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ABSTRACT: In the last decade genetic algorithms have been applied in a plethora of fields such as in control, 
parameter and system identification, robotics, planning and scheduling, image processing, pattern recognition 
and speech recognition. This paper addresses the generation of a robotic manipulator structure and the planning 
of trajectories, namely in finding a continuous motion that takes the hand from a given starting configuration, 
without collision with any obstacle, up to a desired end position in the workspace. 
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1.0 INTRODUCTION 
Various methods for trajectory planning, collision avoidance and manipulator structure definition 
have been proposed. A possible approach consists in adopting the differential inverse kinematics, 
using the Jacobian matrix, for generating the manipulator trajectories [1, 2, 3]. However, the 
algorithm must take into account the problem of kinematic singularities that may be hard to tackle. To 
avoid this problem, other algorithms for the trajectory generation are based on the direct kinematics [3 
-8]. 
      
This paper proposes a method to obtain a robot arm and its path. This method is based on a genetic 
algorithm (GA) adopting the direct kinematics. The optimal manipulator is the one that minimizes 
both the path trajectory length and the ripple in the time evolution, without any collision with the 
obstacles in the workspace.  
 
2.0 ROBOT ARM AND ALGORITHM FORMULATION 
In this study robotic manipulators are required to move from an initial point up to a given final point. 
In the experiments, the planar manipulators are used with rotational and prismatic joints. The link 
length arms are in the range [0, 1] m, and the robot rotational joints are free to rotate 360º. Therefore, 
the manipulator workspace is a circle with a 4 m maximum radius, which may have obstacles such as 
rectangles and circles. To test a possible collision between the manipulator and the obstacles, the arm 
structure is discretized into several points and then these points are checked in order to verify if they 
are inside any obstacle.  
 
In what concern the structure generator, it is adopted a GA to search for a global optimal robot which 
presents the best performance. The mechanical structure consists of a set of strings that represent the 
type of joint and the link lengths. On the other hand, the trajectory generator uses a GA scheme to 
search for an optimal robot path. The trajectory consists in a set of strings that represent the joint 
positions between the initial and final robot configurations. In conclusion, in this work are adopted 
four GAs. One GA is used to calculate the robot’s structure. For each arm two GAs are used to 
calculate the initial and final configurations of the trajectory. Finally, another GA determines the 
intermediate configurations between the two points calculated previously. 
 
3.0 MODELING 
The robotic structure is encoded as: 
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[(J1, l1),..., (Ji, li),..., (Jk, lk)]                                   (1) 
where Ji represents the type of the ith joint (R for rotational and P for prismatic joints) and li is the ith 
link length, in the range [0, 1] m. In order to limit the computational time the number of dof is limited 

to k ≤ 4. All values used in this work are encoded through real values except the type of the robotic 
link. 
 
 The initial and the final configuration are encoded as: 

[q1,...,qk]                                     (2) 
 
 The path is encoded, directly, as strings in the joint space to be used by the GA as: 

[(q11,...,qk1),..., (q1j,...,qkj),..., (q1n,...,qkn)]                                  (3) 
   
The ith joint variable for a robot intermediate jth position is qij, the chromosome is constituted by n 

genes (configurations) and each gene if formed by k values. The values of qij are initialized in the 
range [360º, +360º] for R joints and [0, 1] m for the case of P-joints. It should be noted that the initial 
and final configurations have not been encoded into the string because this configuration remains 
unchanged throughout the trajectory search. Without losing generality, for simplicity, it is adopted a 

normalized time of ∆t = 1 sec between two consecutive configurations, because it is always possible 
to perform a 
time rescaling. 
 
4.0 OPERATORS IN THE GENETIC ALGORITHM 
The initial populations of strings are generated at random. The search is then carried out among these 
populations. The three different operators used in the genetic planning are reproduction, crossover and 
mutation, as described in the sequel. In what concern the reproduction operator, the successive 
generations of new strings are reproduced on the basis of their fitness function. In this case, it is used 
a tournament selection [8] to select the strings from the old population, up to the new population. For 
the crossover operator, the strings in the new population are grouped together into pairs at random. 
Single crossover is then performed among pairs. The crossover point is only allowed between genes 
(i.e. the crossover operator may not disrupt genes). The mutation operator consists on several actions 
namely, commuting the type of the joint, modifying the link length and changing the joint variable. 
Therefore, the mutation operator replaces one gene value with a given probability that follows the 
equations: 

qij(t + 1) = qij(t) + km ϕi            (4) 

li(t + 1) = li(t) + km ψI                                                   (5) 

{ϕi, ψi} ~ U[−1; 1]                                    (6) 

at generation t, while ϕi, ψi are uniform random numbers and km a parameter. 
 
