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ABSTRACT: The formulation of dynamic models for flexible spatial mechanisms such as robotic manipulators with 

six degrees of freedom have been formulated and evaluated. Interfaces for controls design with MATLAB and 

SIMULINK have been accomplished. A numerical simulation dealing with trajectory control of a flexible 

manipulator is presented. 

 

1. INTRODUCTION 
Flexibility effects increase as the weight of the robot manipulators decrease. It is desired to design lighter robots 

carrying out heavier payloads at higher speeds. Thus, the design of flexible link manipulators is a subject of intensive 

research. Designers of such manipulators need information about the dynamic response of the systems. Control 

actions can modulate the vibration effect of flexibility [1-12].   

 

In this paper, a finite-element method is presented to formulate the dynamic equations for controlling a manipulator 

with flexible links. The equations of motion are formulated in terms of two sets of coordinates. One set represents the 

gross rigid link motion and the other represents the local flexible deformations. The method also permits generation 

of locally linearized models about a nominal trajectory. The nominal trajectory determines the position, velocity and 

acceleration of the manipulator mechanism with the restriction that all flexible deformations of the links are 

suppressed. 

                                 Fig-1The manipulator mechanism with six degrees of freedom 

 

2. FINITE ELEMENT MODELING OF MANIPULATORS 
The manipulator mechanism is modeled as an assembly of finite elements interconnected by joint elements such as 

hinge elements and truss elements as shown in Fig.1. Three different types of elements are used to model the 

manipulator of six degrees of freedom. The hydraulic cylinder is modeled as an active slider-truss element. The 

manipulator links are modeled by beam elements. There are also six cylindrical hinge elements, some of which are 

actuated by torque servos. Hinge elements are also used to model the wrist of the manipulator. The location of each 

element is defined relative to a fixed inertial coordinate system by a set of nodal coordinates xi
j
 some of which may 

be Cartesian coordinates of the end nodes, while others describe the orientation of orthogonal triads, rigidly attached 

to the element nodes. The superscript j is added to show that a specific element j is considered. With respect to some 

reference configuration of the element, the instantaneous values of the nodal coordinates represent a fixed number of 

deformation modes for the element.  
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The deformation modes are specified by a set of deformation parameters ei
j
, some of which are associated with large 

relative displacements and rotations between the element nodes, while others describe small elastic deformations of 

the element and will be denoted by εI
j
. The number of deformation parameters is equal to the number of nodal 

coordinates minus the number of degrees of freedom of the element as a rigid body. The components of the vector of 

deformation parameters e
j
 can be expressed as analytic functions of the vector of nodal coordinates x

j
. A vector 

function e
j
 = D

j
 x

j
 is defined for each element k. As an example of such a function the deformation function D

j
 of the 

slider-truss element is presented. The position of the slider-truss element is determined by the position vectors x
p
 and 

x
q
 of the end nodes p and q. A possible rotation of the element about the axis pq is not involved in the description of 

the element position. The number of degrees of freedom of the element as a rigid body is thus five, which gives rise 

to a single deformation parameter, associated with the elongation of the element. This elongation can be expressed as 

e1
j
  = D1

j 

      = ((x
p
 - x

q
)

2
+(y

p
 - y

q
)

2
+(z

p
 - z

q
 )

2
)

1/
2 – l0

j
  …(1) 

where l0
j
 is a reference length of the element. A proper definition of deformations requires that the deformation 

parameters e
j
 are invariant under rigid body movements of the element.  

 

3. DEFINING EQUATIONS OF MOTION 
The assemblage of finite elements is realized by defining a vector x of nodal coordinates for the entire mechanism. 

The deformation functions of the element can be described in terms of the components of x. The equations can be 

written as: 
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e = D(x)  …(3) 

where ne is the total number of deformation parameters of the mechanism. The kinematic constraints can be 

introduced by putting conditions on the nodal coordinates x as well as by imposing conditions on the deformation 

parameters e which are all assumed to be holonomic. For instance, if element k is rigid it has to satisfy the constraint 

equations e
j
 = D

j
 (x

j
) = 0. 

