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HAZARD DETECTION FOR MULTI - AGENT REACTIVE ROBOTIC SYSTEM 

USING ON - LINE SOFTWARE ANALYSIS OF SAFETY CONSTRAINTS 
 

 

 

 

Abstract: Hazard situations in safety-critical systems are typically complex, so there is a need for means to detect complex 

hazards and react in a timely and meaningful way. This paper addresses the problem of hazard detection through the 

development of an on-line analysis tool. The approach allows the user to specify complex multi-source hazards using a query-

like language, uses both synchronous and asynchronous on-line checking approaches to balance efficiency and expressiveness, 

accommodates dynamic applications through dynamic constraint addition, and supports distributed and parallel applications 

running in heterogeneous environments. 
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1. INTRODUCTION 
Public awareness of safety issues involving computers is growing as incidents resulting in loss of life or near loss 

receive wide publicity. A safe system is one that is free from accidents or unacceptable losses. There is important 

research and development being done in providing intrinsically safe systems [1, 2]. But the goal of an intrinsically 

safe system is difficult to achieve for some of today's complex, dynamic applications running in parallel or 

distributed environments. Adopting guidelines established by system safety engineers [3], if one cannot guarantee 

an intrinsically safe system, the next preferred approach is a technique that prevents, minimizes, or detects the 

presence of hazards. A hazard is a state or condition of the system that combined with some environmental 

conditions can lead to an accident or loss event. Automatic pressure relief valves, lockins, lockouts, and interlocks 

are common hardware hazard prevention approaches. An example of a software approach is a trip computer in a 

nuclear power plant that initiates procedures to shutdown the plant when operating conditions are hazardous [4]. 

 

This paper addresses the problem of enhancing software safety through hazard detection through on-line hazard 

analysis. It is understood that the hazard situations can and do occur, and are often complex, involving multiple 

sources. So there is a need for a mechanism to detect complex, multi-source hazards and react in a timely and 

meaningful way. This paper focuses such a detection mechanism through C-net, an on-line analysis tool that 
supports the specification of complex hazards using a query-like language, uses both synchronous and 

asynchronous checking approaches to balance efficiency and expressiveness, accommodates dynamic applications 

through dynamic constraint addition, and supports distributed and parallel applications running in heterogeneous 

environments. The detection approach is applied to a set of autonomous robots that can navigate toward a goal 

across unmapped terrain, reacting to stimuli in the environment.  

 

2. SOLUTION STRATEGY 
The approach consists of a language for specifying complex hazards, a library for building executable versions of 

the hazard descriptions, and a run-time environment to handle execution. In particular, hazards are represented as 

constraints specified on application behavior. These constraints, called safety constraints are specified with a rule 

language. The compiler generates a list of commands to the library that in turn builds an executable entity, or node, 
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for each constraint as a collection of selection, projection, and join operations. The nodes are linked together at 

runtime as a Directed a Cyclic Graph (DAG). As shown in Fig.1, the compiler accepts sensor and constraint 

specifications. From a sensor specification, it generates sensor definitions that are used to instrument the 

application code. Information about sensor definitions is also used in calls to the library. The safety constraint 

specifications are compiled into a sequence of Tcl commands that are executed by the Tcl interpreter resident in the 

executable [5]. The interpreter is used initially when the graph is being created and thereafter only when a 

constraint is dynamically added to C-net, so the performance impact generally associated with interpreters is 

minimized. The dispatcher is responsible for event handling, event distribution, action execution, and user 

command handling. The user interface provides a vehicle through which commands to add, modify, and remove 

constraints are issued.  

 
 

 

 

 

 

 

 
 

  

 

 

 

 

 
 

 

 

 

 

 

 

                                                                      

 Fig.1 The system architecture 

 

The hazard detection: 

• accommodates dynamic applications through dynamic constraint addition, enabling, and disabling. 

• provides synchronous and asynchronous constraint checking with predictable performance and low 

perturbation. 