 Finally, at the end of each GA structure iteration two operators take into action, randomly, over the 
(Ji, li) genes. One duplicates a given gene while the other removes another gene, with probabilities pr 

and pd, respectively. 
 
5.0 EVOLUTION CRITERIA 
Several criteria have been selected to qualify the evolving robotic manipulators. All constraints and 
criteria are translated into penalty functions to be minimized. Each criterion is computed individually 
and then, is used in the fitness function evaluation [10]. 
 
The fitness function f adopted to evaluate the candidate robots is defined as: 

f = β 1 fT + β2 fI + β3 fF                                    (7) 

where βi (i=1,2,3) are weighting factors. The fI and fF functions give a measurement of the distance 
between the initial or final desired point and the point actually reached by the robot configuration. The 
fitness function fT, adopted to evaluate the candidate trajectories, is defined as: 
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where p ,p ,q ,q ɺɺɺɺɺɺ and nap are the criteria defined in the sequel. The optimization goal consists in finding 

a set of design parameters that minimize f according to the priorities given by the values of αi (i = 
1,…,4). 
    
The joint velocities qɺ are used to minimize the manipulator traveling distance yielding the criteria: 
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This equation is used to optimize the traveling distance because if the curve length is minimized, then 
the ripple in the space trajectory is indirectly reduced. For a function y = g(x) the distance curve length 

is ∫[1 + (dg/dt)2] dx and, consequently, to minimize the distance curve length it is adopted the 

simplified expression ∫(dg/dt)2 dx. The fitness function maintains the quadratic terms so that the robot 
configurations are uniformly distributed between the initial and final configurations. 
      
The joint accelerations qɺɺ are used to minimize the ripple in the time evolution of the robot trajectory 

through the criteria: 
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The Cartesian velocities pɺ  are introduced in the fitness function f to minimize the total trajectory 

length, from the initial point up to the final point. This criteria is defined as: 
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where pw is the robot w intermediate arm Cartesian position and d(⋅, ⋅) is a function that gives the 
distance between the two arguments. 
 
 The Cartesian acceleration pɺɺ  in the fitness functions is responsible for reducing the ripple in time 

evolution of the arm velocities. This criteria is formulated as: 

( ) ( )[ ]
2

211 ,,∑ −−− −= wwww ppdppdpɺɺ                                (12) 

 The points that are not admissible give a conflict measure between the robot and the obstacles. In this 
perspective, each manipulator link is discretized and the nap value is a criterion consisting on the sum 
of the manipulator points that are inside the obstacles. 
 
6.0 SIMULATION RESULTS 
In this section are presented the results of several simulations. The experiments consist on moving a 
robotic arm from the starting point A up to the final point B (Table 1), for two types of situations: 

• the algorithm optimizes the robot structure for a sequence of r trajectories (series optimization), 
tacking each trajectory at a time; 

• the algorithm optimizes the robot structure for the r trajectories (parallel optimization), considering 
all trajectories simultaneously. 
 
The algorithm adopts crossover and mutation probabilities of pc = 0.8 and pm = 0.05 respectively, pr = 
pd = 0.01, km = 1.8, a 30-string population for the robots, a 50-string population for the initial and final 
configurations and a 100-string population for the intermediate configurations. For the experiment are 
used strings length of n = 10 and the selection operator is based on tournament selection with elitism. 
The workspace contains an obstacle, a circle with center at the point (0, 2) and radius 0.5. 
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6.1 OPTIMIZATION OF THE TRAJECTORY 1 
 For one trajectory only, there is no distinction between the series and parallel optimization methods. 
Therefore, this section presents the results of trajectory 1 optimization yielding a manipulator with 
structure {[R: 1.0000] [P: 0.8824] [P: 0.5945] [P: 0.8366]}, where [Ji: li] identifies the type of the ith 
joint and the link length. Figure 1 to 2 shows some results of the robotic manipulator obtained. 
 
