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ABSTRACT      
A neural network is a new approach using to process the features of the cutting force signal for the
recognition of tool breakage in face milling is proposed. The cutting force signal is first compressed by
averaging the cutting force signal per tooth. The average cutting force signal is passed through a medium
filter to extract the features of the getting force signal due to tool breakage. With the back propagation
training process, the neural network memorizes the feature difference of the cutting force signal between 
with and without tool breakage. As a result the neural network can be used to classify the cutting force
signal with or without tool breakage. Experiments show this new approach can sense tool breakage in a
wide range of face milling operations. 
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1. INTRODUCTION 
     The cutting force variation characteristics of normal 
and broken tools are different.  It is possible to train 
neural networks with the normal and broken tool cutting 
force variation signals.  An automatic on-line sensing of 
tool breakage is a crucial step toward the full automation 
of machine tools in an unmanned factory [1].  A number 
of researchers reported application of neural network 
systems in tool condition monitoring.  Applying sensors 
to monitor tool state condition and representing it with 
neural networks is a reliable and attractive alternative as 
opposed to previously employed empirical methods with 
senior fusion, vibrations, ultrasonic, torque, power, and 
speed and temperature sensors.  Then, the cutting signals 
are further processed through the signal processing 
algorithms to extract the signal patterns from the 
recognition of tool breakage [2]. Developments in 
computer technology have made faster computation 
possible and economically viable for common users.  
Neural networks with these faster computations are a part 
of decision-making about the occurrence of tool 
breakage is greatly dependent on how the cutting signal 
patterns are classified and interpreted.  However, it has 
been found that the classification and interpretation of 
the cutting signal patterns in face milling operations is 
not straightforward due to variation of cutting conditions, 

the measurement error of the cutting signals, and the 
unavoidably noisy cutting environment, etc., As a result, 
the rate used in the recognition of tool breakage in 
milling is usually not high enough, especially under the 
varying cutting conditions [5]. 
     Artificial neural system (ANS) technology has 
demonstrated a great potential application in intelligent 
manufacturing systems.  Therefore tool condition 
monitoring systems via neural networks used in turning 
have been proposed. However, most of the work has 
focused on turning operations only.  In the present paper, 
a tool breakage monitoring system using a neural 
network in face milling is presented.  The cutting force 
signal is utilized to detect tool breakage in face milling. 
      The cutting force signal is compressed by averaging 
the cutting force signal per tooth in order to increase the 
response time of the monitoring system and then passed 
through a median filter [6].  As a result, the features of 
the cutting force signal due to tool breakage still remain 
in the condensed cutting force signal.  Later, the different 
features of the cutting force signal are fed into a 
back-propagation feed-forward neural network in order 
to teach the neural network to classify the cutting force 
signal as being with or without tool breakage.  Through 
the back-propagation teaching process, finally, the neural 
network continuously modifies its weights so that the 

 

 



output of the neural network can be used to indicate the 
occurrence of tool breakage [7].  Experiments show the 
neural network has fine robustness for sensing tool 
breakage even with variations in cutting speed, redials 
depth of cut, axial depth of cut, feed rate and work piece 
material.  Therefore, a vary promising approach for the 
automatic sensing of tool breakage by the use of neural 
network in face milling operations has been developed in 
this study. 
 
2. THE NEURAL NETWORK AND 
BACK-PROPAGATION TRAINING ALGORITHM 
     A neural network is a massively parallel-distributed 
processor made up of simple processing units, which has 
a natural propensity for storing experiential knowledge 
on the strength of connections between the individual 
nodes.  Such a parallel computing network inspired by 
the computational architecture of the human brain has 
been successfully applied to intelligent take such as 
earning and pattern recognition, generally, there one 
three kinds of processing units in the neural network, i.e., 
input layer node, output layer mode and hidden layer 
node.  However, the role of the hidden layer nodes is to 
intervene between the external input and the network 
output.  As shown in fig, the input to a node can be 
expressed as: 

 
                     netj = ∑ wji Oi   (1) 

 
Where netj is the summation of all the inputs of the jth 
neuron; wk

ji is the weight from the ith neuron; Oi is the 
output of the ith neuron. 
     The result of the summation function can be treated as 
an input to a transfer function from which the output of 
the neuron will be determined.  In the paper, a sigmoidal, 
transfer function, f (neti), with a bias, bj is used.  The 
input-output behaviour is described by a sigmoidal 
function, that is. 
  