• supports specification of complex, multi-source hazards. 

 

In contrast to previous static analysis approaches, C-net accommodates dynamic applications by allowing dynamic 

constraint addition. Additional constraints can be specified over a newly created application process, task, or object 

as long as the application entity is instrumented. Synchronous and asynchronous constraint checking is provided by 

flexible placement of constraints. This allows constraints with localized sensor data-needs to be evaluated in the 

sensor itself. Predictable performance guarantees can be made because of the DAG restriction on the constraint 

graph. Low perturbation is achieved through the use of a separate thread to perform monitoring and synchronous 

constraint checking. Perturbation could be further reduced by employing a technique used in software fault 

isolation of embedding monitoring related instructions in open slots in the instruction stream.  

 

A multi-source hazard is a hazard that occurs when a combination of conditions exist: a failed valve indicator, 
condensate pump out of order, and a relief valve failing to close, for example. It is likely that each condition occurs 
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in a separate piece of controlling software. To enforce such a hazard, the analysis tool must be located such that it 

can gather information from each source. This precludes a completely synchronous approach. Additionally, the 

more complex the hazard, the stronger the need for a language in which to express complex relationships between 

conditions of a hazard and between hazards themselves. There is ample justification for implementing the analysis 

tool outside the application. The external nature of the tool makes possible the specification of complex constraints.  

 

3. AUTONOMOUS ROBOTS 

The application used in this work is a multi-agent reactive robotic system simulation. The work was carried with 

robots in the simulated environment with each robot running as a separate thread and employing shared memory as 

a communication medium. The robots perform one of three tasks: forage, consume, and wander. During forage, a 

robot wanders in an environment, looking for attractors. Upon encountering an attractor, it moves toward the 
attractor, attaches itself, and returns the object to a specified home base. During consume, a robot wanders the 

environment, looking for attractors. Unlike forage, after attachment a robot performs work on the object in place. In 

the final task, graze, discrete attractors are not involved; the object is to completely cover, or visit, the environment 

(akin to mowing the lawn). A robot searches for an area not grazed, moves toward it, then grazes until the entire 

environment (or some percentage thereof) has been covered. The robots are implemented as a three state finite state 

machine with the state selection dependent on the current task. For example, in the forage task a robot can be in 

wander, acquire, or deliver state. The robot roams freely in wander state. It transitions to acquire state when it has 
detected an attractor and to deliver state when it is returning the object to the home base. Once the object has been 

delivered, transition is made to back wander. 

 

There are meaningful constraints that can be specified over the behavior of the group of robots just described. For 

instance, suppose a group of robots are tasked with digging up drums filled with radioactive material that is buried 

over a large area and moving them to a central site on higher ground. In retrieving a drum, one of the robots is 

splashed by the thick, murky contents and begins emitting radiation. The user might be greatly concerned to keep 
the other robots away from the contaminated robot. So in devising a constraint, the user specifies a hazard based on 

the concept of a danger zone, a region around the contaminated robot in which a robot approaching to help is in a 

danger but not imminently so. The user then wants to be notified when an approaching robot is within 10ft of the 

contaminated robot even though danger of picking up debris from the contaminated robot does not occur until the 

approaching robot is within 5ft. With this constraint in place and given a work area large enough and the number of 

attractors great enough, the user may be confident enough to allow work to continue even after a robot becomes 

contaminated. The constraint ensures the user will be notified when a robot has been contaminated, and will be 

notified again, with enough time to respond, when another robot has entered the danger zone. The danger zone 

constraint could trigger an alert to the operators to halt the approaching robot or it could invoke a user-defined 

handler in the approaching robot to change its state so it no longer seeks to assist the contaminated robot. The 

constraint for the scenario is: if the radioactivity level of a robot exceeds 200 roentgens per hour, then a violation 

occurs if a robot approaches within 10ft of the radiating robot more than once. 

