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Abstract

Titanium alloys and titanium matrix composites are useful materials in aerospace applications due to their high strength and stiffness, good
corrosion resistance and low density. The gas pressure bulging of metal sheets has become an important forming method. As the bulging process
progresses, significant thinning in the sheet material becomes obvious. This paper presents a simple analytical procedure for obtaining the dome
height with respect to the forming time useful to the process designer for the selection of initial blank thickness as well as non-uniform thinning
in the dome after forming. By thermally cycling through their transformation temperature range, coarse-grained, polymorphic materials can
be deformed superplastically, owing to the emergence of transformation mismatch plasticity (or transformation superplasticity) as a deformation
mechanism. This mechanism was examined under biaxial stress conditions during thermal cycling of titanium alloys with and without discontinuous
reinforcements. For the transformation superplasticity, the strain-rate sensitivity index is considered as unity. The radius of curvature, thickness
and height of the dome with respect to the forming time are obtained. The analytical results were found to be reasonably in good agreement with

the test results.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Superplastic forming has become a promising processing
technique in manufacturing industry. Several models for bulge
forming have been established [1-6]. Frary et al. [7] have inves-
tigated under biaxial stress conditions during thermal cycling
of titanium alloys and composites. They used the CHIP pro-
cess, which consists of blending of elemental metallic powders,
cold isostatic pressing, vacuum sintering, and finally con-
tainer less hot isostatic pressing to fabricate Commercial-Purity
titanium (CP-Ti) and Ti—-6Al-4V with and without discontinu-
ous reinforcements. TiC particles (in the amount of 10 vol.%)
were added to both CP-Ti and Ti-6Al1-4V. These composites
referred as Ti/TiC, and Ti-6Al-4V/TiCp. Ti-6Al-4V rein-
forced with 5 vol.% TiB whiskers and referred the composite as
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Ti-6Al1-4V/TiBy, Disks of each material were machined from
near-net-shape densified plates, with density greater than 99%.
The disks had a diameter of 62mm and a thickness ranging
from 1.36 to 1.59 mm. The disk specimens were clamped into
an Inconel pressurization vessel with an open die radius of
24 mm. The equipment for the performed biaxial dome exper-
iments is shown in Fig. 1. It shows the central section of the
quartz atmosphere tube, with a deformed specimen clamped
in the pressurization vessel. It is also shown the range of the
laser raster. Experiments were performed under gas pressure of
0.2MPa and over the temperature range (840-970°C) of the
thermal cycle (frequencies: 15h~! for CP-Ti and 7.5h~! for
Ti—6Al-4V and the respective composites). The transformation
superplasticity constant in the constitutive relation is obtained
from the measured dome height with respect to the forming time.

During gas-pressure dome bulging experiments, the dome
height was measured as a function of time. It is noted from
the test results of Frary et al. [7] that, the weakest material, CP-
Ti deformed most rapidly, while the Ti—-6Al-4V-based materials


mailto:bnrao52@rediffmail.com
dx.doi.org/10.1016/j.msea.2007.05.050

398 J.J.V. Jeyasingh et al. / Materials Science and Engineering A 478 (2008) 397—401

Quartz
Atmosphere Deformed
Tube Specimen

IR Heater

/ N

Pressurization Clamped Range of Laser
Gas Inlet Pressurization Extensometer
Vessel Raster

Fig. 1. Schematic representation of the experimental biaxial gas-pressure equip-
ment.

deformed more slowly due to the longer thermal cycle times and
higher creep resistance. However, during a thermal cycle, trans-
formation superplasticity contributes to the deformation only
when the phase transformation is occurring. At all other times,
the material deforms only under the action of external stress by
a typical creep mechanism (e.g. dislocation creep). Since these
two mechanisms operate at different times during the cycle,
they contribute to the total deformation independently, and it
is reasonable to add their contributions:

& = &creep + TSP = KcreepO'n + Ktspo (D

where ¢ is the strain rate, o the flow stress, n the stress exponent,
Krsp the transformation superplasticity constant and Kcreep is
the dislocation creep constant. The strain-rate sensitivity index
(m) dependent on the flow stress for the constitutive relation (1)
is:

Kcreepgn + Ktspo
0lné  nKceepo™ + Krspo

_ dlno .

