Finite Element Analysis of Dingle Point Incremental Forming Process for Ferritic Stainless Steel Pyramidal Cups using ABAQUS Software

C. Sai Sree, N. Srimukhi, M Sathish Kumar, and A. Anirudh

B. Tech Students, Department of Mechanical Engineering, JNTUH College of Engineering, Hyderabad

Under the Guidance of Dr. A. Chennakesava Reddy, Professor, JNT University Hyderabad

ABSTRACT

Incremental sheet metal forming, a non-conventional machining process has been investigated which offers higher formability, flexibility in process, low cost of production than the traditional conventional forming process. Tool used in this process consecutively forces the sheet to deform locally and ultimately gives the target profile. Various parameters, such as tool radius, tool path, sheet thickness, coefficient of friction etc. affect the forming process and the formability of final product. In this project, single point incremental forming was simulated using Dassault Systems Abaqus 6.14 software and results obtained are given. Results such as profile on sheet, stresses and strain developed, change in thickness are investigated.

CONCLUSION

The Finite Element Analysis of Single Point Incremental Forming for Pyramidal cups of Ferritic Stainless Steel (Grade 430) with process parameters i.e. sheet thickness of 1 mm, step depth of 1 mm, tool radius of 6.0 mm and coefficient of friction 0.15 has been carried out. It was observed that the maximum stress was developed at the bottom edges portion of the cup.

It was also observed that the sheet thinning has taken place at the middle portion of the wall of the pyramidal cups with negligible thickness reduction in the flange and the center portion and the stresses developed were always below Ultimate tensile strength of the material.

REFERENCES

- 1. A. C. Reddy and V. M. Shamraj, Reduction of cracks in the cylinder liners choosing right process variables by Taguchi method, Foundry Magazine, 10(4), 47-50, 1998.
- 2. A. C. Reddy, Evaluation of local thinning during cup drawing of gas cylinder steel using isotropic criteria, International Journal of Engineering and Materials Sciences, 5(2), 71-76, 2012.
- 3. A. C. Reddy, Formability of Warm Deep Drawing Process for AA1050-H18 Rectangular Cups, International Journal of Mechanical and Production Engineering Research and Development, 5(4), 85-97, 2015.
- 4. A. C. Reddy, Formability of Warm Deep Drawing Process for AA1050-H18 Pyramidal Cups, International Journal of Science and Research, 4(7), 2111-2119, 2015.

