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bstract

Titanium alloys and titanium matrix composites are useful materials in aerospace applications due to their high strength and stiffness, good
orrosion resistance and low density. The gas pressure bulging of metal sheets has become an important forming method. As the bulging process
rogresses, significant thinning in the sheet material becomes obvious. This paper presents a simple analytical procedure for obtaining the dome
eight with respect to the forming time useful to the process designer for the selection of initial blank thickness as well as non-uniform thinning
n the dome after forming. By thermally cycling through their transformation temperature range, coarse-grained, polymorphic materials can
e deformed superplastically, owing to the emergence of transformation mismatch plasticity (or transformation superplasticity) as a deformation
echanism. This mechanism was examined under biaxial stress conditions during thermal cycling of titanium alloys with and without discontinuous
einforcements. For the transformation superplasticity, the strain-rate sensitivity index is considered as unity. The radius of curvature, thickness
nd height of the dome with respect to the forming time are obtained. The analytical results were found to be reasonably in good agreement with
he test results.
 2007 Elsevier B.V. All rights reserved.
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. Introduction

Superplastic forming has become a promising processing
echnique in manufacturing industry. Several models for bulge
orming have been established [1–6]. Frary et al. [7] have inves-
igated under biaxial stress conditions during thermal cycling
f titanium alloys and composites. They used the CHIP pro-
ess, which consists of blending of elemental metallic powders,
old isostatic pressing, vacuum sintering, and finally con-
ainer less hot isostatic pressing to fabricate Commercial-Purity
itanium (CP-Ti) and Ti–6Al–4V with and without discontinu-
us reinforcements. TiC particles (in the amount of 10 vol.%)

ere added to both CP-Ti and Ti–6Al–4V. These composites

eferred as Ti/TiCp and Ti–6Al–4V/TiCp. Ti–6Al–4V rein-
orced with 5 vol.% TiB whiskers and referred the composite as
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i–6Al–4V/TiBw Disks of each material were machined from
ear-net-shape densified plates, with density greater than 99%.
he disks had a diameter of 62 mm and a thickness ranging

rom 1.36 to 1.59 mm. The disk specimens were clamped into
n Inconel pressurization vessel with an open die radius of
4 mm. The equipment for the performed biaxial dome exper-
ments is shown in Fig. 1. It shows the central section of the
uartz atmosphere tube, with a deformed specimen clamped
n the pressurization vessel. It is also shown the range of the
aser raster. Experiments were performed under gas pressure of
.2 MPa and over the temperature range (840–970 ◦C) of the
hermal cycle (frequencies: 15 h−1 for CP-Ti and 7.5 h−1 for
i–6Al–4V and the respective composites). The transformation
uperplasticity constant in the constitutive relation is obtained
rom the measured dome height with respect to the forming time.
During gas-pressure dome bulging experiments, the dome
eight was measured as a function of time. It is noted from
he test results of Frary et al. [7] that, the weakest material, CP-
i deformed most rapidly, while the Ti–6Al–4V-based materials
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ig. 1. Schematic representation of the experimental biaxial gas-pressure equip-
ent.

eformed more slowly due to the longer thermal cycle times and
igher creep resistance. However, during a thermal cycle, trans-
ormation superplasticity contributes to the deformation only
hen the phase transformation is occurring. At all other times,

he material deforms only under the action of external stress by
typical creep mechanism (e.g. dislocation creep). Since these

wo mechanisms operate at different times during the cycle,
hey contribute to the total deformation independently, and it
s reasonable to add their contributions:

˙ = ε̇creep + ε̇TSP = Kcreepσ
n + KTSPσ (1)

here ε̇ is the strain rate, σ the flow stress, n the stress exponent,
TSP the transformation superplasticity constant and Kcreep is

he dislocation creep constant. The strain-rate sensitivity index
m) dependent on the flow stress for the constitutive relation (1)
s:

= ∂ ln σ

∂ ln ε̇
= Kcreepσ

n + KTSPσ

nKcreepσn + KTSPσ
(2)

t is noted from the experimental studies on biaxial deforma-
ion of composite materials that transformation superplasticity
s the only operative deformation mechanism for the Ti–6Al–4V
omposites and there is no contribution from creep. Hence the
onstitutive relation for the present problem becomes

˙ = KTSPσ (3)

or transformation superplasticity, the strain-rate sensitivity
ndex from Eq. (3) is found to be unity. This paper presents

simple analytical procedure for obtaining the dome height
ith respect to the forming time, which is useful to the pro-

ess designer for the selection of initial blank thickness as well
s to assess non-uniform thinning in the dome after forming.
. Analysis

The solution for the biaxial dome formation through trans-
ormation superplasticity is presented below considering the

T
t
c
g

ig. 2. Schematic representation of formed-dome using gas pressure forming.

ncompressibility effects of isotropic material, power-law defor-
ation and a spherical geometry having non-uniform thickness

istribution. The diaphragm is rigidly clamped at the periphery.
he thickness (s) of the specimen is very small compared with

he die radius (a), so that bending and shearing effects are neg-
igible and membrane theory is assumed. The coefficient K and
he strain-rate sensitivity index (m) are constants in the consti-
utive equation: σ = K(ε̇)m. The bulge surface shape keeps to
hat of a part of a sphere (see Fig. 2). There are three principal
tresses at any point on the dome: the meridional stress (σm),
he hoop stress (σ�), and the radial stress (σr, in the thickness
irection). The value of σr is usually very small compared with
m or σ� and can be ignored. Then the stress state in the dome

s σm > 0, σ� > 0, σr ≈ 0. A balanced biaxial stress state (i.e.,
m = σ�) exists at the dome apex.

Assuming plane stress, balanced biaxial stretching and vol-
me constancy at the pole of the dome in free forming of a
emisphere, we can write the following relations:

r = 0, σ� = σm = pρ

2s
, σe = σ� (4)

� = εm, ε� + εm + εr = 0, εe = −εr (5)

here p is the forming pressure; ρ the radius of curvature; σe
he von Mises stress; and εe is the effective strain. ε� and εm are
espectively the hoop and meridional strains. Thickness strain
εr) is compressive in nature whereas the effective strain (εe)
hould be considered as positive.

Taking into consideration the symmetry of a preform, let
s consider bulging of one circular membrane with initial die
adius, a. The initial blank thickness, s0, is assumed to be small
n comparison with the die radius, a (i.e., s0 � a). The shape of
he forming dome is a part of the sphere with the current radius,
. The material is assumed to be isotropic and incompressible,
hile flow stress depends on strain rate and temperature.
Let M be some point on the membrane, which at the initial

oment of time (t = 0) belongs to the diameter AB (see Fig. 3).

he envelope is clamped around its periphery and r0 is the dis-

ance between point M and the centre of membrane O. At some
urrent moment of time t > 0, point M goes to M′, while point O
oes to point O′.
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Fig. 3. Schematic representation of bulge forming of sheets.

The hoop, meridional and thickness strains at M′ are

θ = ln
(ρα

a

)
(6)

m = ln

(
2πr

2πr0

)
= ln

(
ρα

a

sin φ

φ

)
(7)

r = ln

(
sφ

s0

)
(8)

here sφ is the thickness at M′. α is the angle subtended by the
pex and the edge of the dome (see Fig. 3) and φ is the angle
etween the symmetry axis and the dome radius, drawing to the
oint under consideration.