@)

It is noted from the experimental studies on biaxial deforma-
tion of composite materials that transformation superplasticity
is the only operative deformation mechanism for the Ti-6Al-4V
composites and there is no contribution from creep. Hence the
constitutive relation for the present problem becomes

& = Ktspo 3)

For transformation superplasticity, the strain-rate sensitivity
index from Eq. (3) is found to be unity. This paper presents
a simple analytical procedure for obtaining the dome height
with respect to the forming time, which is useful to the pro-
cess designer for the selection of initial blank thickness as well
as to assess non-uniform thinning in the dome after forming.

2. Analysis

The solution for the biaxial dome formation through trans-
formation superplasticity is presented below considering the

Fig. 2. Schematic representation of formed-dome using gas pressure forming.

incompressibility effects of isotropic material, power-law defor-
mation and a spherical geometry having non-uniform thickness
distribution. The diaphragm is rigidly clamped at the periphery.
The thickness (s) of the specimen is very small compared with
the die radius (a), so that bending and shearing effects are neg-
ligible and membrane theory is assumed. The coefficient K and
the strain-rate sensitivity index (m) are constants in the consti-
tutive equation: o = K(&)™. The bulge surface shape keeps to
that of a part of a sphere (see Fig. 2). There are three principal
stresses at any point on the dome: the meridional stress (o),
the hoop stress (o), and the radial stress (oy, in the thickness
direction). The value of o} is usually very small compared with
om or oy and can be ignored. Then the stress state in the dome
is 0y >0, 0g>0, o~ 0. A balanced biaxial stress state (i.e.,
om =0¢) exists at the dome apex.

Assuming plane stress, balanced biaxial stretching and vol-
ume constancy at the pole of the dome in free forming of a
hemisphere, we can write the following relations:

or=0. op=om="L. o =0y )
2s
£ = €m, g9 +&m+& =0, ge = —&r (5)

where p is the forming pressure; p the radius of curvature; o¢
the von Mises stress; and &, is the effective strain. g and &y, are
respectively the hoop and meridional strains. Thickness strain
(er) is compressive in nature whereas the effective strain (&)
should be considered as positive.

Taking into consideration the symmetry of a preform, let
us consider bulging of one circular membrane with initial die
radius, a. The initial blank thickness, s, is assumed to be small
in comparison with the die radius, a (i.e., so < a). The shape of
the forming dome is a part of the sphere with the current radius,
p. The material is assumed to be isotropic and incompressible,
while flow stress depends on strain rate and temperature.

Let M be some point on the membrane, which at the initial
moment of time (= 0) belongs to the diameter AB (see Fig. 3).
The envelope is clamped around its periphery and ry is the dis-
tance between point M and the centre of membrane O. At some
current moment of time 7> 0, point M goes to M’, while point O
goes to point O'.
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Fig. 3. Schematic representation of bulge forming of sheets.
The hoop, meridional and thickness strains at M’ are

o
go = In (p—) (6)

a

2mr o sin
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where s4 is the thickness at M'. « is the angle subtended by the
apex and the edge of the dome (see Fig. 3) and ¢ is the angle
between the symmetry axis and the dome radius, drawing to the
point under consideration.