       Oj  = f ( netj)  =  1/ (1 + e –(netj  + bj )  

)        -----      (2) 
 

 
 Fig 1. Schematic diagram of a neuron 
 
      Then, a learning process wing the back-propagation 
algorithm is applied to obtain the proper weights in the 
neural network.  If the response of neural networks is 
correct, no weights need to be changed.  However, if 
there is an error in the output response of neural networks, 
the difference between the derived output and the actual 
outputs is used to guide the modification of connection 
weights appropriately.  Since it is a supervised learning 
procedure, examples of input and output patterns are 

necessary for training the network.  Therefore, the error 
between the desired output. Tj and the actual output, Oj is 
computed.  The summation of the square of the error, E 
can be expressed as :  
 
 E =  1/2 ∑ ( Tj - Oj )2

    -------------------(3) 
          
     where Tj is the desired output of the J-th node.  An 
iterative error reduction performed in a back ward 
direction from the output layer to the input layer of the 
network.  In order to minimize the error, the gradient of 
the error with respect to the weights of the nodes is used 
to modify the weights of the nodes that is  
 

∆wji  =  -η ∂E/∂wji , 
 

where   ∆wji is the incremental change of weight from the 
j-th node to the j-th node and η is the learning rate[13]. 
 
3. STRUCTURE OF THE NEURAL NETWORK 
FOR SENSING TOOL BREAKAGE 
The neural network requires nine nodes in the input layer 
which are allocated to the eight components of the 
variable cutting force in one revolution and one 
component of the moving average of the cutting force.  
As to the output layer, one node is enough to describe, 
the cutter with or without tool breakage.  The output 
value of the node is in the range of between zero and one.  
This represents the grading of the cutter without and with 
tool breakage.  An output value closer to one represents a 
higher possibility of having a cutter with tool breakage.  
By using the root mean square error between the actual 
output pattern and the desired output pattern with 
different numbers of nodes in the hidden layer during the 
training process.  The training patterns were, in effect, 
extracted from experimental cutting tests with an 
eight-tooth cutter, rotating 600   rpm, and machining gray 
cast iron.  As a result, a neural network with a 9-10-1 
type (see fig 2) is adopted here for sensing tool breakage 
in face milling.  The process diagram for sensing tool 
breakage with a neural network in face milling is shown 
in Fig.3.  First, the cutting force signal is preprocessed by 
averaging per tooth. 
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Fig.2 Configuration of the neural network for sensing 
tool breakage 
 

 
Fig 3. Process diagram for sensing tool breakage with the 

neural network. 
 
4. RESULTS AND DISCUSSION 
    A case of face milling with tool breakage occurs at 
2.85s as shown in fig.4.  The output values of the neural 
network are displaced in fig.4.  It is shown that the output 
value remains about zero for the cutter without tool 
breakage.  However, the output value immediately jumps 
almost to one as tool breakage suddenly occurs.  The use 
of neural network to sense tool breakage in face milling 
operations is feasible.  The applicability of this new 
approach still needs to be verified under various cutting 
conditions.  Therefore, a number of experiments have 
been conducted and a part of the result of the experiments 
is shown in the following. 
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Fig 4. output value of the neural network (axial depth of 
cut = 1.27 mm; radial depth of cut = 50.8 mm; feed per 

tooth = 0.25 mm; spindle speed=600 rpm; cutter 
diameter = 101.6 mm; 8 teeth; up milling; work piece 

material: gray cast iron). 
4.1 Effect of spindle speed 
     Figure 5 shows the output value of the neural network 
for the undamaged and damaged cutters with a change of 
spindle speed to 2250 rpm.  It is observed that the neural 
network can recognize tool breakage even using different 

spindle speeds.  This is because the features of the cutting 
force signal in one revolution are almost invariant with 
change of spindle speed [6].  
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Fig 5. output value of the neural network (see fig.4. for 
the cutting parameters, but spindle speed = 2250 rpm) 