 

The motion of manipulator mechanisms is described by relative degrees of freedom, which can be either actuator 

joint coordinates, denoted e
k
, as well as flexible deformation parameters denoted by εk

. The objective of kinematic 

analysis is to solve equation (3) for the vector generalized coordinates q = (e
m
 , εm

)
T
 . The solution is expressed by 

means of a geometric transfer function F as 

   x = F(e
m
 , εm

) = F(q) …(4) 

Generally this transfer function cannot be calculated explicitly from the constraint equations but has to be determined 

numerically in an iterative way [3]. 

 

The inertia properties of the concentrated and distributed mass of the elements are described with the aid of lumped 

and consistent mass matrices. For each element, the mass matrix M
j
 and the force vector f 

j
 are defined. These give a 

contribution to the virtual power of < (f 
j
 – M

j j
x&& ), 

j
x&δ >. The loading state of each element is described by the 

stress resultant vector σj
 that is dual to 

j
c& . According to the principle of virtual power for the external forces 

including the inertial forces and stress resultant vector σ of the manipulator mechanism; the following relation is 

obtained: 

( ) ( ) ( ) >>=<−< mmmme exxMf εσσδ ε
&&&&& ,,,, ,,

 … (5) 

for all virtual velocities x&δ , which satisfy all instantaneous kinematic constraints. By differentiating the transfer 

function (4), the following relation is obtained: 
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Using the differentiation operator D to represent partial differentiation with respect to the vector of the degrees of 

freedom, the following relation is obtained for Equation (6) 

( )mmeDFx ε&&& ,.=   …(7) 

and for the second derivative 

 

( )( )( ) ( )mmmmmm eDFeeFDx εεε &&&&&&&&&& ,.,..2 +=  …(8) 

Substitution of Equation (8) in the virtual power equation (5) yields the reduced equations of motion 
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with the reduced mass matrices: 
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The matrices 
εeM  and 

eM ε
 represent the dynamic coupling between the gross rigid motion and the flexible 

deformation of the links. The presence of this dynamic coupling is one of the major problems encountered in 

controlling flexible manipulators. The stress resultant vector of flexible elements is characterized by Hooke’s law 

defined by εσ K= , where K is a symmetric matrix containing the elastic constants. The driving forces and 

torques, represented by the vector 
emσ , are applied only at the actuator joints; if the actuator dynamics are not 

considered then there is a simple linear relation between the vector of control inputs u and the vector 
emσ  

emσ  = - B.u …(11) 

where 

B = 








0

I
 …(12) 

 

Equation (11) represents the input equation, and the matrix B is called the input matrix. The minus sign in Equation 

(11) is a result of different sign conventions for the driving forces in control engineering literature and in structural 

dynamics literature. With Equation (11), the equations of motion can be written in a more compact form 

( ) ( )[ ] BuqKfqqFDMDFqqM T =+−+ &&&& ..2
  …(13) 

where M  is the system mass matrix and K  is the structural stiffness matrix of the manipulator mechanism. 

 

4. LINEARIZED EQUATIONS OF MOTION 
Given the non-linear equations of motion in Equation (13). Consider now small perturbations around the nominal 

trajectory ( )000 ,, qqq &&&  such that the actual variables are of the form 
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where the prefix δ denotes a first variation. The nominal values of the flexible deformation parameters and their time 

derivatives are assumed to be zero. Linearization of the reduced equations of motion (13) around the nominal 

trajectory results in 

( ) uBqGKKqCqM
N δδδδ =++++ 00000

&&&  ...(15) 

 

where 0M  is the system mass matrix as in (13), 0C  is the velocity sensitivity matrix, and 0K  denotes the structural 

stiffness matrix as in (13), 
NK 0  and 0G

 are the dynamic stiffness and the geometric stiffness matrix, respectively. 