Using Eqgs. (6)-(8) in Eq. (5), we can obtain the variation
in thickness as a function of position in the dome, which is
independent of m:

Sp (sina)2¢ ©)

) o sing

An empirical relation for the spherical dome thickness (sg) is
[4,6]:
o

2
S = Sp + (se —sp)(¢> (10)

Here s}, and s, are thicknesses at the pole and edge of the dome.
A relation for s, in terms of sp,, so and m is [4]:

m
se= [ =" + Csl/] (11)
14(1/m)
where C = (g
Assuming volume constancy, we can write
o

ra*sy = 271,02/ s sin ¢ d¢ (12)

0
Using Eq. (10) in Eq. (12), we can obtain
so = 2cosec” alspl + (se — sp)I1] (13)
where [lp=1—cose and [} =—cosa+ (2sino/a)—

((2/a) sin (/2))>

Using Eq. (11) in Eq. (13), we can obtain a non-linear equa-
tion for sp,. For the specified value of ‘m’, the thickness at the
pole (sp) can be determined by solving the resulting non-linear
equation through Newton Raphson’s iterative method. sp/so can
be represented after solving Eq. (13) in the form:

. 2
® (Sm“) f@ (14)

K o

where fla) is a polynomial function of «. The coefficients in
the polynomial function f{cr) are dependent on the strain-rate
sensitivity index (m).

Assuming the applied pressure (p) as independent of time and
using Egs. (3), (4) and (14), we can write the following equation
for o

da K pp o’
dar PP \4s ) \sinZe

-1
X {((x cosa — sina) f(a) + %a sinaf/(a)} (15)

Initial condition for Eq. (15):
a=0 at r=0 (16)

Here, f(a) denotes differentiation of the polynomial function,
fla) with respect to «.
For a very small forming time, Egs. (15) and (16) give:

o= {9KTsp <”“> t}3 (17)
4 S0

The height of the dome from the solution of « is:

h = (1 — cosa) (18)

sin «

3. Results and discussion

Eq. (13) is solved for the pole thickness of the dome (sp)
specifying different values of the strain-rate sensitivity index ()
and the angle, «. From the results, the unknown function, f{«)
in Eq. (14) is expressed as a fourth-order polynomial function
of a:

f@) =1+aia+ ae® +ae’ + aso* (19)

The coefficients a;, az, a3 and a4 in the polynomial func-
tion are dependent on the value of strain-rate sensitivity index
(m). Table 1 gives the coefficients for different values of m.
Dutta and Sharma [8] presented the optimum temperature,
strain rate, flow-stress and strain-rate sensitivity for the titanium
alloy (Ti—6.3A1-2.7Mo—1.7Zr) were: 1173K, 3.3 x 10~*s71,
7.06 MPa and 0.85. It is noted from their experimental results
that a hemisphere of diameter 30.3 mm was formed, by blowing
a 2.7 mm thick blank by argon gas. The thicknesses of the dome
were measured at every 10° interval by using a point micrometer.
The pole thickness estimated from Eqgs. (9) and (14) are: 1.094
and 1.145 mm, respectively, whereas the measured thickness at
the pole reported in Ref. [8] is 1.194 mm. Predictions on pole
thickness based on Eq. (14) will be comparable to the measured
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Coefficients ay, a2, a3 and a4 in the fourth-order polynomial function, fle) in Eq. (19) for different values of the strain-rate sensitivity index, m

Strain-rate sensitivity index (m)

Coefficients in the polynomial function, f(c)

ap ar az ay
0.20 0.0023 —0.0396 0.0638 —0.1249
0.25 0.0179 —0.1095 0.1987 —0.1692
0.30 0.034 —0.1741 0.2967 —0.192
0.35 0.0388 —0.1843 0.311 —0.1824
0.40 0.0352 —0.1582 0.2749 —0.1558
0.45 0.0301 —0.1253 0.2295 —0.1284
0.50 0.0247 —0.0945 0.1883 —0.1053
0.55 0.0202 —0.0681 0.1529 —0.086
0.60 0.0169 —0.0485 0.1271 —0.0718
0.65 0.0134 —0.0299 0.1035 —0.0595
0.70 0.0117 —0.019 0.0895 —0.0513
0.75 0.0096 —0.0075 0.0754 —0.0438
0.80 0.0086 —0.0003 0.0662 —0.0384
0.85 0.0075 0.0067 0.0575 —0.0336
0.90 0.0067 0.0119 0.0513 —0.0299
0.95 0.0059 0.0166 0.0458 —0.0268
1.00 0.0055 0.0196 0.0425 —0.0245
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Fig. 4. Comparison of thickness variation from pole to the edge of the dome
made of titanium alloy (Ti—6.3Al-2.7Mo-1.7Zr).

