Parameter 

 

This section presents the effect of different choices of crossover probabilities. Let us 

consider population size = 20 and mutation probability = 0.004. 

 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table II. Effect of choices of probability of crossover on the interference results for the 
Hex problem set. 

 
 
 
 
 

Problem Probability of 
Crossover 

Cost Function 

0.85 35 
0.90 34 
0.95 33 
0.97 33.5 

Hex 1 

0.99 34 
   

0.85 14 
0.90 14 
0.95 13.5 
0.97 14.5 

Hex 2 

0.99 14.5 
   

0.85 48.5 
0.90 48 
0.95 46.5 
0.97 47 

Hex 3 

0.99 47.5 
   

0.85 16 
0.90 15 
0.95 14.5 
0.97 15 

Hex 4 

0.99 15.5 
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Table III.  Effect of choices of probability of crossover on the interference results for the 

Kunz problem set. 
 

 

Different choices of probability of crossover gave quite different values of the cost 

function. The results for the Hex and Kunz problem sets are presented in Tables II and 

III. After many trials on varying the crossover probability, Tables II and III show that a 

crossover probability of 0.95 tends to give the most satisfactory results (with minimum 

interference value or cost function) for various problems.  

Problem Probability of 
Crossover 

Cost Function 

0.85 16 
0.90 14.0 
0.95 13.5 
0.97 14.5 

Kunz 1 

0.99 15 
   

0.85 28.5 
0.90 28 
0.95 26 
0.97 28 

Kunz 2 

0.99 30 
   

0.85 15 
0.90 13.5 
0.95 13 
0.97 13.5 

Kunz 3 

0.99 16.5 
   

0.85 7 
0.90 6 
0.95 3.5 
0.97 5 

Kunz 4 

0.99 8 
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Detailed results of EX1 and EX2 are omitted, since zero-interference can be achieved 

with a range of parameters tried. This may be because the problem sizes of EX1 and EX2 

are small. 

 
4.4 Mutation Parameter 

 

This section presents the effect of different choices of mutation parameters. Let us 

consider population size = 20 and probability of crossover = 0.95. The simulations were 

performed by using two different methods of varying the mutation probability. In the first 

method, an arbitrarily small probability of mutation, e.g., 0.003, is first selected to 

generate the result. The value is then either increased or decreased to tune into a better 

solution (with a lower interference value). In the second method, a large probability of 

mutation, e.g., 0.0900, is initially chosen and gradually decreased until the minimum 

interference value is found. 

 

From the results obtained for Kunz problem set (Table IV), the second method proved to 

be more efficient as the cost functions are smaller than the first method with fixed 

mutation rates. A similar trend of results was found from the simulation of Hex problems. 

 

The results also demonstrated that when the mutation probability is too small, 

convergence to the minimum interference value is prevented. As the mutation probability 

is increased, better cost function values can be obtained. However, increasing the 

mutation probability beyond some critical value introduce too much randomness into the 

population giving undesirable results with higher interference values (Table IV). 
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Table IV. Effects of different choices of probability of mutation on the interference 
results. 

 

 

Problem Probability of 
Mutation 
(fix rate) 

Cost Function Probability of 
Mutation 

(decreasing 
rate) 

Cost Function 

0.002 17 0.002 13.5 
0.003 16.5 0.003 13.5 
0.004 16 0.004 13 
0.005 17 0.005 13.5 
0.006 18 0.006 14 

Kunz 1 

0.007 19 0.007 14.5 
     

0.002 28.5 0.002 28 
0.003 28.5 0.003 24 
0.004 28 0.004 26 
0.005 29 0.005 26 
0.006 29.5 0.006 27 

Kunz 2 

0.007 29 0.007 28 
     

0.002 16 0.002 14.5 
0.003 15.5 0.003 14 
0.004 15 0.004 10 
0.005 17 0.005 13 
0.006 16 0.006 14 

Kunz 3 

0.007 17 0.007 14.5 
     

0.002 8 0.002 6 
0.003 6.5 0.003 6 
0.004 6 0.004 0 
0.005 5 0.005 3.5 
0.006 7 0.006 4 

Kunz 4 

0.007 7.5 0.007 5 
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4.5 Population Size 

 

After tuning into a satisfactory crossover and mutation probability, the effect of different 

choices of population size is considered. The results tend to favor a population of 20 and 

30. Greater populations lead to slower convergence and do not provide good solutions. 

However, too small a population size would lead to unfavorable results as well. For 

example, from Fig.16 below, a population size 20 proved to be the optimal value for of 

the Kunz data set. The results are similar for the Hex data set; however, results are 

independent of the population size for the EX data set. 
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Figure 16. Effect of population size on the cost function. 
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4.6 Discussion 

 

During the simulation, several parameters, i.e., crossover probability, mutation 

probability and population size, need to be set. While experimenting on a particular 

parameter, other parameters were kept constant to allow for comparisons. 

 

The number of generations for different problems needs to be taken into account. For 

example, for larger problems like Kunz 4, the number of generations needed to obtain a 

satisfactory result is 100000 as compared to 50000 for Kunz 3. 

 

For any genetic algorithms, the settings of these parameters are generally ad hoc. One 

general rule was kept throughout the simulation as suggested in [17]. That is to use 

relatively small population size, high crossover probability, and low mutation probability. 

 

As can be seen from the results presented in this chapter, the algorithm achieved good 

fitness values for all the benchmark problems.  

 

5         Conclusions 

 

In this paper, we applied Ngo and Li's GA-based approach to CAP2, i.e., channel 

assignment problems in which the total interference is minimized while traffic demands 

are satisfied within a given set of available channels. This approach permits the 

satisfaction of traffic demand requirement and co-site constraint. It is achieved by the use 



 31 

of a minimum-separation encoding scheme, which reduces the required number of bits 

for representing the solution, and with unique genetic operators that kept the traffic 

demand in the solution intact. This allowed the search space to be greatly reduced and 

hence shorten the computation time. The simulations done on benchmark problems 

showed that this approach could achieve desirable results.  

 

Although we have tested a variety of choices of parameters, such as mutation rate, cross-

probability, and population size, more such test with other choices of parameters should 

be carried out. Implementations of GAs for DCA will also be studied in future work.  
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