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Abstract: In this work, the explicit expressions for the joint disturbance torque of a 3 DOF planar redundant manipulator 
have been obtained. The dynamic programming method is employed to find the globally optimal joint trajectory to 
produce a straight-line motion that minimizes the joint disturbance torque over the entire motion. The resulting solution is 
compared with the solution obtained by minimizing the conventional joint torque, and it is shown that the joint motion 
obtained by the proposed method results in smaller joint disturbance torques. 
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1. INTRODUCTION 
Majority of the present day industrial robots are 
controlled by independent joint control schemes [1, 2]. 
The independent joint control schemes assume that a 
robot consists of independent linear joint control 
subsystem with fixed load inertia, rather than a 
multivariable control system. In the independent joint 
control schemes, the effects of varying effective inertia, 
Coriolis and centrifugal torques, and gravity are 
regarded as disturbance torque that is introduced into 
the control system [3]. This control scheme is easy, 
inexpensive, robust and reliable, and for this reason, 
widely used in industrial robot systems. The 
performance of this type of controller depends on the 
ability of the joint controller to reject the joint 
disturbance torque. This method gives a good 
performance when the joint speeds of the robot are low 
and the dynamic coupling between the joints can be 
ignored. However, as the motion of the joints become 

faster, the performance of this control scheme is 
degraded because the effects of the joint disturbance 
torque increase, and results in the joint trajectory 
tracking error [4-5]. Thus, for a high speed and high 
accuracy motion, it is important that the joint 
disturbance torque must be minimized at the motion 
planning stage.  
 
A formulation and application of the joint disturbance 
torque for the independent joint controlled manipulator 
was reported in [6], where the joint disturbance torque 
was defined and used in the trajectory planning of a 
non-redundant manipulator such that the joint 
disturbance torque generated during the straight line 
motion was minimized. A robotic manipulator is said to 
be kinematically redundant when it has more joints 
than necessary for executing a task. For an n degrees 
of freedom manipulator in an m dimensional task 
space, if n > m, it is kinematically redundant. Since the 
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joint space has greater degrees of freedom than the 
task space, for a given end effector location, there exist 
an infinite number of joint solutions. In order to select a 
joint solution from the infinite number of candidate 
solutions, thus resolving the kinematic redundancy, an 
optimization criterion is chosen and the joint solution 
that minimizes the optimization criterion is selected. 
Hence, by an appropriate choice of the optimization 
criteria, the redundant manipulator can be used to 
perform a secondary task. For example, the joint 
velocity minimization can be used as the optimization 
criterion to minimize the unwanted joint motion [7, 8], 
joint limit avoidance can be used to maintain the joint 
position near the center of the position range [9], the 
distance from obstacles can be used to execute a 
motion among obstacles without collision [10], 
singularity measures can be used to avoid singularities 
[11], kinetic energy can be used to minimize the power 
consumption, and joint torque minimization can be 
used to reduce the torque magnitude so that actuators 
with small torque bounds can be used to perform a 
heavy task. 
 
The performance quality of the redundant manipulator, 
on the other hand, depends on the quality of the joint 
motion control. The optimization criteria mentioned 
above is concerned with the motion planning stage. No 
considerations are given to the joint control schemes, 
and the question of control performance is not 
addressed. When a manipulator is controlled by the 
independent joint control scheme, the performance is 
affected by the joint disturbance torques, and it is 
important that the joint disturbance torque be 
minimized at the motion planning stage. Hence, the 
kinematic redundancy can be exploited to reduce this 
joint disturbance torque.  
 
In this paper, the minimization of joint disturbance 
torque is proposed as a new optimization criterion for 
the kinematic redundancy resolution when the 
independent joint control is employed. By minimizing 
the proposed criterion, the joint disturbance torque 
introduced to the independent joint control system is 
minimized at the motion planning stage, and as a 
consequence, the joint tracking error can be reduced 
during the actual motion. This is a motion-planning 
scheme suitable for high speed and high accuracy 
motion of the manipulator. The explicit expressions for 
the joint disturbance torque of a 3 DOF planar 
redundant manipulator are obtained. Then, dynamic 
programming method is employed to find the globally 
optimal joint trajectory to produce a straight-line motion 
that minimizes the joint disturbance torque over the 

entire motion. The resulting solution is compared with 
the solution obtained by minimizing the conventional 
joint torque. 
 