4.2 Effect of radial depth of cut 
     Fig 6 shows the cutting force signal and the output 
value of the neural network with varying radial depth of 
cut.  Even though the cutting force varies greatly for both 
the undamaged and damaged cutters, the output value of 
the neural network stays at zero for the undamaged cutter 
and jumps almost to one for the damaged cutter.  
However, it is also found that the neural network is 
insensitive to tool breakage when there is a small radial 
depth of cut.  This is because the signal to noise ratio is 
very small with the small radial depth of cut. 
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Fig 6. measured force and output value of the neural 

network with varying radial depth of cut ( see fig4 for the 
cutting parameters, but the radial depth of cut gradually 

changes from o to 50.8 mm). 
4.3 Effect of feed rate 
     Fig.7 shows the cutting force signal and the output 
value of the neural network with a sudden decrease of 
feed rate.  Basically, the cutting force signal is 
proportional to the feed rate [6].  However, after the 
cutting force features are normalized and fed into the 
neural network, the influence of the feed rate on the 
cutting force features will be greatly reduced.  Therefore, 
a clear destination in the output value of the neural 
network between Fig 7 (a) and (b) is shown. 
 

© RAMPT ‘05 



 
(c)

0

0.5

1

0 0.5 1 1.5
(s)

O
ut

pu
t o

f n
eu

ra
l 

ne
tw

or
k

(d)

0

0.5

1

0 0.5 1 1.5

(s)

 
Fig 7. Measured force and out put value of the neural 

network with sudden decrease of feed rate (See fig 4. for 
the cutting parameters, but the feed per tooth changes 

from 0.38 to 0.2 mm). 
4.4. Effect of axial depth of cut 
     The cutting force signal and the output value of the 
neural network with a sudden increase of the axial depth 
of cut are shown in Fig.8.  It has been shown that the 
cutting force signal is proportional to the axial depth of 
cut [6].  The influence of the axial depth of cut on the 
cutting force features is also removed when the cutting 
force features are normalized.  Therefore, a clear 
destination in the output value of the neural network 
between the undamaged and damaged cutters is shown 
again fig 8 (c) and (d). 
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Fig 8. Measured force and output value of the neural 
network with sudden increase of axial depth of cut (see 

fig.4 for the cutting parameters but the axial depth of cut 
changes from 1.0 to 2.54 mm). 

4.5. Effect of change of work piece material 
     The work piece material is changed to 7075 Al.  The 
cutting force signal and the output value of the neural 
network are shown in fig.9.  The cutting force signal is 
proportional to the specific cutting force, a mechanical 
parameter of the work piece material.  Once, the cutting 

force features are normalized, the effect of the specific 
cutting force on the input patterns of the neural network 
will almost be removed.  As a result, the neural network 
can distinguish the undamaged cutter from the damaged 
cutter with a change of work piece material (see fig.9 (c) 
and (d). 
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Fig 9. Measured force and output value of the neural 
network with different work piece material (see fig.4 for 
the cutting parameters but work piece material: 7075 Al) 
5. CONCLUSIONS 
     A new approach using a neural network to recognize 
the patterns of the milling cutting force with  
and without tool breakage is proposed.  Based on the 
present study, several conclusions can be drawn. 
♦ Artificial neural networks are a suitable tool for the 

design of a tool breakage monitoring system in face 
milling operations. 

♦ The appropriate selection of the input patterns of the 
neural network has a decisive influence on the level 
of success in applying the neural network to sensing 
tool breakage. 

♦  The number of training sets for the neural network 
is not required to be very large for sensing tool, 
breakage, with variations in cutting conditions if the 
input patterns of the neural network are normalized. 
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