values. Hence, the pole thickness (sp) estimated from Eq. (14)
is used in Eq. (11) for the evaluation of the thickness at the edge
of the dome (se). Using these values in Eq. (10) and specifying
the angle ¢ between 0 and «, we can get the variation of thick-
ness from pole to the edge of the dome. Fig. 4 demonstrates the
closeness between the simulated and the measured values.

Table 2

Time (seconds)

Fig. 5. Variation of dome height with time for Commercial-Purity, CP-Ti.

From the biaxial experiments, Frary et al. [7] reported
the transformation superplasticity constant, Ktsp for titanium
alloys and composites. Using this value in Eq. (15) and solv-
ing for «, the dome height (h) with respect to the forming
time can be obtained from Eq. (18). In the present analy-
sis, Eq. (15) is solved by the finite difference method with a
fixed step-size, At=100s. Specifying the values of ¢ between

Comparison of analytical and experimental pole thickness of spherical domes after superplastic forming

Material Krsp (10712 Pa—1s~1) Test [7] Present analysis

So (mm) Sp (mm) &e (Eq. (20)) a(®) Sp (mm) &e (Eq. (20))
CP-Ti 9.58 1.390 0.636 0.782 87.50 0.638 0.779
Ti/TiC, 4.20 1.360 0.759 0.583 77.25 0.758 0.585
Ti—6A1-4V 2.60 1.391 0.878 0.460 69.50 0.858 0.483
Ti-6A1-4V/TiC, 2.54 1.510 1.179 0.247 52.00 1.179 0.247
Ti—6A1-4V/TiBy 2.40 1.590 1.372 0.147 40.50 1.372 0.147

Strain-rate sensitivity index, m = 1; die radius, @ =24 mm; forming pressure, p =0.2 MPa.
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Fig. 6. Variation of dome height with time for titanium matrix composite,
Ti/TiC,.
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Fig. 7. Variation of dome height with time for titanium alloy, Ti—-6A1-4V.
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Fig. 8. Variation of dome height with time for titanium matrix composite,
Ti-6A14V/TiC,,.

0 and «, the thinning of the dome can be obtained from
Egs. (10), (11) and (14). Table 2 gives comparison of ana-
lytical and experimental results related to the pole thickness
of domes made of titanium alloys and composites. The von
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Fig. 9. Variation of dome height with time for titanium matrix composite,
Ti—6Al-4V/TiBy,.

Mises’ equivalent strain at the pole of the dome is obtained
from

ge = —& = In (SO) (20)

Sp
Figs. 5-9 show the comparison of analytical and experimen-
tal results of dome height (4) with respect to the forming
time for titanium alloys and composites. The analytical results
are found to be reasonably in good agreement with test
results.

4. Concluding remarks

The solution for the biaxial dome formation through trans-
formation superplasticity is presented considering the effects
of incompressibility in the isotropic material, power-law defor-
mation and a spherical geometry having non-uniform thickness
distribution. A simple numerical procedure is described for
obtaining the dome height with respect to the forming time. This
procedure is validated comparing the analysis results with the
existing biaxial dome experimental results of titanium matrix
composites. Though the formulation of the problem is related
to the constant pressure forming, it can be extended easily
for the case of gas pressure forming of domes under con-
stant strain rate, in which the forming pressure varies with
time.
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