2. JOINT   DISTURBANCE TORQUE 
The basis of the independent joint control is that a 
robot is viewed as a set of independent actuator-load 
pairs, where the load inertia of joints is unknown 

constants. The joint disturbance torque τdi, are 
unknown and varies depending on the motion of the 
joints. For n joint robotic manipulator, the dynamic 
equation of motion can be expressed by the following 
Lagrange- Euler equation. 

τθθθθ =+ ),()( ɺɺɺ HD               (1) 

where, D = (Dij) is an nXn inertia matrix and H = (hi) is 
an nX1 vector containing Coriolis, centrifugal effect and 

gravity loading vector, and τ is a n x 1 joint torque 
vector. If the robot manipulator is viewed as n 
independent joint control systems, the dynamic 
equation in (1) can be written as 

idiiiiD ττθ =+ɺɺˆ  ,      i = 1, 2, 3,….n           (2) 
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By definition, iiD̂  is not related with the joint position, 

velocity, and acceleration, and are constant regardless 

of the motion of the joints. iiD̂  is the constant inertial 

load for the joint i. In equation (4), τdi is the disturbance 
torque of joint i and contains torque components in 
robot dynamic equation related to the variation of 
effective joint inertia due to joint position change, 
Coriolis and centrifugal effect, and gravity loading. 
 
The joint disturbance torque in equation (4) is applied 
to a 3-DOF planar robot as shown in Fig.1. It is 
assumed that planar arm moves in a horizontal plane, 
and the gravity acceleration vector is set to zero. It is 
also assumed that the links have uniform mass 

distribution. In this figure, mi, li, θi are mass, length and 
joint position of the i-th link respectively. The Lagrange-
Euler equation of motion for this manipulator can be 
written in a below form. 
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and, from the definitions in equation (3) and (4), 

d3d2d1332211  τ, τ, τ,D̂ ,D̂ ,D̂  can be written as below: 
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Let τd denotes the joint disturbance vector such that 
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iiD̂  in equations (6), (7) and (8) are components of D11 

, D22 and D33 which are independent of the joint motion, 
and these can be used as the constant joint inertia in 
the independent joint controlled manipulators. Similarly, 

τdi in (9), (10) and (11) are the components of the joint 
torques that depend upon the joint motion, and thus 
corresponds to the joint disturbance torques. 
 
3. MINIMIZATION OF JOINT DISTURBANCE 
TORQUE 
In this section, the joint disturbance torque formulated 
in section 2 is used in the kinematic redundancy 
resolution so that the optimal joint trajectory for a given 

end effector motion is obtained which globally 
minimizes the joint disturbance torque. The global 
optimization problems can be represented in the 
following general form in optimal control theory. 
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where P is the optimization criterion, z is the system 
state, u is the control input. 
 

The kinematic relations between the joint position θ 
and the task variable x of a manipulator can be 
expressed as follows: 
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where x is the m - dimensional vector describing the 
end effector in task space, J represents the Jacobian 
matrix. In order to formulate the state equation, the 
dynamic equation of the manipulator is parameterized 
by (n-m) independent joint variables. Let the joint 
position and torque vectors be partitioned as 
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corresponding joint torques. The dependent joint 

variable θ
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 can be given as ),,(
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of independent joint variable θ , and desired end 

effector path xd through the kinematic relation (14). Let 
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In this work, n = 3 and m = 2, so there are two states 
and one control variable. The independent joint 

variable was selected as θ  = θ3, hence the state 

variables used were z1 = θ3; z2 = 3θɺ . The control 
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variable was selected as 3ττ = , hence u = τ3. The 

dynamic programming and technique [15] can now be 
applied to this optimal control problem. 

              Fig-1 Three link planar manipulator 
 
4. SIMULATIONS AND DISCUSSIONS 
For the demonstration of kinematic redundancy 
resolution using global joint disturbance torque 
minimization, the three link planar robot in Fig.1 is used 
in this work. The link parameters used are l1 = 1.0 
meter, l2= 0.8 meter, l3 = 0.5 meter, m1 = 10 Kg, m2 = 8 
Kg, and m3 = 5 Kg. The manipulator task is to move 
from a initial end effector position of ixd = (1.94,0.83)T 

with the joint position of θi = [0 30 30]T degrees to the 
final end effector position of fxd = (1.36, 1.32)T , in a 
straight line trajectory. The position and velocity profile 
of the end effector along the straight-line path is shown 
in Fig.2. The joint velocities are zero at initial and final 
positions, and the end effector travels through a 
distance of 0.76 meters in 1.01 sec.  
 