6.2 SERIES TRAJECTORY OPTIMIZATION 
This section presents the results when optimizing sequentially the group of trajectories, one trajectory 
at a time. The robot structures obtained for the five trajectories are: 
 
{[R: 1.0000] [P: 0.7393] [P: 0.5641] [R: 0.6718]} 
{[R: 0.5632] [P: 0.4643] [P: 0.5460] [P: 0.7479]} 
{[R: 0.9504] [P: 0.7374] [P: 0.6805] [P: 0.8839]} 
{[R: 0.9803] [P: 1.0000] [P: 1.0000] [P: 0.8312]} 
{[R: 1.0000] [P: 0.8347] [P: 0.9961] [P: 0.8087]} 
      
The results are shown in Figures 4 to 5. 
 
The abrupt transitions (Figure 5) of the best individual function are due to the change of the 

optimization trajectory. The step c is negative because the length of the new trajectory (A4→B4) is 
smaller. 
 
6.3 PARALLEL TRAJECTORY OPTIMIZATION 
This section presents the resultant robot when optimizing the five trajectories simultaneously. The 
final robot mechanical structure is {[R: 1.0000] [P: 0.7053] [P: 1.0000] [P: 0.6010]}. Figures 6 to 8 
show the results for this case. 
 
This section shown the results when is optimizing sequentially the group of the trajectories for a 
workspace with two obstacles. The robot structures obtained for the trajectories are: 
{[P: 0.3875] [R: 1.0000] [P: 1.0000] [P: 0.7689]} 
{[R: 0.4888] [P: 1.0000] [P: 0.9250]} 
{[R: 0.6641] [R: 0.8629] [P: 1.0000] [P: 0.7881]} 
{[P: 0.3359] [R: 0.9353] [P: 0.9802] [P: 1.0000]} 
{[P: 0.2894] [R: 1.0000] [P: 1.0000] [P: 0.9780]} 
 
The results for the second robot are shown in Fig. 9-10. 
 
6.4 RESULT ANALYSIS 
The results are satisfactory because the solutions avoid the obstacles, and the time evolution of the 
variables presents a small ripple. Moreover, analyzing the final number of axis, we conclude that the 
larger the number of dof the better the robot ability to maneuver and to reach the desired points. 
 
The different experiments simulated both a workspace without obstacles and a workspace with several 
types and positions of obstacles. For one obstacle the results reveal that for the first axis we have 
88.3%-rotational and 11.7%- prismatic joints, respectively. Therefore, it seems that a robot with a first 
rotational joint has a superior performance (in the sense of being more adaptable) to execute different 
tasks. Nevertheless, in the present form, the study does not consider energy requirement [11]. In this 
line of thought, future work will take into account the robot dynamics and we expect to have clear 
conclusions about the total number of dof. For more obstacles in the workspace the convergence sees 
more difficult and further experiments are still required. 
 
7.0 SUMMARY AND CONCLUSIONS 
A GA robot constructor and its trajectory planner, based on the kinematics, were presented. The 
algorithm is able to reach a determined goal with a reduced ripple both in the space trajectory and the 
time evolution. Moreover, any obstacles in the workspace do not represent a difficulty for the 
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algorithm to reach the solution. Since the GA uses the direct kinematics the singularities do not 
constitute a problem. Furthermore, the algorithm determines the robot structure more adaptable to a 
given number and type of tasks, maintaining good manipulating performances. 
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         Table-1: Trajectory simulations 
Trajectory Initial point A Final Point B 

1 (2,2) (-1,2) 

2 (-1,2) (1,1) 

3 (1,3) (1,0) 

4 (3,-1) (1.5,-1) 

5 (-1,-3) (-1,-1) 
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                     Fig.3 Robot arm trajectories 
Fig.4 Variation of joint positions of trajectory-3 

Fig.5 The best individual evolution versus the 
generation 

Fig.6 Terminal arm position for the trajectories 
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Fig.9 Successive robot configurations Fig.10 joint velocities  

Fig.8 The best individual evolution versus the 
generation 

Fig.7 Joint position of trajectory - 3 


