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Abstract 
Unsupervised neural network system was used to detect tool breakage in face milling 
operations.  An unsupervised neural network was prepared based on the adaptive resonance 
theory (ART 2).  The ART 2 networks are suitable for processing analog, or gray-scale pattern 
vector components as well as binary components.  The ART2 was initially trained on simulated 
data and then used to monitor the experimental data. The ART2 neural networks are a very 
good when many different cutting conditions are encountered during cutting operations.  The 
ART-2 network was then used to monitor tool breakage while continuously updating learned 
recognition codes and establishing new categories as needed. The ART2 network correctly 
categorized 97% of the presented experimental data sets after initial learning on simulated 
cases.  The accuracy of ART2 network on tool breakage detection and proper vigilance factor 
selection for minimum node assignment issues are discussed.  
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1.INTRODUCTION 
      The recent trend in manufacturing is to 
achieve integrated and self-adjusting 
machining systems, which are capable of 
machining varying parts without the 
supervision of operators. The absence of 
human supervision requires on-line 
monitoring of machining operation, ensuring 
safe and efficient metal removal rate and 
taking corrective actions in the event of 
failures and disturbances [1]. One of the most 
important monitoring requirements is a 
system capable of detecting tool breakages 
on-line. Unless recognized in time, tool 
breakage can lead to irreparable damage to 
the workpiece and possibly to the machine 
tool itself. The cutting force variation 
characteristics of normal and broken tools 
are different. With the normal and broken tool 
cutting force variation signals is possible to 
train neural networks. The milling operations 
can be monitored with the neural network, 
after training. The use of adaptive resonance 

theory (ART2) type neural network was 
evaluated for detections of tool breakage, in 
this study [2]. Also simulation-based training 
is proposed to reduce the cost of preparing 
the systems that monitor the real cutting 
signals. 
      Neural networks with parallel processing 
capability and robust performances provide a 
new approach to adaptive pattern 
recognition. Adaptive Resonance Theory 
(ART2) architectures are neural networks 
that carry out stable self-organization of 
recognition codes for arbitrary sequence of 
input patterns. Artificial neural networks refer 
to a group of architectures of the brain [3]. 
Neural networks are also classified as 
supervised and unsupervised according to 
their learning characteristics. In unsupervised 
learning, the neural network classifies the 
signals by itself. 
      In this paper, ART2 type unsupervised 
neural network paradigm was used for 
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detection of tool breakage. ART2 paradigm 
was used for the following reasons. 
 
(a) The training of paradigm is much faster 

than the back-propagation technique; 
(b) The back-propagation technique 

generalizes the given information in order 
to store it inside the initially selected 
hidden layers. The back propagation 
technique cannot give reliable decisions 
on the sufficiency of previous training; 
and  

(c) ART2 has very important advantage 
since it can be trained in the field and 
continuously updates previous 
experience. 

 
      The unsupervised ART2 neural networks 
can monitor the signal based on previous 
experience and can update itself 
automatically while it is monitoring the signals 
[4]. When as ART2 network receives an input 
pattern, this bottom-up pattern is compared 
to the top-down, or already known patterns. If 
the input pattern is matched with known 
pattern in memory, the weights of the model 
are changed to update the category. If the 
new pattern cannot be classified in a known 
category, it is coded and classified as a new 
category.    
 
      Another important issue is the training of 
the neural network. It is extremely expensive 
and time consuming to collect cutting force 
data at different cutting conditions with 
normal and broken tools. To overcome this 
problem, simulation-based training of neural 
networks was introduced. Simulated data 
was used to select the best vigilance of the 
ART2 type neural network and to evaluate 
the performance of paradigm. The theoretical 
background of ART2 type neural network, the 
proposed data monitoring system and their 
performance is presented in the paper. 
 
2. UNSUPERVISED ADAPTIVE 
RESONANCE THEORY (ART2) NEURAL 
NETWORKS  
      The theory of adaptive resonance 
networks was first introduces by Carpenter 
and Grossberg,(1987b). Adaptive resonance 
occurs when the input to a network and the 
feed back expectancies match. The ART2 
neural networks developed by Carpenter and 
Grossberg self –organize recognition codes 
in real time [4]. 
 

