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Abstract: This paper presents the dynamic modeling of two-link robot arm, which is driven by two DC 

motors using the combination of linear graph theory and principles of mechanics.  From a single graph 

representation, a relatively small number of system equations are generated in a methodical manner that is 

well suited for computer implementation. The components of a discrete-time nature are included in a model 

of a mechatronic system containing digital controllers. 

 
1. INTRODUCTION 
Over the past two decades, a number of approaches 

have been developed for systematically 

formulating the equations of motion for multi-body 

systems. Principles of analytical and vectorial 

mechanics have been combined with topological 

representations, so that the dynamics of a wide 

range of mechanical systems can be automatically 

and efficiently analyzed [1, 2]. 

 
Several authors have recently proposed extensions 

to the Principle of Virtual Work (and/or Lagrange’s 

Equations) so that electrical components can be 

included in a model of a “mechatronic” system [2-

4]. In these papers, the mechatronic system consists 

of rigid multi-body subsystems and electrical 

networks of analog components (resistors, 

capacitors, etc). Although linear graph theory is 

used to generate Kirchoff’s laws for the electrical 

subsystems, it is misperceived as being inefficient 

[2] and is dismissed as a unified modeling theory. 

 

In fact, linear graph theory provides a natural 

representation of multi-disciplinary problems and, 

when combined with principles of mechanics, 

results in efficient models for electro-mechanical 

multi-body systems. The application of graph 

theory to electrical networks has long been 

established [5] and, more recently, graph theory 

has been combined with principles of vectorial [6] 

and analytical mechanics [7] to obtain systematic 

formulations for rigid and flexible multi-body 

systems. The extension of these methods to 

electromechanical systems is natural and 

straightforward. 

 
 

 

Fig-1. Two-Link Robot Driven by DC Motors 

 

2. SYSTEM MODELLING 

This paper presents the dynamic modeling of a 

two-link robot arm (Fig-1), which is being driven 
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by two DC motors powered by voltage sources V1 

and V2. The topology of this electromechanical 

system is encapsulated by the linear graph 

representation as shown in Fig-2. 

 
Fig-2. Linear Graph of Two-Link robot 
 

In contrast with other representations, e.g. bond 

graphs, the linear graph is relatively simple and 

bears a striking resemblance to the physical 

system. This is emphasized by overlaying the 

graph with the links and motors in dashed lines. 

The edges of the graph correspond directly to 

physical components: J1 and J2 are the two revolute 

joints, r3 - r6 represent the location of these joints 

relative to body-fixed reference frames, M7 and M8  

are the two motors, and V1 and V2 are the voltage 

sources. 
 

Note that the electro-mechanical transducers, the 

DC motors, are represented by two edges: one in 

the mechanical system and second in the electrical 

network. The dynamic equations for the two 

subsystems are coupled by the constitutive 

equations for the motors: 

 

iiiiiii ILIRKV ɺɺ ++= θ   (1) 

iiiiiii ICJBT ɺɺɺɺ −+= θθ   (2) 

 

Where Vi and Ii i are the voltage across and current 

through motor Mi (i =7,8), Ti and iθɺ are the motor 

torque and speed, Ri and Li are the armature 

resistance and inductance, Ki and Ci are the voltage 

and torque constants, and Bi and Ji are the damping 

coefficient and inertia of the motor shaft. 

Using graph-theoretic topological equations and 

principles of mechanics, the dynamic equations for 

the mechanical subsystem can be systematically 

formulated in absolute coordinates, joint 

coordinates, or some combination of these and 

other coordinates [6]. Furthermore, the mechanical 

equations can be expressed in either recursive or 

nonrecursive formats. In this case, the dynamic 

equations are automatically generated in terms of 

the joint coordinates θ1 and θ2 using symbolic 

Maple routines [7] that exploit the topological 

equations to reduce the number of variables and 

equations, and virtual work to eliminate non-

working joint reactions. 

 

These Maple routines have been extended to 

include models of electrical networks and a number 

of electromechanical transducers. A graph theoretic 

approach again allows some freedom in selecting 

the system variables; the electrical subsystem 

equations are automatically formulated in currents 

or voltages, as desired by the user. Assuming the 

links to be rigid in the robot, the dynamic 

formulation produces two symbolic second-order 

differential equations for the multi-body 

subsystem: 
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Had the links been modeled as elastic beams, 

additional equations would be generated for the 

elastic coordinates, which would also appear in the 

mass matrix [M] and generalized forces {Q}. 

Selecting currents as the variables for this problem, 

two first-order differential equations are obtained 

for the electrical sub-network: 
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Thus, a minimal number of system equations (3-4) 

are automatically generated by the graph-theoretic 

formulation and symbolic implementation. 

Although the electrical networks in this case are 

relatively trivial, networks of any complexity can 

be efficiently treated using graph theory. 

 

With the equations expressed in symbolic form, it 

is often possible to find closed-form solutions for 
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the generalized inverse dynamics problem. In this 

case, given desired joint trajectories of θ1 = θ2 

=πt/8 i.e. both links rotate through 90
0 
in 4 seconds, 

one can solve (3-4) to get analytical expressions for 

the required motor currents: 
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This solution can be verified by a forward dynamic 

simulation in which the motor input voltages are 

regulated by PD-controller to respond to errors in 

the joint trajectories. For this case, a numerical 

integration of equations (3-4) results in the motor 

currents shown in solid line in Fig-3. As expected, 

they oscillate about the analytical solutions (5-6) 

shown in dotted lines. 

Fig-3. Motor Currents Required for Given Joint 

Trajectories 
 

 

3. CONCLUSIONS 

A unified and efficient modeling methodology for 

two-link robot arm driven by Dc motors has been 

obtained by combining linear graph theory with 

principles of mechanics. From a single graph 

representation, a relatively small number of system 

equations are generated in a methodical manner 

that is well suited for computer implementation. It 

is also worth noting that a graph-theoretic approach 

is not restricted to analog components, in contrast 

to approaches based solely on virtual work [2-4]. 

Thus, components of a discrete-time nature can be 

readily included in a model of a mechatronic 

system containing digital controllers; this appears 

to be a promising area for future research. 
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