Analysis of the Relationship Between the Interface Structure and the Strength of Carbon-Aluminum Composites

A. Chennakesava Reddy

Associate Professor, Department of Mechanical Engineering, JNTU College of Engineering Kukatpally, Hyderabad – 500 072, Email: <u>dr_acreddy@yahoo.com</u>

Abstract: Analysis of the relationship between the interface structure and the strength of carbon – aluminum has been studied. Al_4C_3 phase was formed at the fiber-matrix interface when the copper content in the matrix is low whereas Al_4C_3 and $CuAl_2$ phases were resulted at the fiber-matrix interface, as the copper content is high in the matrix. Two phases promote too strong bonding in the composites. The tensile strength would deteriorate with too strong interfacial bonding.

Keywords: carbon, aluminum, interface, strength, rod-phase, lumped phase

1. Introduction

Carbon reinforced aluminum (C-AL) composites have found wide uses for the structural designs in the aeronautic applications. The preference of C-Al composites is the attractive combination of properties: light weight, high strength, and manufacture possibilities [1]. The carbon has a very low surface energy; therefore it is difficult to be wetted by the molten aluminum. A successful coating Ti-B was suggested [2]. The interfacial reaction between the fiber and the matrix is a very important factor affecting the strength of C-Al composites. The chemical composition of matrix influences the mechanical properties. Al-alloy matrix reacts thermodynamically with fibers at its melting point [3]. The reaction product is Al_4C_3 .

The objective of this paper is to develop the relationship between the interface structure and the mechanical property (i.e; tensile strength) of the C-Al composites.

2. Experimental Procedure

Two commercial Al-alloys (chemical compositions are given in the Table-1) were used for the matrix. Carbon fiber blends of 3000 filaments were employed as the reinforcing fibers. The C-Al composite wires were manufactured by the infiltration (Ti-B) method.

Table-1: Chemical composition of the matrix	Table-1:	Chemical	composition	of the	matrix
---	----------	----------	-------------	--------	--------

I	Alloy	%Cu	%Si	%Mg	%Mn
	Alloy ₁	0.40	1.00	0.60	0.25
	Alloy ₂	4.20	1.20	0.60	0.60

Transmission electron microscopy (TEM) specimens were taken along the longitudinal axis of the composite wires [4]. The specimens were thinned to 25μ m and then milled to perforation. The tensile test was carried out for the analysis of the strengths of composites [5, 6]. Scanning electron microscopy (SEM) was employed for the fracture analysis of the composite specimens.

3. Results and Discussion

The average observation over three samples of the same type was followed for each test procedure.

3.1 TEM analysis of composites

TEM micrographs of C-Al composites are shown in Fig.1. In the Carbon- Alloy₁ composites, a rod shaped phase is noticed at the fiber matrix interface. The rods were probably growing individually from the carbon fibers into the Al-alloy matrix. The fiber - matrix interface reaction product is Al₄C₃. TEM analysis reveals that each Al_4C_3 rod is a single crystal and its [001] orientation is normal to the longitudinal axis of the rod. The advanced angle of the Al_4C_3 rod during growing in the matrix is randomly oriented as there is no definite crystallographic orientation relationship between the Al_4C_3 rod and the matrix. In the Carbon-Alloy₂ composites, a lump shaped phase is observed at the fiber matrix interface. The fiber - matrix interface reaction products are Al₄C₃ and CuAl₂. TEM analysis identifies that CuAl₂ has a body centered tetragonal (BCT) crystal structure. The CuAl₂ phase might be either solidified from the melt by a eutectic reaction due to rapid cooling or precipitated from the Al alloy solid solution.

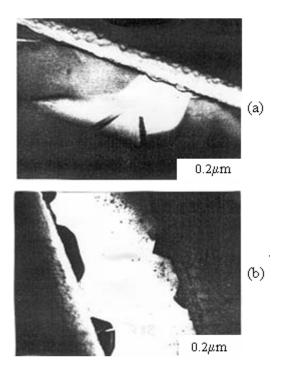


Fig.1 TEM micrographs of (a) Carbon-Alloy₁ and (b) Carbon-Alloy₂ composites

3.2 Strength of composites

Tensile test results of Carbon-Alooy₁ and Carbon-Alloy₂ are respectively 552.4 and 368.6 MPa. The tensile strength of Carbon-Alloy₁ composite is greater than that of Carbon-Alloy₂ composite. This is owing to larger amount of Cu content in the matrix of Carbon-Alloy₂ composite. The fracture morphologies of the tensile tested specimens as shown in Fig.2 justify this phenomena. The fracture surface of the carbon-Alloy₂ composites is characterized by the flat surface, which reflects the strong interfacial bonding. The fracture surface of the carbon-Alloy₁ is distinguished by the pullout surface that is symptom of less strong interfacial bonding.

Fig.2 SEM micrographs of the fractured surfaces of tensile specimens (a) Carbon-Alloy_1 and (b) Crabon-Alloy_2 $\,$

3.3 Interface structure and strength relationship

The results in this study show that the fall of tensile strength by copper addition is related to the increasing of the interfacial bonding between the fibers and the matrix and the type of interfacial phase formation and its orientation. The Al₄C₃ phase was nucleated from the carbon fiber and advanced into the alloy matrix of Carbon-Alloy₁ composite. This would result chemically interacting and mechanically interlocking bonds. These adhesive and cohesive bonds provide strong fiber matrix interface bonding. In the case of Carbon-Alloy₂ composite, both Al₄C₃ and CuAl₂ phases were formed. Thus the addition of copper enhances the interface bonding qualitatively and quantitatively. The result is very strong interface bonding between the fibers and the matrix. The very strong interface bonding in Carbon-Alloy₂ composites governs the flat fracture surface. Therefore, the decreased tensile strength is in Carbon-Alloy₂ composites. The fractured surface in the Carbo-Alloy₁ composites is pulled out and subsequently the consequence is the increased tensile strength.

4. Conclusions

The rod – shaped Al_4C_3 phase was formed at the fiber – matrix interface in the carbon-aluminum composites. With increased content of copper in the matrix, two phases Al_4C_3 and $CuAl_2$ were resulted at the fiber – matrix interface. If the interface is too strong the tensile strength is too less.

5. References

- 1. X.G.Li, H.L.Zhang and R.U.Wu, Proceedings of 5 th International conference on composite materials, p.623, 1985.
- 2. M.F.Amateau, Journal of composite materials, Vol.10, No.10, p.279, 1976.
- 3. K.Motoki and A.Okura, Progress in science and engineering of composites, Tokyo, 1982, p.1281.
- 4. A. Chennakesava Reddy and B. Kotiveerachari, Interfacial effect on the fracture mechanism in GFRP composites, CEMILAC Conference, Ministry of Defence, India, Vol.1, No.B, p.85, August 1999.
- A. Chennakesava Reddy, Effect of matrix microstructure and reinforcement on the properties of SiC/Al-alloy composites, National conference on advances in materials and their processing, Bagalkot, p.121, November 2003.
- A. Chennakesava Reddy, Experimental evaluation of elastic lattice strains in the discontinuously SiC reinforced Al-alloy composites, National Conference on Emerging Trends in Mechanical Engineering, Nagapur, 05-06th February, 2004