 
The constraint specifies that if any robot becomes radiated, a violation occur if any other robot comes within 10ft of 

the radiated robot. The second sample constraint is gathering of statistical information for evaluating performance: 

if during forage task, the average amount of time spent by robots in the wander state exceeds a threshold while 

progress toward a goal is less than some minimum, a violation has occurred. 

 

That is, the user may be interested in knowing when the average amount of time a robot spends wandering as a 

function of the total amount of time working exceeds some reasonable estimate. As long as the value is reasonable, 
the user is willing to let the event pass without being notified. Why not simply modify the robot application to 

enforce the constraint behavior? Embedding constraint checking in the robot application suffers the same 

limitations as other embedded approaches: first, a single robot knows at most state and goal information about 

another robot. Global, statistical knowledge cannot be known or computed by any one robot. Second, constraints 

that dynamically modify parameters such as attraction/repulsion forces could be added to the application but at the 

cost of recompiling and relinking the application code. 
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4. THE RULE LANGUAGE 
The language that is adopted is based on the active database rule definition language of the Starburst system. The 

language consists of five commands: create rule, alter rule, drop rule, activate rule, and deactivate rule. The 

create rule is used to define a new constraint. The syntax of the command is: 

 

create rule name on event-type 

if condition 

then action-list 

 

The name titles the rule and each rule is defined on a set of event-type. The if clause specifies the condition of the 

rule. The condition is the constraint that is checked when the rule is triggered by an incoming event. The language 
uses the temporal query language ATSQL2 for specifying the condition. ATSQL2 is a variant of TSQL2 and is 

currently being proposed for incorporation into SQL3. The condition can be any valid ATSQL2 query. The then 

clause specifies the rule' s actions. An action is executed when the rule is triggered and its condition is true. Fig.2 

illustrates a create rule command. The command creates a rule named C:1.  

 

CREATE RULE C:1 ON robotRad, robotState 

IF 
SELECT radiatedRobot r.ID, r.rad 

FROM robotRad as r, robotState as s 

WHERE 

s.task = FORAGE and s.state = DELIVER and 

r.rad >= 200 R and r.ID = s.ID 

THEN 

STEER disableRobot r.ID 

 
Fig.2. the creation of a rule named C:1 

 

The event sources needed by this rule are robotRad and robotState. Event sources may originate from a sensor in 

the application or as the result of another query. The if statement delineates the rule' s condition. The condition can 

be any ATSQL2 query. The query is composed of a SELECT statement, a FROM statement, and a WHERE 

statement. The SELECT statement builds a new relation or event type from attributes of one or more existing event 

types. The derived event, radiatedRobot, will contain three attributes: a robot ID and roentgen level taken from the 

robotRad relation and a timestamp derived from the timestamps of the tuples satisfying the condition. The FROM 

statement defines variable names r and s that will represent the event types robotRad and robotState, respectively. 

The WHERE clause specifies a predicate on the explicit attributes that selects those events that will contribute 

toward the new event type. The then statement delineates the action list. In this example there is a single action, a 

STEER command. The first parameter to STEER names a function in the robot application to be invoked. The 
second parameter identifies the task to be affected by the action. 

 

4.1 Application of Query Language for Online Monitoring 

A relational database query language is used to specify queries that are evaluated against event streams. The 

significant difference between evaluating queries against a database and evaluating them against an event stream is 

that in the latter constraints must be evaluated against a conceptual database rather than an actual database. That is, 

no database per se exists. Instead, each constraint must have sufficient storage to maintain the application state it 
needs. Hence, a given event may exist in multiple nodes at any moment; the length of time an event remains in the 

node depends on the attributes upon which the query is based and the complexity of the query. 

