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Abstract: A detailed study of discretization error estimators is proposed in this article. These estimators are 

essential to control the results obtained in a numerical finite element simulation of 2D structural problems with 

large strains and plasticity. Due to the nonlinearity of the analysis, not only the finite element mesh quality but 

also the time discretization accomplishment and the equation equilibrium error, need to be controlled. The 

developed estimators are flux projection class estimators based on the strain energy density generated by 

external loads. Some examples will show the performance of the proposed estimators. 

 

 

1.0 INTRODUCTION 
Recently, several references concerning mesh optimization have been proposed for structural 

dynamic problems [1], geometrically non-linear problems [2], elastoplasticity [3,4,5], 

frictional contact problems [6] or numerical simulation of forming processes [7,8]. However, 

nowadays there are only a few proposals on this subject concerning problems with large 

strains, plasticity and contact. This shortage is caused, mainly, by the lack of knowledge on 

the convergency properties of the finite element results of these problems [9], and the 

existence of new error sources. When a mathematical model is generated from the real 

physical system some simplificative hypothesis are assumed causing the first error of the 

mathematical model. When the physic laws that guide the problem are applied, the equations 

that determine the mechanical system behavior are obtained. The integration of these 

equations in complex continuous domains is necessary as a first step of its discretization, 

appearing then a new error: the discretization error. In the case of non-linear problems 

different components can be distinguished in this error. The discretization error can be 

separated into the spatial discretization error, time discretization error and the equation 

solving error. The first one is caused by the partitioning of a continuum into finite elements, 

and the second one appears because the equilibrium is established with a finite number of 

time steps. Both errors exist in problems, quasi-static or dynamic, that depend on load 

variation. The third error is produced due to the use of an implicit procedure to solve the 

equilibrium equations. This procedure implies an iterative loop obtaining only an 

approximate equilibrium of the system for each load step. This error, as the spatial 

discretization one, appears in every non-linear problem with a geometrical or material non-

linearity. The error estimators suggested in this paper are flux projection class; hence a 

smoothing procedure [10] on the parameter employed to calculate the error is required. The 

use of the smoothing routine is proposed to obtain improved functions of the variables 

involved in the equilibrium equations solving process in order to improve the convergency of 

the solving sequence [11]. 
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This article is focused on the spatial discretization error and the time discretization error. In 

fact, the component of the error caused by the imbalance of the equation system is presumed 

negligible [12] because the convergency criteria used is very restrictive. 
 

2.0 ERROR ESTIMATORS 
One of the most common methods employed to obtain useful estimators for non-linear 

problems is a generalization of estimators developed for linear problems. In this case a flux 

projection class estimator has been adapted to be used in elastic linear problems [13]. The 

estimator makes use of the strain energy density function in order to calculate the error 

energy norm. 

 

First, for non-linear problems, the strain power function Pd generated in the body by the 

external loads is calculated: 

    

Where σ is the Cauchy stress tensor, εɺ  is the strain rate Eulerian tensor, and V the volume of 

the body. The scalar product of the above tensors ( )εσ ɺ:  is the strain power density. The 

difference between the exact strain power density: ( )~
: εσ ɺ  and the strain power density 

obtained directly using the finite element method): (marked with the symbol ∼ from now on) 

has been chosen as the error E, of the finite element analysis solution in a point M (x,y) of the 

model and in the time t of the load sequence. 

   
 

The two error components that center our interest are those related to the spatial and the time 

discretization. These error components are directly related with the element size and the time 

step size respectively. If both components are considered simultaneously a global error 

estimator is defined14. However, if the spatial and temporal components are evaluated 

separately, the spatial and the temporal discretization errors are obtained. In the following 

sections the theoretical definition and the incremental development of these two error 

estimators are presented. 
 

2.1 Spatial discretization error 
At first there is no possibility of obtaining the exact strain power density so it is necessary to 

estimate it. In the case of the spatial estimator, this estimation would be an “spatial improved 

value” (marked *s). This improved value is obtained using a function smoothing procedure 

involving only spatial parameters. So in the spatial discretization estimator the error is 

computed by: 

   

Where ( ) s*
: εσ ɺ  is the spatial improved field of the strain power density obtained using 

F.E.M., ( )~
: εσ ɺ . The accumulated value Eτ , in one point of the model is calculated by 

integration of the absolute value in equation (3) from the initial moment when the load is 

applied to the time τ . 
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The error indicator 
evE

τ
, is defined by integration of the error density in an element e of the 

mesh, being ve the element e domain. 

   
 

If the complete load sequence is integrated, i.e. from time 0 to time tn, 
evE  will be obtained. 

   
 

If the purpose is the study of the error along the whole domain, the error estimator for the 

complete model E is calculated: 

   
 

2.2 Time discretization error 

Frequently, to achieve the development of efficient adaptive techniques it is not enough to 

check the element size in a finite element mesh. In the field of non-linear problems it is also 

necessary to control the time step size via an extra error component called time discretization 

error. This component is originated by the division of time in discrete intervals. This error 

component, as the spatial one, appears in analyses that have dependence on load history. 