Using Eqs. (6)–(8) in Eq. (5), we can obtain the variation
n thickness as a function of position in the dome, which is
ndependent of m:

sφ

s0
=

(
sin α

α

)2
φ

sinφ
(9)

n empirical relation for the spherical dome thickness (sφ) is
4,6]:

φ = sp + (se − sp)

(
φ

α

)2

(10)

ere sp and se are thicknesses at the pole and edge of the dome.
A relation for se in terms of sp, s0 and m is [4]:

e =
[
(1 − C)s1/m

0 + Cs1/m
p

]m

(11)

here C =
(√

3
2

)1+(1/m)

Assuming volume constancy, we can write

a2s0 = 2πρ2
∫ α

0
s sin φ dφ (12)

sing Eq. (10) in Eq. (12), we can obtain
0 = 2 cosec2 α[spI0 + (se − sp)I1] (13)

here I0 = 1 − cos α and I1 = − cos α + (2 sin α/α) −
(2/α) sin (α/2))2
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Using Eq. (11) in Eq. (13), we can obtain a non-linear equa-
ion for sp. For the specified value of ‘m’, the thickness at the
ole (sp) can be determined by solving the resulting non-linear
quation through Newton Raphson’s iterative method. sp/s0 can
e represented after solving Eq. (13) in the form:

sp

s0
=

(
sin α

α

)2

f (α) (14)

here f(α) is a polynomial function of α. The coefficients in
he polynomial function f(α) are dependent on the strain-rate
ensitivity index (m).

Assuming the applied pressure (p) as independent of time and
sing Eqs. (3), (4) and (14), we can write the following equation
or α:

dα

dt
= −KTSP

(
pρ

4s0

) (
α3

sin2 α

)

×
{

(α cos α − sin α)f (α) + 1

2
α sin αf ′(α)

}−1

(15)

nitial condition for Eq. (15):

= 0 at t = 0 (16)

ere, f′(α) denotes differentiation of the polynomial function,
(α) with respect to α.

For a very small forming time, Eqs. (15) and (16) give:

=
{

9

4
KTSP

(
pa

s0

)
t

} 1
3

(17)

he height of the dome from the solution of α is:

= a

sin α
(1 − cos α) (18)

. Results and discussion

Eq. (13) is solved for the pole thickness of the dome (sp)
pecifying different values of the strain-rate sensitivity index (m)
nd the angle, α. From the results, the unknown function, f(α)
n Eq. (14) is expressed as a fourth-order polynomial function
f α:

(α) = 1 + a1α + a2α
2 + a3α

3 + a4α
4 (19)

he coefficients a1, a2, a3 and a4 in the polynomial func-
ion are dependent on the value of strain-rate sensitivity index
m). Table 1 gives the coefficients for different values of m.
utta and Sharma [8] presented the optimum temperature,

train rate, flow-stress and strain-rate sensitivity for the titanium
lloy (Ti–6.3Al–2.7Mo–1.7Zr) were: 1173 K, 3.3 × 10−4 s−1,
.06 MPa and 0.85. It is noted from their experimental results
hat a hemisphere of diameter 30.3 mm was formed, by blowing
2.7 mm thick blank by argon gas. The thicknesses of the dome
ere measured at every 10◦ interval by using a point micrometer.

he pole thickness estimated from Eqs. (9) and (14) are: 1.094
nd 1.145 mm, respectively, whereas the measured thickness at
he pole reported in Ref. [8] is 1.194 mm. Predictions on pole
hickness based on Eq. (14) will be comparable to the measured
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Table 1
Coefficients a1, a2, a3 and a4 in the fourth-order polynomial function, f(α) in Eq. (19) for different values of the strain-rate sensitivity index, m

Strain-rate sensitivity index (m) Coefficients in the polynomial function, f(α)

a1 a2 a3 a4

0.20 0.0023 −0.0396 0.0638 −0.1249
0.25 0.0179 −0.1095 0.1987 −0.1692
0.30 0.034 −0.1741 0.2967 −0.192
0.35 0.0388 −0.1843 0.311 −0.1824
0.40 0.0352 −0.1582 0.2749 −0.1558
0.45 0.0301 −0.1253 0.2295 −0.1284
0.50 0.0247 −0.0945 0.1883 −0.1053
0.55 0.0202 −0.0681 0.1529 −0.086
0.60 0.0169 −0.0485 0.1271 −0.0718
0.65 0.0134 −0.0299 0.1035 −0.0595
0.70 0.0117 −0.019 0.0895 −0.0513
0.75 0.0096 −0.0075 0.0754 −0.0438
0.80 0.0086 −0.0003 0.0662 −0.0384
0.85 0.0075 0.0067 0.0575 −0.0336
0.90 0.0067 0.0119 0.0513 −0.0299
0.95 0.0059 0.0166 0.0458 −0.0268
1.00 0.0055 0.0196 0.0425 −0.0245
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ig. 4. Comparison of thickness variation from pole to the edge of the dome
ade of titanium alloy (Ti–6.3Al–2.7Mo–1.7Zr).

