Finite element Analysis of Cold Deep Drawing process for Pyramidal Cups of Aluminium Alloy 6061

Ch. Siddhartha, Abdulla Riafau, G. Sweety, and G. Sai Charan

B. Tech Students, Department of Mechanical Engineering, JNTUH College of Engineering, Hyderabad

Under the Guidance of Dr. A. Chennakesava Reddy, Professor, JNT University Hyderabad

ABSTRACT

Deep drawing is an essential process used for producing cups from sheet metal in large quantities. So, understanding the mechanics of the cup drawing process helps in determining the general parameters that affect the deep drawing process. In the present work, Taguchi techniques and finite element analysis were implemented to assess the formability of Pyramidal cups using cold deep drawing process. The process parameters are punch velocity, coefficient of friction, strain rate and displacement per step. The deep drawing dies are designed by Siemens NX and the simulations are done using a finite element software namely, DEFORM - 3D. The control parameters are assigned according to the trials given in the orthogonal array(L9). The material used for the drawing the Pyramidal cups is "Aluminum Alloy 6061" and the blank thickness is varied between 0.8mm, 1.0 mm,1.2mm. It is evident from the results that considered parameters can alter the physical characteristics of the cup obtained at the end of the drawing operation. Punch velocity, coefficient of friction, displacement per step were the major process parameters which influenced the quality of pyramidal cup.

CONCLUSIONS

In the present work Aluminum alloy 6061 was used. The analysis was focused with punch velocity, coefficient of friction, displacement per step, strain rate as control parameters. The optimization in the deep drawing process is a challenging task as the process output is related to the control parameters and important task as it can reduce the manufacturing cost. So, it is necessary to find the influence of the control parameters on deformation of sheet metal. From ANOVA graphs, Damage factor was found to increase with strain rate and the maximum value of damage factor was 8 at strain rate 100/ s, Damage factor was found to decrease with displacement per step and reached minimum value of 3.1 at displacement per step 1 step/ mm. From ANOVA graphs, surface expansion ratio increased for both increase in punch velocity and coefficient of friction 0.2. Punch velocity, coefficient of friction, displacement per step were the major process parameters which influenced the quality of pyramidal cup.

REFERENCES

1. A. C. Reddy and V. M. Shamraj, Reduction of cracks in the cylinder liners choosing right process variables by Taguchi method, Foundry Magazine, 10(4), 47-50, 1998.