The optimization criterion used is the 2-norm square of 
the joint disturbance torque vector, P1, formulated as 
follows. For comparison, the 2-norm square of joint 
torque vector, P2 is also used. 

2
2

2
1               ττ == PP d          (17) 

 
Table-1: Step size parameters 

 Lower limit Upper limit Step size 

Z1 = θ3 
-0.5π 
radians 

+0.5π 
radians 

0.0021 
radians 

Z2 = 3θɺ  -π rad/sec +π rad/sec 0.063 
rad/sec 

u = τ3 -10 NM 10 NM 0.2 NM 

t 0 sec 1.01 sec 0.003 sec 

 
For dynamic programming, the joint space was 
discretized as shown in Table-1. In order to reduce the 
memory requirement to the minimum, for each node, 
only the optimal control input from a node in a stage to 
the optimal node in the next stage was recorded. The 

cost of the node was not stored for the nodes in all 
stages. Instead, the cost of nodes of two stages, the 
present and next stages, were stored and used to 
compute the optimal control from present stage to the 
next stage. The total number of nodes was 4.443x108, 
each control input required 2 bytes memory storage, 
and the total memory requirement for the node data 
storage was 899.85 Mbytes. The data structures used 
for the node data are as below. 

short int control [14811][101][301]; 
double present Stage Cost [14811][101]; 
double next Stage Cost [14811][101]; 

 
The optimal solution minimizing the joint disturbance 
torque, i.e. P = P1, is shown in Fig. 3. The joint torques 
are shown in (a), and the joint disturbance torques are 
shown in (b). The resulting values of 

2
2

2
1   and ττ == PP d  are shown in (c). The 

resulting joint trajectory is shown in Fig.4. For 
comparison, the optimal solution minimizing the 
conventional joint torque, i.e. P = P2, are shown in Fig. 
5, and corresponding joint trajectory is shown in Fig.6. 
The simulation result shows that the peak value of joint 

disturbance torque, 
2

1 dP τ=  shown in Fig.3(c) is an 

order of magnitude less than that shown in Fig. 5(c). 
The joint velocity of the two trajectories is shown in Fig. 
7. This figure shows that minimizing the joint 

disturbance torque i.e. 
2

1 dP τ= results in a smaller 

joint motion. It can be seen that the kinematic 
redundancy can be used to reduce the joint 
disturbance torque while executing the specified end 
effector motion. The reduction of the joint disturbance 
torque is important when the joints are controlled by the 
independent joint control scheme, since the joint 
disturbance torque causes joint tracking error. 
 
5. CONCLUSIONS 
In an independent joint control scheme of a 
manipulator, the robot system is regarded as a set of 
independent actuator-load pairs, and the joint 
interaction such as centrifugal and Coriolis torques and 
the gravity effect are regarded as joint disturbance 
torque introduced into the joint control system. This 
joint disturbance torques results in the joint trajectory 
tracking error, and degrades the control performance. It 
is necessary to minimize the joint disturbance torque at 
the motion planning stage, and the kinematic 
redundancy of a manipulator can be exploited to 
reduce the joint disturbance torque. In this paper, the 
minimization of the joint disturbance torque is proposed 
as a new optimization criterion for the kinematic 
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redundancy resolution when the independent joint 
control scheme is employed. Using a 3 DOF planar 
manipulator as an example, a globally optimal joint 
trajectory to produce a straight-line motion of the end 
effector is obtained that minimizes the joint disturbance 
torque during the motion. The result is compared with a 
solution obtained by minimizing the conventional joint 
torque, and it is shown that using the proposed 
criterion, a joint motion with reduced joint disturbance 
torque is possible. 
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Fig.2 End effector trajectory along a straightline. (a) Position (b) Velocity(c) Acceleration 

Fig.3 Joint disturbance torque minimization. (a) Joint torque  (b) joint disturbance torque 

(c) 
2

2
2

1   and ττ == PP d  

                             Fig.4 Motion trajectory for joint disturbance torque minimization 
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Fig.5 Result of joint torque minimization. (a) joint torque b) joint disturbance torque 

(c) 
2

2
2

1        and      ττ == PP d  

 

 
Fig.6 Motion trajectory for joint torque minimization. 
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Fig.7 (a) joint velocity when 
2

1 τ=P  is minimized (b) joint velocity when 
2

1 dP τ= is minimized 