Therefore it is interesting to try to separate the error in two parts: spatial and temporal. For 

this purpose a time error estimator is proposed in order to evaluate the error quota caused 

only by the time discretization. As in other estimators, the exact value of the strain power 

density is initially unknown. To estimate this function, a smoothing algorithm for the time 

parameter is used (signed *t). Hence, the time discretization error of the strain power density 

, in a point M (x, y) of the model and in the time t, is evaluated by: 
 

   
The time error for the element is obtained by integration of the expression (8) along the 

element e: 

 
 

If, in addition to the integration in the complete domain, the process is integrated until time tn, 

the error estimator ξ  is determined: 

 

 
 

3.0 INCREMENTAL IMPLEMENTATION 
In this section the incremental implementation for the error estimators is presented, intending 

to show the practical methods employed to calculate the discretization error components. 
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3.1 Spatial error 

Along a time interval t∆ , the spatial error density varies on each point of the model 

 

 
 

 

Where, ( )εσ d: is the strain work differential of the body in a point M (x, y) during the time 

differential dt. It can also be expressed as: 
 

 
 

and ( ) s
d

*
: εσ is an improved strain work differential with respect to the spatial variable in a 

point M(x, y) of the body during the time differential dt. 

 

Adding the relation (13) to (12), the spatial error gain is expressed as a function of the 

improved and discrete work density differentials. 
 

 
Using a linear approach, the spatial error density gain can be expressed as: 
 

 

being the improved value of the strain work density gain with respect to the spatial 

variable exclusively. 

The spatial error indicator, during a time interval t∆ , is defined as the integral of 

expression (15) on the domain ve, of the element e. 

 

   
 

For the complete load sequence [0, tn] in an element e, the compiled spatial error 

is calculated for the mentioned element. 

 
 

Therefore the accumulated spatial error of the entire model for the complete load sequence 

Ε, is: 
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Where N is the number of elements of the F.E. mesh. 

 

3.1 Time error 

The time error density variation   on each point of the model during a time step 

t∆ , can be expressed in the form: 
 

 

Which can also be given as a function of the strain work differentials and 

. The former one has been improved only with respect to the time variable and the 

latter has been calculated directly using F.E. 
 

 
The time error density gain (20) can also be written as a function of the improved and 

discrete work density differentials and  

 

 
 

Using the same linear approximations employed for the spatial error, the time error density 

gain is: 

 

where is the improved value of the strain work density gain using only the temporal 

variable. 

 

During this period t∆ , the time error gain  is evaluated as the integral of (21) through 

the domain ve , defined by the element e 

 

 
 

For the complete load sequence the accumulated time error indicator of element e, is obtained 

as: 
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and the accumulated time error of the entire model for the complete process ξ  will be: 

 
4.0 NUMERICAL EXAMPLE 

The procedures described in this paper will be applied to the example of Figure 1 and 

numerical results of this particular case will be obtained. Figure 1 defines the geometry, 

dimensions and applied loads of the problem. This particular example involves a rectangular 

plate with a central hole subjected to uniform axial stress, σ, on both sides. 

 

Thanks to geometric and load symmetry of the problem it is enough to analyze only one 

fourth of the complete model. Figures 2a, 2b and 2c present different finite element meshes, 

with their correspondent degrees of freedom, to be analyzed. 

 

 

The methodology selected for the study of both discretization error estimators consists of 

different analysis associated to the distinct material complishment: linear elastic, 

elastoplastic, with small strains and elastoplastic with large strains. 

 

4.1 Linear elastic analysis 

In order to verify that the proposed procedure is applicable to a linear static problem, a linear 

static analysis has been carried out. The error estimator14 in this case, is a particularisation of 

the proposed estimator. Obviously, in this problem the time discretization error component 
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does no exist. The applied load is 40 MPa. The accumulated spatial discretization error 

during the process, for every model, is shown in Figure 3. It can be seen the adjustment of 

those curves to parabolic functions. 

 

4.2 Elastoplastic analysis – small strains 
The first non-linear calculation corresponds to the case of elastoplasticity with small strains 

and under an applied load σ of 150 MPa. 

 

The material behavior law used on this simulation is bilinear with a Young module of 2,1·105 

MPa, yield stress equal to 2,1·105 MPa and a plastic zone slope of 1000 MPa. 

 

In order to solve these non-linear problems, with small or large strains, the algorithm 

presented in this paper includes an updated Lagrangian formulation to solve the equilibrium 

equations using the Jaumman’s stress variation tensor. The plasticity law is based on Von 

Mises yield criteria with isotropic hardening and associative flux rule. 

 

In the table below, table 1, the maximum displacement, stress and plastic strains are shown 

for each of the three meshes. In the last column the plastification order can be seen. These 

values situate this analysis in the small strain type group. 