0M , 0K  and 0G  are symmetric matrices, but 0C
 and

N
K 0 need not. These matrices are calculated by [4]. 
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The terms qC &δ0  and qK
Nδ0  are of importance for high-speed machinery. The term qG δ0  contributes most 

directly to the rigid link modes but tends to be quite weak for actively controlled manipulators. For the purpose of 

control system design of manipulator robots the matrixes 0C ,
N

K 0 and  0G  may therefore be neglected. The 

resulting simplified linearised equations are of the form  
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The matrix coefficients of 0M  are functions of time, since they depend on the nominal position, velocity and 

acceleration of the manipulator. For the purpose of the trajectory tracking control, the time-varying equations (17) 

may be converted in piecewise linearized time-invariant equations by dividing the total trajectory time T, in n 

intervals, where t = ti, (i = 1, 2,. . . .,n) denote the time at the end of interval i. the linear time is approximated by 

varying system in the interval 
2

) t (t 1-ii +
 < t < 

2

) t (t 1ii ++
by the linear time-invariant system at t = ti. The 

linearized equations enable to determine the main natural frequencies and associated mode shapes for small motions 

of the manipulator about any point along the nominal trajectory. Two possible modal representations are of interest 

for control engineering design applications: namely, constrained modes and unconstrained or system modes. 

Constrained modes are determined from a modal analysis of the homogeneous system, 

000 =+ mm
KM δεεδ εεεε

&&  …(18) 

which is obtained when the rigid link motion of the manipulator is fixed and the links vibrate about a certain 

prescribed configuration. Unconstrained or system modes are obtained from a modal analysis of the complete 

homogeneous part of Eq. (17). The simple structure of Eq. (17) enables to formulate a condition for the 

controllability of flexible manipulators in terms of these modal representations. 

 

5. CONTROL SYSTEM DESIGN 
In order to be able to design mechanical systems involving automatic controls (e.g. robotic manipulators) interfaces 

for control design with MATLAB (open-loop system analyses, Fig. 2) and SIMULINK (closed-loop simulations, 

Fig. 3) have been developed. These simulations use data from the open-loop analyses.  

 

KIN   is the kinematics module that analyzes the geometry of motion of the mechanism. The kinematic properties of 

the motion are specified by the geometric transfer functions. 
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DYN is the dynamics module that generates the equations of motion and performs numerical integration in the 

forward dynamic analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                    

 

 Fig-1 open loop system analysis 

                                                       Fig-3 Closed loop system analysis 

 

INVDYN is the inverse dynamic analysis based on a rigid link model for the generation of the    set points. The  

system outputs, represented by nominal output vector, y0 consists of the coordinates to be monitored by control 

sensors. Coordinates that are not measured may be added to check the performance of the manipulator in the 

simulation. The system inputs, represented by the vector u0, are to be varied by control system actuators.  

 

LINEAR is a forward dynamics stage for the generation of linearized equations and state space matrices. In case of a 

flexible manipulator additional generalized coordinates 
m

iε describing the elastic behavior of manipulator links can 

be added to the dynamic model. 

 

The behavior of the manipulator mechanism with closed-loop control is simulated in SIMULINK as illustrated in 

Fig. 3. The nominal control input u0 can be used as feed-forward compensation for the gross rigid link motion of the 

manipulator. The main part of the non-linear dynamic effects due to changes of the manipulator configuration is 

predicted by this nominal feed-forward compensation. The non-linear open-loop model of the manipulator with its 

actuators and sensors is into SIMULINK using a so-called S-function [4]. In this closed-loop simulation, the 

integration method is determined by the SIMULINK environment.  

 

The output vector y is compared to the nominal output vector y0. The difference of these vectors is the input of the 

control system. The state matrices can be used to develop and tune a controller of any type (e.g. linear, nonlinear, 

discrete, continuous) by means of the available software tools in MATLAB and SIMULINK. The output of the 

controller δu is added to the nominal input vector u0to actuate the mechanism. 
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6. SIMULATION 
 

6.1 System Properties 
Fig-4 illustrates a finite element representation of the example manipulator. The revolute joints of the manipulator 

are modeled by the hinge elements (3), (5), and (7), where the hinge axes of the elements (5) and (7) are parallel, 

providing for the in-plane motion of the manipulator. The in-plane motion is driven by the linear actuators (1) and 