      The basic ART2 architectures consists of 
two types of nodes, the short term 
memory(STM) nodes, which are temporary 
and flexible, and the long term memory 
(LTM) nodes; which are permanent and 
stable. The input pattern ( i ) is received by 
the STM, where it is normalized, matched, 
learned, and stored in the LTM (zji ) [5]. The 
STM is divided into two sets of nodes, F1 and 
F2. The STM F1 nodes are used for 
normalization, control, gain and learning 
procedures. The F1 field in Art2 includes a 
combination of normalization and noise 
suppression, in addition to the comparison of 
the bottom-up and top-down signals needed 
for the reset mechanism. To accomplish this, 
F1 uses the following equations to calculate 
the nodes[6]: 

            ui = 
ve

vi

+
  - (1) 

wi = Si + aui  - (2) 

 

pi = ui + jii zyq )(∑ -  (3) 

qi = 
pe

pi

+
  - (4) 

vi = f(xi)+ bf(qi)  -            (5) 

xi = 
we

wi

+
  - (6) 

Here p , v  and w denote the norms of 

the vectors p,v and w, and si is the input. The 
non-linear signal function in equation (5) is 
used for noise suppression . the activation 
function (f) is given by the equation. 
 

   f(x)     =  x if x ≥θ 

   0         if 0 ≤ x < θ - (7) 
      
       Where θ is an appropriate constant. The 
function  f, filters the noise from the signal. θ 
can be set to zero for the case where filtering 
is not desired. The constants a, b, and e are 
selected based on the particular application. 
The STM F2 nodes are used for the matching 
procedure. F2 equations select, or active, a 
nodes in the LTM. When F2 chooses a node, 
all other nodes in the LTM are inhibited, and 
only one is allowed to interact with the STM. 
The node that gives the largest sum with the 
F1  F2 input pattern (bottom-up) is the key 
property that is used for node 
selection.Bottom-up inputs are calculated as 
in ART2 [5] 
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Tj = ∑
i

jii zp      -  (8) 

The j
th
 node is selected if equation (9) is 

satisfied. 
 

Tj = max { Tj: 1,2 …..N } - (9) 
 
Competition on F2 results in contrast 
enhancement where a single winning node is 
chosen each time. The output function of F2 
is given by  
 
g(yi) =  d   if Tj = max { Tj : J=1,2, …N) - (10)                             
           0   otherwise 
 
Equation (3) takes the following form: 
 
pi =  ui               if F2 is inactive      -      (11) 
        ui + dzij  if the Jth node on F2 is active 
 
The bottom-up and top-down LTM equations 
are 
 
bottom-up (F1→ F2) :  

dt

d
 zij  = g (yj) [ pi – zij]        -             (12) 

 
top – bottom ( F2→F1) :  

dt

d
 zji = g(yi) [ pi – zji] -                          (13) 

 
When F2 is active, then equations (12) and 
(13) are modified from equation (10) to: 
 

  
dt

d
 zij    = d (pi – zij)  -             (14) 

 

dt

d
 zji   = d (pi – zji) -             (15) 

 
      Where d is a constant ( 0 < d < 1). An 
orienting ART2 sub system is used to decide, 
if a new pattern can be matched to a known 
pattern by comparing with a given vigilance 
parameter, ρ: 

ri  = 
cpue

cpu ii

++

+
 -            (16) 

 

If r  < ρ -e , then F2 resets another node. If  

r  ≥  ρ – e , a match has  been found and 

the new pattern is learned by the system. 

The LTM node weights are recalculated and 
the pattern is learned by the system. If no 
match has been found after all nodes have 
been activated, a new node is created, and 
the new pattern is stored. 
 
3.RESULTS AND DISCUSSION 
      The experimental data was collected with 
a four flute end mill of 12.07 mm diameter at 
various cutting conditions. The ART2 neural 
network monitored the profile of the resultant 
force in different tests. In the three tests, 
experiments were done at different feed rates 
with the good and broken tool. The spindle 
speed, feed rate, and depth of cut of these 
different conditions are out lined in tables 1-4. 
The neural network did not have any prior 
information at the beginning of each test. In 
each one , the neural network inspected the 
resultant force profile and placed it into a 
category or initiated a new category if it was 
found to be different. The vigilance of the 
ART2 selected either 0.96 or 0.98 in all the 
tests. The ART2 assigned 2, 2, 3, 1 and 3 
different categories for the good tool. For the 
broken tool 2, 1, 1, 1 and 3 different 
categories were selected. In all the tests, the 
neural network classified the good and 
broken tools in different categories. As seen 
in tables 1-4, the neural network generated 
only one category in the 2

nd
 (table 2) , 3

rd
 

(table 3) and 4th (table 4) tests for the broken 
tools. On the otherhand, the neural network 
assigned more nodes to the signal of a  good 
tool with offset. It indicates that the broken 
tool signals are more similar to each other at 
different cutting conditions compared to the 
force patterns of normal tools. 
 
