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Robotic manipulators mounted on vehicles are being considered for a number of applications. Since the dynamic 

performance of these systems is affected by the flexibility of their manipulators’ and vehicles’ suspensions, analytical 

methods are required to model their dynamic behavior. This paper presents an effective method that models such a 

system’s spatial dynamic behavior by considering the nonlinear dynamic characteristics which result from its 

manipulator’s gross motions, accounts for spatial vibrations due to the distributed mass and flexibility of manipulator and 

vehicle, and includes the effects of the manipulator’s and vehicle’s control systems. 
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INTRODUCTION 

Robotic systems are being considered for a wide variety of 

applications outside their traditional factory uses, such as in 

space, undersea, in nuclear contaminated environments and in 

medical hospitals
1, 2

. Robots need to be mobile for these 

applications, consisting of manipulators carried by vehicles. 

Since these manipulators will be lightweight, they will have 

significant flexibility, particularly in space systems, which 

could affect system dynamic performance. Such performance 

may also be affected by vehicle characteristics like the 

suspension compliance of ground-based vehicles. To design 

these systems and their control systems require effective 

analytical methods able to model the dynamic behavior of 

flexible manipulators on flexible vehicles with compliant 

suspensions. 

 

The development of analytical models for fixed-base flexible 

machines and manipulators has been the subject of substantial 

research3-5. The studies of the control of flexible manipulators 

for space have not considered the dynamic interactions 

between the manipulator and its vehicle
6
. Some work has 

been done to construct dynamic models of rigid-link 

manipulators on moving vehicles; however past models to 

study the important dynamic interactions of a flexible 

manipulator on a flexible vehicle have been quite primitive
7
. 

 

This paper presents a method to model the spatial dynamic 

behavior of flexibility in mobile robotic manipulators. This 

method considers the nonlinear dynamic characteristics of the 

system that result from time-varying spatial motions of the 

manipulators. It accounts for spatial vibrations due to the 

distributed mass and flexibility of the manipulator and 

vehicle, and the compliances of the vehicle suspension, tires, 

and the ground. The method also includes the effects of the 

control systems of manipulator and vehicle. 

The technique combines Component Mode Synthesis (CMS) 

reduced finite element models of individual links and the 

vehicle with 4 X 4 Hartenberg-Denavit descriptions of the 

system’s kinematic joints. This allows the nonlinear dynamic 

equations of motion to be formulated for a system with 

realistically complex-shaped mechanical elements. CMS 

yields good computational efficiency without a serious loss of 

accuracy. The method can also represent control systems in 

highly general forms; vehicle suspension characteristics can 

also be nonlinear and quite general, as well. The paper 

presents results for a typical system which show the 

importance of modeling the dynamic interactions that can 

exist between a manipulator, its flexibility, and its vehicle. 

The example shows that these interactions can result in 

significant degradation of the system performance. For 

instance, manipulator motions that cause the vehicle to rock 

on its suspension lead to large errors in the position of the 

manipulator end-effector. These errors can be compensated 

for by using a properly designed manipulator control system 

with end-point sensing, provided that the errors are not 

excessive and that stability problems are avoided, [8]. 

 

2. Analytical Development of Modeling Technique 
Hartenberg-Denavit 4X4 transformation matrices are used to 

represent the nominal motions of each body in the system, 

including the vehicle. The distributed mass and flexibility of 

these bodies are described using Finite Element Methods. The 

FE nodal displacement coordinates are called perturbation 

coordinates, and they describe the motions of the FE node 

points with respect to the nominal motion frame of each 

body. The dynamic equations of motion for each body are 

derived using Lagrange’s formulation, in which the 

perturbation coordinates are the generalized coordinates. 