(2). The three major links of the manipulator are referred to as the shoulder (link 4), the upper arm (link 6) and 

forearm (link 8). The manipulator can rotate relative to the inertial reference frame (x, y, z) about the vertical axis of 

hinge element (3). This hinge element is driven by a torque source. The links (10) and (11) are rigidly connected 

with the upper arm. Referring to Fig. 4, Table1 lists the kinematic and dynamic properties of the links. The lumped 

mass of the bearing assembly and the end-effector are m
3
 = 10 kg and m

4
 = 30 kg, respectively. The gravity loads are 

evaluated as an applied force in the negative z direction at each mass, equal in magnitude to the weights of the 

masses. The upper arm and the forearm have uniform cross sections and are assumed to be flexible. The longitudinal 

deformation in the fore and upper arm and the torsional deformation in the forearm are suppressed. Each individual 

link is modeled by a single beam element. This corresponds to nine flexible degrees of freedom in addition to the 

actuator joint coordinates e
1
, e

2
, and e

3
 representing the elongation of the linear actuators (1) and (2) and the relative 

rotation of actuator (3). The actuators are modeled as pure force and torque sources without dynamics.  

 

The manipulation task implies transferring the manipulator tip along a straight line with a trapezoidal velocity profile 

(Fig. 5). The initial and final manipulator configurations correspond with the configurations A and B.  

 

6.2 Control Equations 

In the type of actuator joint feedback used, proportional plus derivative feedback is utilized in which the position 

sensors are collocated with the actuators. The control law is given by 
m

v

m

p eKeKu &δδδ −−=          …(19) 

where Kp and Kv are the position and rate feedback gain matrices. A straightforward way to achieve decoupling for 

the special case of rigid links is to specify the gain matrices Kp and Kv as 
2

0
ˆ Ω= ee

p MK   …(20) 

Ω= βεε
02MK v  …(21) 

 

Fig-4 Finite modeling of the manipulator Fig-5 Velocity profile of the manipulator 
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The diagonal matrices Ω and β contain the desired servo loop frequencies and the corresponding active damping 

ratios. To obtain adequate damping of the lowest flexible mode, a bandwith of approximately ωi=0:5(ω1) c and a 

relative damping βi≈ 0.7 …0.9 suffices, where (ω1)c is the lowest constrained natural frequency of the corresponding 

in-plane and out-of-plane motion. 

 

7. SIMULATION RESULTS 
The results of the nominal control synthesis for the motion trajectory of Fig. 5 are shown in Fig. 6. Because of the 

complex manipulator geometry, the individual joints undergo complex motions for the simple straight-line 

movements of the manipulator tip. As the inertia properties depend on the configuration, both the mass matrix 
ee

M 0  

and the diagonal matrix Ω in the equations (20) and (21) for the gain matrices Kp and Kv must be updated during the 

simulation.  

 

             Fig-6 Positions (a), velocities (b) and driving forces (c) of the actuators (1) and (2) 
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The trajectory has been performed by taking 13 linearizations. The initial condition disturbances at the joint positions 

are determined by radeee 005.0 and m01.0,0 321 −=−== δδδ  corresponding with initial tip position 

deviations  and m0022.0 m,098.0 44 −=−= yx δδ  m033.0z4 −=δ respectively.  

 

8. CONCLUSIONS 
The present finite element formulation has proved to be particularly useful for the numerical treatment of flexible 

manipulator analysis. This method simplifies conceptually the non-linear dynamic analysis involving large 

displacements and small (elastic) deformations. The geometric transfer function formalism provides a systematic 

approach for generating reduced non-linear dynamic equations and locally linearized manipulator models suitable for 

control system design. The MATLAB/SIMULINK yields a useful tool for controller design of geometrically non-

linear engineering systems like mechanisms and manipulators. Control strategies can be developed using MATLAB, 

which is a standard tool for controller design. The dynamic behavior of the closed-loop system can be simulated 

using SIMULINK. 
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