Table1. Classification of experimental data 
with the ART2. Vigilance of the neural 
network was 0.96. The ART2 used four 
categories to classify all of the data. 
 

Spindle 
speed 
(rpm) 

Depth 
of cut 
(mm) 

Feed 
rate 
mm/
min 

Tool 
condi
tion 

Cate
gory 

500 
500 
500 
500 
500 
500 
500 
500 

1.016 
1.016 
1.016 
1.016 
1.016 
1.016 
1.016 
1.016 

50.8 
50.8 

101.6 
101.6 
203.2 
203.2 
254 
254 

G 
B 
G 
B 
G 
B 
G 
B 

1 
2 
1 
3 
1 
3 
4 
5 
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Table2. Classification of experimental data 
with the ART2. Vigilance of the neural 
network was 0.96. The ART2 used three 
categories to classify all of the data. 
 
Spindle 
speed 
(rpm) 

Depth 
of cut 
(mm) 

Feed 
rate 
mm/
min 

Tool 
condi
tion 

Cate
gory 

500 
500 
500 
500 
500 
500 
500 
500 

1.524 
1.524 
1.524 
1.524 
1.524 
1.524 
1.524 
1.524 

50.8 
50.8 

101.6 
101.6 
203.2 
203.2 
254 
254 

G 
B 
G 
B 
G 
B 
G 
B 

1 
2 
3 
2 
1 
2 
3 
2 

   
Table3. Classification of experimental data 
with the ART2. Vigilance of the neural 
network was 0.98. The ART2 used four 
categories to classify all of the data. 
 
Spindle 
speed 
(rpm) 

Depth 
of cut 
(mm) 

Feed 
rate 
mm/
min 

Tool 
condi
tion 

Cate
gory 

700 
700 
700 
700 
700 
700 
700 
700 

1.016 
1.016 
1.016 
1.016 
1.016 
1.016 
1.016 
1.016 

50.8 
50.8 

101.6 
101.6 
203.2 
203.2 
254 
254 

G 
B 
G 
B 
G 
B 
G 
B 

1 
2 
3 
2 
4 
2 
4 
2 

 
Table4. Classification of experimental data 
with the ART2. Vigilance of the neural 
network was 0.96. The ART2 used two 
categories to classify all of the data. 
 
Spindle 
speed 
(rpm) 

Depth 
of cut 
(mm) 

Feed 
rate 
mm/
min 

Tool 
condi
tion 

Catego
ry 

700 
700 
700 
700 
700 
700 
700 
700 

1.524 
1.524 
1.524 
1.524 
1.524 
1.524 
1.524 
1.524 

50.8 
50.8 
101.6 
101.6 
203.2 
203.2 
254 
254 

G 
B 
G 
B 
G 
B 
G 
B 

1 
2 
1 
2 
1 
2 
1 
2 

 
 The ART2 gained first experience on 
the simulation data and later, the neural 
network inspected the incoming signals and 

continued to assign new categories when 
different types of signals were encountered. 
After simulation training, the neural network 
started to monitor the experimental data 
collected at different conditions. The studies 
focused on selection of the best vigilance, 
which requires a minimum number of nodes 
and has acceptable error rate. When the 
vigilance of 0.98 is used, the network 
classified the perfect too input data into 
seven different categories and classified the 
broken tool input data into four different 
categories. 
 
4.CONCLUSIONS 
     The effectiveness of the proposed 
encoding and selected paradigms was tested 
on simulated and experimentally collected 
data. ART2 type neural networks to detect 
tool breakage monitored the resultant cutting 
force of milling operations. 

 
     ART2 neural networks had only one 
category, which was assigned to the broken 
tool signals in small training sets. The results 
indicate that the proposed encoding 
approach selected very distinctive 
characteristics of the good and broken tool 
cutting force signals for the network. The 
effects of the cutting force profile variations 
related to the depth of cut and feedrate by 
compensating. 
 
      The continuous learning capability of the 
ART2 allows the neural network to be 
particularly off-line on the simulated or very 
limited experimental data. Later, the neural 
network could continuously update previous 
experiences on-line when new cutting 
conditions are presented during operation. 
 
     ART2 neural networks are a very good 
candidate when many different cutting 
conditions are encountered during cutting 
operations. Since the ART2 may start to 
monitor operations with very limited training 
and continue to further improve its 
experience while it is evaluating the sensory 
data.   
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