 

 

4.2.1 Spatial error estimator 

Different calculations have been done for each model. In each of them only the load 

increment has been modified. The values for the load increment are 4%, 3%, 2% and 1% of 
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the total applied load. The values of each of the spatial discretization errors obtained for each 

mesh considering the four load increments can be seen below. 
 

In figure (5) can be seen how the spatial error is weakly affected by the load increment 

variation but it is very dependent on the element size modification. That is to say, it is 

dependent on the number of degrees of freedom in the model. In the following figure the 

influence of the spatial and time parameters on the spatial discretization estimator can be seen 

more clearly. A drastic change in the accumulated error variation can be observed near the 

40% of the load. This effect is caused by the plastification of one complete section in the 

models, i.e. a fast increase of the strains of the elements that belong to that section. 
 

 

 

In Figure (5) the maximum spatial error is drawn depending on the mesh and the load step. It 

is interesting to observe how the error estimator is not affected by the size of the load step but 

it is dependent on the element size. 

 

4.2.2 Time error estimator 
The results obtained using the time estimator are now discussed. In Figure 6 the accumulated 

error of the time discretization component is shown for every mesh and load increment. It is 

interesting to realize how the reduction of the load interval implies a decrease of the time 

discretization error component. 

 

Figure 7, shows the time discretization error sequence with respect to the applied load 

interval. A quasi-linear variation of the time discretization error as a function of the load 
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increment has been verified. In this way, if a linear regression  = k· .c (k constant) is done 

through the origin, the following solution can be presented (this regression is justified 

because the error is considered null when the increment tends to zero): based on an analysis 

with a load step quite large, the previous line equation can be calculated (the k parameter). 

Therefore a time error value for a suitable load interval can be predicted in order to obtain a 

rather small error or a user selected error. 

 

 

4.3 Elastoplastic analysis – large strains 

this time another elastoplastic analysis, now with large deformations, will be done. The 

applied load is σ =270 MPa. In Table 2 the maximum Von Mises stresses and plastic strains 

are detailed. The values of the plastic strains confirm the plastic state with large 

deformations. 

4.3.1 Spatial error estimator 

The considered load increments in these analyses with large strains are 2%, 1,5%, 1% and 

0,5% of the total applied load. In Figure 8 the values of the spatial discretization error are 
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shown for each mesh depending on the load increments. The spatial error is very little 

influenced by the load step size but it is very dependent on the element size. Figure 9 explains 

in detail the effect of the spatial variable and the load increment on the spatial discretization 

estimator. 

 

 

In this case, as in the previous one, sudden changes in the curvature of the curves of Figure 8 

can be detected. In the moment of each of these changes a vertical section of the model 

plastifies producing a very fast change in the strain values. The effect of the number of 

degrees of freedom and the load increment is shown in Figure 9. These values, obtained in 

the case of elastoplasticity with large strains, prove the little influence of the time variable on 

the spatial error estimator and the spatial error dependence upon the element size. 

 

4.3.2 Time error estimator 

The time discretization error component has been studied similarly to the small strain case. 

The results can be observed in Figure 10. The influence of the load increment variation on the 

time error component can be seen precisely. It is also possible to understand why this error is 

higher when the load increment increases. The time discretization error component increases 

proportionately to the load step size, as it can be seen in the figure. 

 

Based on the curves of figure 11, it is established how, if the time error estimator proposed in 

this paper is used, the prediction methodology presented for the small strains case is also 

appropriate for a large strains elastoplastic analysis. Hence, an analysis made using a load 

step with a low computational cost permits the definition of the time discretization error for 

any other load step. 
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5.0 CONCLUSIONS 
An examination of the previous results demonstrates how the spatial discretization error and 

the time discretization error depend on the spatial and time parameters respectively. 

Therefore the spatial estimator detects the element size variation and the time estimator reacts 

to a load increment change. 

 

In relation with the spatial component, an estimator has been developed. This estimator 

evaluates only the error caused by the spatial discretization part and it is not affected by the 

time discretization error part. However, in the temporal case, the error estimator depends not 

only on the load increment, but also, with less influence, on the domain discretization. 

Despite this, it has been verified that the influence of the domain discretization is negligible if 

the load increment is quite low. The obtained results allow the prediction of the error for any 

load step using a simple linear regression. This knowledge allows the selection of the 

adequate increment in order to obtain a negligible time discretization error component 

compared with the spatial discretization error component, the most important component in 

large strain elastoplastic analysis. Finally, it has been verified that, in the elastoplastic case, 

the time error can be larger than the spatial error if an adequate load step size is used, i.e. not 

bigger than 1% of the total load. 

 

A global error estimator is intended to develop in addition to these two error estimators in 

order to quantify together the spatial and the time discretization error. This global estimator 

will define the basis of an adaptive strategy to be applied in problems with large 
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nonlinearities. The purpose is to study also the error component originated by the implicit 

method used to solve the equilibrium equations. This method is an iterative process that 

achieves only an approximate equilibrium of the equations on each load step. 
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