 

There is an issue of efficiency with which one must deal when executing queries in an on-line analysis 

environment. Instead of a query being executed periodically or upon user demand, and a set of tuples satisfying the 

query returned, the query is in essence executed every time an event arrives. What keeps this characteristic from 

being wholly inefficient is that a constraint by its nature will reject the majority of the events it receives.  
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4.2 Action Statements 
The user has control over the set of executing constraints in two ways. The first is through issuing commands (e.g., 

alter rule) through the user interface. The second is through action statement of the rule. An action statement is a 

command listed in the action part of a rule. The set of allowable actions must be basic enough and broad enough 

such that when taken alone or combined, they allow the user to effect a desired behavior. Three action statements 

are supported to: 

• invoke a user-defined function in node 

• invoke a handler in the application 

• enable or disable a constraint. 

 

Invoking a user-defined function in a node may do something simple like causing a bell to ring or a message to be 

printed to an operator console or something more complex like collecting statistics. Invoking a handler in the 

application causes a steering command to be issued to the application that results in the execution of a user-defined 

function residing in the application. The mechanisms for such steering are discussed in the next section. 

 

4.3 Enabling and Disabling Constraints 
When a constraint is disabled, it no longer processes events although its code is still resident in the system. 

Enabling, the default mode, reverses the disabling action and allows the constraint to process events once again. 

Constraint enabling and disabling has multiple useful application. This approach allows dynamic constraint 

addition must deal with the eventuality that an added constraint will conflict with an existing one. The effect of 

such conflicting constraints is that one or the other will continuously be violated; perhaps not a desirable behavior 

from the point of view of the user. To obviate the problem, the DISABLE clause is provided as a means for the user 

to manage the conflict. The enable and disable clauses are also useful for loosely hierarchical error recovery. For 

example, when a robot encounters an obstacle in its path, its first response could be to wait some amount of time in 
the hope that the obstacle will move. If this simple error recovery fails, its second response would be to determine a 

new route. 

 

5. LIBRARY AND DISPATCHER 
The rule language provides a means for specifying constraints. The library and run-time environment, on the other 

hand, provide the means for the specified constraints to be transformed into individual executable entities and the 

mechanism to execute the constraints against the incoming event stream. The library is a collection of functions 

that build two types of components: operations and nodes. An operation is a component that implements one of 

selection, projection, or join. Control flows between operations by procedure calls. A node is a collection of 

operations with a number of methods defined for it. A node can be created and can accept connections. 

Additionally, it possesses general information about itself so it can respond to questions as to its state (active, 

inactive), it can be called upon to activate or deactivate itself, or it can return a list of its input events and output 

events. Control flows between nodes under the control of the dispatcher. 

 

The dispatcher controls net execution. At startup, it awaits nodes to register their existence and event needs. The 

dispatcher links those nodes together having data dependencies as shown by their event lists. During execution, the 

dispatcher accepts events from the application and routes them to the interested nodes and accepts and executes 

commands from the user. 

 

5.1 From Rules to Executable Entities 

The transformation of a constraint from a rule to a node begins with the rule compiler. The rule compiler parses a 

constraint, and converts it to a relational algebraic expression in conjunctive normal form. From the relational 

algebraic expression an abstract syntax tree is constructed and it is from this that the optimizer performs compiling 

time optimization before generating a sequence of Tcl commands. So roughly for every select, project, and 

Cartesian product operation in the relational algebraic expression, there is a corresponding Tcl command in the 

script file. Also included in the script file are Tcl commands to build the node, the entity to which the operations 

belong, and to link the operations in the proper order. The initial set of queries becomes executable nodes when the 
analysis tool is first executed. The dispatcher accepts the name of a script file as an argument, and invokes the Tcl 
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interpreter, passing it the name of the script file. The interpreter executes the commands in the file, each command 

resulting in a call to the library. Through a sequence of calls the node is built. The script file can contain any 

number of queries in any order. Linking queries takes place when a node registers itself with the dispatcher. 