- 5. A. C. Reddy, Formability of superplastic deep drawing process with moving blank holder for AA1050-H18 conical cups, International Journal of Research in Engineering and Technology, 4(8), 124-132, 2015.
- 6. A. C. Reddy, Parametric Optimization of Warm Deep Drawing Process of 2014T6 Aluminum Alloy Using FEA, International Journal of Scientific & Engineering Research, 6(5), 1016-1024, 2015.
- A. C. Reddy, Finite Element Analysis of Warm Deep Drawing Process for 2017T4 Aluminum Alloy: Parametric Significance Using Taguchi Technique, International Journal of Advanced Research, 3(5), 1247-1255, 2015.
- 8. A. C. Reddy, Parametric Significance of Warm Drawing Process for 2024T4 Aluminum Alloy through FEA, International Journal of Science and Research, 4(5), 2345-2351, 2015.
- 9. A. C. Reddy, Formability of High Temperature and High Strain Rate Superplastic Deep Drawing Process for AA2219 Cylindrical Cups, International Journal of Advanced Research, 3(10), 1016-1024, 2015.
- K. Chandini and A. C. Reddy, Parametric Importance of Warm Deep Drawing Process for 1070A Aluminium Alloy: Validation through FEA, International Journal of Scientific & Engineering Research, 6(4), 399-407, 2015.
- 11. B. Yamuna and A. C. Reddy, Parametric Merit of Warm Deep Drawing Process for 1080A Aluminium Alloy: Validation through FEA, International Journal of Scientific & Engineering Research, 6(4), 416-424, 2015.
- T. Srinivas and A. C. Reddy, Parametric Optimization of Warm Deep Drawing Process of 1100 Aluminum Alloy: Validation through FEA, International Journal of Scientific & Engineering Research, 6(4), 425-433, 2015.
- 13. B. Yamuna and A. C. Reddy, Finite Element Analysis of Warm Deep Drawing Process for Conical Cup of AA1080 Aluminum Alloy, International Journal of Advanced Research, 3(6), 1309-1317, 2015.
- 14. K. Chandini and A. C. Reddy, Finite Element Analysis of Warm Deep Drawing Process for Pyramidal Cup of AA1070 Aluminum Alloy, International Journal of Advanced Research, 3(6), 1325-1334, 2015.
- 15. T. Srinivas and A. C. Reddy, Finite Element Analysis of Warm Deep Drawing Process for Rectangular Cup of AA1100 Aluminum Alloy, International Journal of Advanced Research, 3(6), 1383-1391, 2015.
- 16. C. R. Alavala, High temperature and high strain rate superplastic deep drawing process for AA2618 alloy cylindrical cups, International Journal of Scientific Engineering and Applied Science, 2(2), 35-41, 2016.
- 17. C. R. Alavala, Practicability of High Temperature and High Strain Rate Superplastic Deep Drawing Process for AA3003 Alloy Cylindrical Cups, International Journal of Engineering Inventions, 5(3), 16-23, 2016.
- C. R. Alavala, High temperature and high strain rate superplastic deep drawing process for AA5049 alloy cylindrical cups, International Journal of Engineering Sciences & Research Technology, 5(2), 261-268, 2016.
- 19. C. R. Alavala, Suitability of High Temperature and High Strain Rate Superplastic Deep Drawing Process for AA5052 Alloy, International Journal of Engineering and Advanced Research Technology, 2(3), 11-14, 2016.
- 20. C. R. Alavala, Development of High Temperature and High Strain Rate Super Plastic Deep Drawing Process for 5656 Al Alloy Cylindrical Cups, International Journal of Mechanical and Production Engineering, 4(10), 187-193, 2016.

- 21. C. R. Alavala, Effect of Temperature, Strain Rate and Coefficient of Friction on Deep Drawing Process of 6061 Aluminum Alloy, International Journal of Mechanical Engineering, 5(6), 11-24, 2016.
- 22. T. Santhosh Kumar and A. C. Reddy, Single Point Incremental Forming and Significance of Its Process Parameters on Formability of Conical Cups Fabricated from Aa1100-H18 Alloy, International Journal of Engineering Inventions, 5(6), 10-18, 2016.
- A. Raviteja and A. C. Reddy, Implication of Process Parameters of Single Point Incremental Forming for Conical Frustum Cups from AA 1070 Using FEA, International Journal of Research in Engineering and Technology, 5(6), 124-129, 2016.
- 24. T. Santhosh Kumar, V. Srija, A. Ravi Teja and A. C. Reddy, Influence of Process Parameters of Single Point Incremental Deep Drawing Process for Truncated Pyramidal Cups from 304 Stainless Steel using FEA, International Journal of Scientific & Engineering Research, 7(6), 100-105, 2016.
- 25. C. R. Alavala, FEM Analysis of Single Point Incremental Forming Process and Validation with Grid-Based Experimental Deformation Analysis, International Journal of Mechanical Engineering, 5(5), 1-6, 2016.
- 26. C. R. Alavala, Validation of Single Point Incremental Forming Process for Deep Drawn Pyramidal Cups Using Experimental Grid-Based Deformation, International Journal of Engineering Sciences & Research Technology, 5(8), 481-488, 2016.
- B. Navya Sri and A. C. Reddy, Formability of Elliptical SS304 Cups in Single Point Incremental Forming Process by Finite Element Method, International Journal of Research in Engineering & Technology, 4(11), 9-16, 2016.