- 2. A. C. Reddy, Evaluation of local thinning during cup drawing of gas cylinder steel using isotropic criteria, International Journal of Engineering and Materials Sciences, 5(2), 71-76, 2012.
- 3. A. C. Reddy, Formability of Warm Deep Drawing Process for AA1050-H18 Rectangular Cups, International Journal of Mechanical and Production Engineering Research and Development, 5(4), 85-97, 2015.
- 4. A. C. Reddy, Formability of Warm Deep Drawing Process for AA1050-H18 Pyramidal Cups, International Journal of Science and Research, 4(7), 2111-2119, 2015.
- 5. A. C. Reddy, Formability of superplastic deep drawing process with moving blank holder for AA1050-H18 conical cups, International Journal of Research in Engineering and Technology, 4(8), 124-132, 2015.
- 6. A. C. Reddy, Parametric Optimization of Warm Deep Drawing Process of 2014T6 Aluminum Alloy Using FEA, International Journal of Scientific & Engineering Research, 6(5), 1016-1024, 2015.
- A. C. Reddy, Finite Element Analysis of Warm Deep Drawing Process for 2017T4 Aluminum Alloy: Parametric Significance Using Taguchi Technique, International Journal of Advanced Research, 3(5), 1247-1255, 2015.
- 8. A. C. Reddy, Parametric Significance of Warm Drawing Process for 2024T4 Aluminum Alloy through FEA, International Journal of Science and Research, 4(5), 2345-2351, 2015.
- 9. A. C. Reddy, Formability of High Temperature and High Strain Rate Superplastic Deep Drawing Process for AA2219 Cylindrical Cups, International Journal of Advanced Research, 3(10), 1016-1024, 2015.
- K. Chandini and A. C. Reddy, Parametric Importance of Warm Deep Drawing Process for 1070A Aluminium Alloy: Validation through FEA, International Journal of Scientific & Engineering Research, 6(4), 399-407, 2015.
- B. Yamuna and A. C. Reddy, Parametric Merit of Warm Deep Drawing Process for 1080A Aluminium Alloy: Validation through FEA, International Journal of Scientific & Engineering Research, 6(4), 416-424, 2015.
- T. Srinivas and A. C. Reddy, Parametric Optimization of Warm Deep Drawing Process of 1100 Aluminum Alloy: Validation through FEA, International Journal of Scientific & Engineering Research, 6(4), 425-433, 2015.
- 13. B. Yamuna and A. C. Reddy, Finite Element Analysis of Warm Deep Drawing Process for Conical Cup of AA1080 Aluminum Alloy, International Journal of Advanced Research, 3(6), 1309-1317, 2015.
- 14. K. Chandini and A. C. Reddy, Finite Element Analysis of Warm Deep Drawing Process for Pyramidal Cup of AA1070 Aluminum Alloy, International Journal of Advanced Research, 3(6), 1325-1334, 2015.
- 15. T. Srinivas and A. C. Reddy, Finite Element Analysis of Warm Deep Drawing Process for Rectangular Cup of AA1100 Aluminum Alloy, International Journal of Advanced Research, 3(6), 1383-1391, 2015.
- 16. C. R. Alavala, High temperature and high strain rate superplastic deep drawing process for AA2618 alloy cylindrical cups, International Journal of Scientific Engineering and Applied Science, 2(2), 35-41, 2016.
- 17. C. R. Alavala, Practicability of High Temperature and High Strain Rate Superplastic Deep Drawing Process for AA3003 Alloy Cylindrical Cups, International Journal of Engineering Inventions, 5(3), 16-23, 2016.
- C. R. Alavala, High temperature and high strain rate superplastic deep drawing process for AA5049 alloy cylindrical cups, International Journal of Engineering Sciences & Research Technology, 5(2), 261-268, 2016.

- 19. C. R. Alavala, Suitability of High Temperature and High Strain Rate Superplastic Deep Drawing Process for AA5052 Alloy, International Journal of Engineering and Advanced Research Technology, 2(3), 11-14, 2016.
- 20. C. R. Alavala, Development of High Temperature and High Strain Rate Super Plastic Deep Drawing Process for 5656 Al Alloy Cylindrical Cups, International Journal of Mechanical and Production Engineering, 4(10), 187-193, 2016.
- 21. C. R. Alavala, Effect of Temperature, Strain Rate and Coefficient of Friction on Deep Drawing Process of 6061 Aluminum Alloy, International Journal of Mechanical Engineering, 5(6), 11-24, 2016.
- 22. T. Santhosh Kumar and A. C. Reddy, Single Point Incremental Forming and Significance of Its Process Parameters on Formability of Conical Cups Fabricated from Aa1100-H18 Alloy, International Journal of Engineering Inventions, 5(6), 10-18, 2016.
- A. Raviteja and A. C. Reddy, Implication of Process Parameters of Single Point Incremental Forming for Conical Frustum Cups from AA 1070 Using FEA, International Journal of Research in Engineering and Technology, 5(6), 124-129, 2016.
- T. Santhosh Kumar, V. Srija, A. Ravi Teja and A. C. Reddy, Influence of Process Parameters of Single Point Incremental Deep Drawing Process for Truncated Pyramidal Cups from 304 Stainless Steel using FEA, International Journal of Scientific & Engineering Research, 7(6), 100-105, 2016.
- 25. C. R. Alavala, FEM Analysis of Single Point Incremental Forming Process and Validation with Grid-Based Experimental Deformation Analysis, International Journal of Mechanical Engineering, 5(5), 1-6, 2016.
- C. R. Alavala, Validation of Single Point Incremental Forming Process for Deep Drawn Pyramidal Cups Using Experimental Grid-Based Deformation, International Journal of Engineering Sciences & Research Technology, 5(8), 481-488, 2016.
- B. Navya Sri and A. C. Reddy, Formability of Elliptical SS304 Cups in Single Point Incremental Forming Process by Finite Element Method, International Journal of Research in Engineering & Technology, 4(11), 9-16, 2016.