These equations are reduced by Component Mode Synthesis 

(CMS) to improve numerical efficiency. Compatibility 

matrices, which express the kinematic and force constraint 

relationships between the links, are used to assemble the 

dynamic equations of the system. The global dynamic 

equations of the system have the form: 

 
[ ]{ } [ ]{ } [ ]{ } { }FqKqCqM =++ ɺɺɺ                            (1) 

where the matrices [M], [C] and [K] respectively describe the 

mass, damping and stiffness characteristics of the system and 

Vol 85, September 2004                                                                                                                           27 



are time varying. The vector {q}, and its derivatives { qɺ } and 

{ qɺɺ }, are the global independent coordinates, velocities and 

accelerations respectively. The vector {F} describes the 

forces applied to the system including actuator forces/torques 

and external loads. The matrices [M], [C], and [K] and the 

vector {F} are defined in terms of the finite element mass, 

damping and stiffness matrices, [ iM ], [ iC ], [ iK ], 

gyroscopic stiffening terms due to the nominal motions, 

[
/

iK ], the link CMS transformation matrices [Ai], the link 

compatibility matrices [Bi] and their derivatives, and 

derivatives of the link nominal motion joint variables θi.  

They are given as follows: 
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where N is the number of links in the system. A 

computational block diagram of the technique is shown in 

Fig.1. The form of the compatibility matrices, [Bi] used to 

construct the equations of motion of the multibody system is 

determined by the nature of the joints. These joints may be 

ideal, meaning that they apply kinematic constraints to the 

system, or they may be non-ideal, with compliance and 

clearances. 

 

DESCRIPTION OF THE SYSTEM 
The analytical method briefly described above has been 

implemented in a software package called MATHCAD. 

Figure 2 shows a schematic diagram of the system. The 

manipulator is assumed to have three rigid-body degrees of 

freedom (DOF), defined by the joint angles θ1, θ2 and θ3.  The 

vehicle has six rigid-body degrees of freedom, consisting of 

three rotations, ψx, ψy and ψz and three displacements, X, Y 

and Z. The angles ψx, ψy and ψz are rotations about the body-

fixed vehicle axes X, Y and Z (shown in figure 2). The 

displacements are parallel to the X, Y and Z axes, 

respectively. 

 
The combined vehicle suspension and ground/tire compliance 

is represented by the linear stiffness and damping matrices. 

The elements of these matrices are chosen to give the rigid-

body model, with its 25 kg payload, a natural frequency of 

1.5 Hz in the Z direction and 10 Hz in the X and Y directions. 

The suspension damping is chosen to give the vehicle a  

 

Figure 1 Schematic representation of the computational block diagram 

 

 
 
Figure 2 Schematic representation of the system 

 

damping ratio of 0.65 in all directions. The joint control 

systems of the manipulator are simple linear PD controllers, 

each one with 10Hz bandwidth and 0.707 damping ratio for 

the rigid body system. The control bandwidths are chosen to 

be approximately one third the lowest natural frequency of 

the flexible manipulator with its maximum 25 kg payload to 

avoid stability problems. These controllers include dynamic 

feed-forward, using a simple fixed-base rigid manipulator  
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Figure 3 Geometric model of manipulator (joint-2). 

 

 

(a) Initial position 
 

 

 

(b) Final position 

 

Figure 4 Position of the manipulator 
 

model, to compensate for gravitational loads. Table-1 

contains the important mass properties of the vehicle and 

manipulator. Each of the manipulator links is assumed to be 

constructed of a thin wall tube, with an outer diameter 0.2 m 

and an inner diameter 0.196 m as shown in figure 3. The 

lengths of these links are 0.5 m, 0.75 m and 0.75 m, 

respectively as shown in Fig.4. The masses of the actuators 

are 20 kg for actuator 1, 50 kg for actuator 2, and 20 kg for 

actuator 3. The payload is assumed to be 25 kg. 

 

RESULTS AND DISCUSSION 
Finite element models are constructed for individual 

mechanical elements in the system, including the joints with 

their shafts, bearings, motors and encoders (shown in figure 

3), as required by the computational procedure shown in 

Fig.1. The flexible system model has twenty-three degrees of 

freedom after CMS reduction, including 6 degrees of freedom 

for the vehicle. The manipulator is commanded to move its 

payload from initial position A to final position B, (shown in 

figure 4), in 2.5 seconds. The commanded joint angles for this 

motion are shown in figure 5. 