alues. Hence, the pole thickness (sp) estimated from Eq. (14)
s used in Eq. (11) for the evaluation of the thickness at the edge

f the dome (se). Using these values in Eq. (10) and specifying
he angle φ between 0 and α, we can get the variation of thick-
ess from pole to the edge of the dome. Fig. 4 demonstrates the
loseness between the simulated and the measured values.

i
t
s
fi

able 2
omparison of analytical and experimental pole thickness of spherical domes after su

aterial KTSP (10−12 Pa−1 s−1) Test [7]

S0 (mm) Sp (mm

P-Ti 9.58 1.390 0.636
i/TiCp 4.20 1.360 0.759
i–6Al–4V 2.60 1.391 0.878
i–6Al–4V/TiCp 2.54 1.510 1.179
i–6Al–4V/TiBw 2.40 1.590 1.372

train-rate sensitivity index, m = 1; die radius, a = 24 mm; forming pressure, p = 0.2 M
ig. 5. Variation of dome height with time for Commercial-Purity, CP-Ti.

From the biaxial experiments, Frary et al. [7] reported
he transformation superplasticity constant, KTSP for titanium
lloys and composites. Using this value in Eq. (15) and solv-

ng for α, the dome height (h) with respect to the forming
ime can be obtained from Eq. (18). In the present analy-
is, Eq. (15) is solved by the finite difference method with a
xed step-size, 
t = 100 s. Specifying the values of φ between

perplastic forming

Present analysis

) εe (Eq. (20)) α (◦) Sp (mm) εe (Eq. (20))

0.782 87.50 0.638 0.779
0.583 77.25 0.758 0.585
0.460 69.50 0.858 0.483
0.247 52.00 1.179 0.247
0.147 40.50 1.372 0.147

Pa.
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Fig. 6. Variation of dome height with time for titanium matrix composite,
Ti/TiCp.

Fig. 7. Variation of dome height with time for titanium alloy, Ti–6Al–4V.
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[
[
[
[
[

[6] J.J.V. Jeyasingh, B. Nageswara Rao, J. Mater. Process. Technol. 160 (2005)
ig. 8. Variation of dome height with time for titanium matrix composite,
i–6Al–4V/TiCp.
and α, the thinning of the dome can be obtained from
qs. (10), (11) and (14). Table 2 gives comparison of ana-

ytical and experimental results related to the pole thickness
f domes made of titanium alloys and composites. The von

[

[

ig. 9. Variation of dome height with time for titanium matrix composite,
i–6Al–4V/TiBw.

ises’ equivalent strain at the pole of the dome is obtained
rom

e = −εr = ln

(
s0

sp

)
(20)

igs. 5–9 show the comparison of analytical and experimen-
al results of dome height (h) with respect to the forming
ime for titanium alloys and composites. The analytical results
re found to be reasonably in good agreement with test
esults.

. Concluding remarks

The solution for the biaxial dome formation through trans-
ormation superplasticity is presented considering the effects
f incompressibility in the isotropic material, power-law defor-
ation and a spherical geometry having non-uniform thickness

istribution. A simple numerical procedure is described for
btaining the dome height with respect to the forming time. This
rocedure is validated comparing the analysis results with the
xisting biaxial dome experimental results of titanium matrix
omposites. Though the formulation of the problem is related
o the constant pressure forming, it can be extended easily
or the case of gas pressure forming of domes under con-
tant strain rate, in which the forming pressure varies with
ime.
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