 

5.2 Multi-Source Hazards 

Multi-source hazards, hazards which can be described as consisting of events from multiple sources, make up an 

important and substantial subset of hazard descriptions [4]. Implementing detection of such hazards requires 

making tradeoffs between latency, perturbation, and ease of use. Latency is far more of an issue in external 

approaches to hazard detection, when constraints are embedded directly in the application code. But embedded 

approaches suffer from increased perturbation and decreased breadth of potential event sources. The external 

approach trades decreased perturbation and the ability to specify multi-source hazards for increased latency. More 
complex hazard descriptions also require a more general language, such as a query language, to distinguish events 

from multiple sources and describe complex relationships between events in a natural way. 

 

To achieve efficient communication between multiple sources and the analysis tool, a communication 

infrastructure, Data Exchange is employed. Data Exchange provides for binary IO of event data between the 

multiple sources and the analysis tool. The full features of Data Exchange, in its ability to forward data to multiple 

clients based on event type, can be utilized in the version of Cnet underway where the analysis tool is itself 
distributed. 

 

5.3 Dynamic Applications 
Support for dynamic applications occurs in part by the design concept of event types. All events possessing the 

same set of attributes belong to the same event type, regardless of the sensor from which they originate. For 

example, every event consisting of a robot ID, location, and current time stamp is of the robotID event type, 

regardless of which of the many robots generated the event. A constraint node registers its interest in event types, 
so any dynamically created application task generating events of a known event type will automatically be included 

in the constraint checking done by nodes accepting events of that type. Support for dynamic applications based 

solely on event types would only partially solve the problem. Also needed is the ability to add new constraints. 

With constraints descriptions encoded as Tcl scripts, dynamic constraint addition becomes straightforward. As 

shown in Fig.3, when an ADD command arrives at the dispatcher (from the user interface), the dispatcher invokes 

the Tcl interpreter, passing it the script file name as an argument. The interpreter executes the script, the execution 

of which results in a series of calls to the C-net library to build a node. The new node, once built, automatically 

registers its existence with the dispatcher, providing it a list of input and output events of which the dispatcher adds 

to its internal lists. Control then returns to the dispatcher and event processing resumes. Events arriving at the 

dispatcher for which the new node is interested will immediately be forwarded to the new node.  

 

5.4 Synchronous Constraint Checking 
Asynchronous constraint checking has been explained in some detail in the general discussions of C-net. Less has 
been said, however, about synchronous constraint checking. Synchronous constraint checking is checking 

performed in the application data space. It is suitable for filtering data to reduce the volume of events flowing to the 

analysis tool. Synchronous placement is restricted to constraints having a single input event type. The restriction is 

necessary because the constraint node is invoked from within the sensor generating the event type. The constraint is 

evaluated prior to the event being forwarded to the analysis tool. The constraint compiler provides support for 

handling synchronous constraint checking by identifying those constraints suitable for synchronous placement. A 

Tcl interpreter creates the synchronous nodes in a separate thread in the application data space.  

 

6. CONCLUSION 
This paper addresses the problem of improving software safety through hazard detection. The approach consists of 

a query-like language and compiler for specifying hazards, a library for creating operations and nodes, and a run-

time tool to dispatch arriving events, trigger node execution, and handle dynamic node addition. Hazards are often 

described by a number of events occurring simultaneously. Any realistic approach to hazard detection must 
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accommodate the complex hazard as easily as it accommodates the simple one. This general language approach 

allows for the specification of complex constraints specified over distributed components.  

 

For a hazard detection approach to be realistic, however, it must be responsive. Hazard descriptions often include 

components outside the software system. The hazard detection approach should be able to accommodate a 

description that includes state from these components as well. This approach also accommodates these components 

by adding shadow objects. These shadow objects would then be the source of state information for the analysis 

tool. Finally, the purpose of hardware hazard detection is often as a safeguard. It is the mechanism to which an 

engineer turns for the extra measure of safety. Such a device must at all times provide the extra measure of safety, 

not decrease the overall safety of the device on which it is placed.  

 
 

 
 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

                                                                       Fig.3 The C-net analysis 
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