 

When this motion is simulated by MATHCAD with rigid 

manipulator links and the vehicle suspension locked, the 

manipulator has a maximum tip error of approximately 0.25 

mm (shown in figure 6). This result includes the feed-forward 

gravity compensator; hence this error represents the dynamic 

errors due to finite control system bandwidths. Without feed 

forward gravity compensation, the rigid manipulator’s tip 

error increases to 3.5 mm. The actuator torques for this rigid 

link, locked suspension case are shown in figure 7. 

 
Table 1 Mass and inertia properties of the manipulator and the vehicle 

 

Item Mass, kg Ix, kg-m
2
 Iy, kg-m

2
 Iz, kg-m

2
 

Link-1 7.4 1.6 0.2 1.6 

Link-2 11.1 0.1 4.8 4.8 

Link-3 11.1 0.2 4.7 4.7 

Vehicle 250.0 88.5 26.0 104.0 

 

Figure 5 Curves for commanded joint angles 
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Figure 6 Tip errors of locked suspension system 

 

 

Figure 7 Joint torques of rigid links and locked suspension 

system 

 

 

When link flexibility is included in the simulation, with no 

gravity, the maximum tip error increases to approximately 

2.25 mm, see Fig.6. This error is due to the link flexing, 

excited by the dynamic forces. With gravity, and using a 

gravity compensator based on a rigid link manipulator model, 

the maximum tip error becomes 12 mm, 48 times greater than 

the error of the rigid link model, see Figure 7.The simple 

gravity compensation used can not offset the effects of the 

links bending under their own weight and the weight of the 

payload. This maximum tip error of 12 mm for the flexible 

link system may be unacceptable for some applications. 

 

However, end-point control could be used to achieve precise 

positioning of the endeffector [13]. Figure 9 shows the joint 

actuator torques for the flexible links, locked vehicle 

suspension case. These torques are not substantially different 

from those of the rigid link case shown in Figure 8. Their 

slightly more oscillatory behavior is due to the flexibility of 

the joint and link structures. When the compliance of the 

vehicle’s suspension is included in the flexible manipulator  

 

Figure 8 Joint torques of flexible links and locked suspension 

system 

 

 
 
Figure 9 Tip errors for flexible links and suspension system 

 

simulation, the maximum tip error increases to nearly 250 

mm, see Figure 10. The tip error for the flexible link 

manipulator on a locked suspension, from Figure 7, is 

repeated in Figure 10. Comparing these two results shows 

that the effects of the vehicle rocking on its suspension in 

response to the manipulator’s motions are more important 

than the flexing of the manipulator's links. These large tip 

errors may exceed the range of simple end-point sensors, such 

as those used in reference [13], and could result in serious 

control problems.  

 

Figure 11 shows the translations and rotations of the vehicle 

during the motion of the manipulator. The non-zero initial 

displacements of the vehicle are its static equilibrium position 

in a gravity field. The rotation of the vehicle about the Z axis,  

yz, is much smaller than yx and yy, in the order of 0.014 

degrees. The actuator torques for this simulation are shown in 

Figure 12. The maximum torque increases to 250 N-m for 

actuator 1, compared with 150 N-m for the rigid link, locked 

suspension; and to 1200 N-m for actuator 2, compared with 

900 N-m for the rigid link, locked suspension case. Actuator 

3 maximum torque remains essentially the same. The  
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(a) Vehicle translations 

 

 

(b) Vehicle rotations 

 

 Figure10 Curves of vehicle motions 
 

increased torques for actuator 1 and actuator 2, due to vehicle 

tipping, could result in actutator saturation if not accounted 

for in the system design. 

 

CONCLUSIONS 
This paper presents a method for the dynamic analysis of 

mobile manipulators with link, vehicle and suspension 

flexibility. It shows that the dynamic interactions between a 

mobile manipulator and its vehicle can be very important. 

These interactions can result in large end-effector errors that 

may exceed the ranges of practical end-point sensing devices. 

The effects of the dynamic interactions may also saturate the  

 

 

 
Figure 11 Joint torques of flexible links and suspension system 

 

manipulator’s actuators. Simple gravity compensators based 

on rigid link, rigid suspension models may not effectively 

reduce these errors. 
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