
International Journal of Theoretical and Applied Mechanics 
ISSN 0973-6085 Volume 6 Number 1 (2011) pp. 47–57 
© Research India Publications 
http://www.ripublication.com/ijtam.htm 

 
 

Two-Dimensional Theoretical Modeling of 
Anisotropic Wear in Carbon/Epoxy FRP Composites: 

Comparison with Experimental Data 
 
 

A. Chennakesava Reddy* and M. Vidya Sagar 
 

Professor of Mechanical Engineering 
JNT University College of Engineering (Autonomous), Hyderabad, India 

*E-mail: dr_acreddy@yahoo.com 
 
 

Abstract 
 

A two-dimensional anisotropic wear model is constructed to predict the 
anisotropic wear of composites based on the anisotropic strength and the 
contact behavior. Compared with the experimental data, the predicted results 
for the wear rate in the transverse orientation demonstrate a reasonable 
accuracy with the experimental results. The predicted wear rate in the parallel 
orientation is slightly larger than in the transverse orientation, which is 
inconsistent with the experimental result. The two-dimensional model is 
sufficient to predict anisotropic wear in the transverse orientation of fibers. 
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Introduction  
Many tribological components such as brakes, clutches, driving wheels, bolts, nuts, 
gears, cams, and bearings are used in the mechanical machinery. The friction and 
wear appearing, while functioning of these components, is one of the largest energy 
losses [1]. The commonly used materials for these components range from metals, 
alloys, ceramics, polymers, and composites [2]. A unidirectional continuous fiber-
reinforced polymer (FRP) is a class of tribological materials that possess self-
lubricating capability and low noise.  
 The most general fibers of FRP composites are E-glass, carbon, and aramid. E-
glass fibers are formed from calcium aluminoborosilicate. Aramid is produced using 
para-phenylene terephthalamide. Carbon or graphite fibers are currently the best 
known and most widely used. The purpose of matrix material in the manufacturing of 
FRP composites is to bind the fibers together. The cohesive and adhesive 



48  A. Chennakesava Reddy and M. Vidya Sagar 

 

characteristics of matrix materials give the ability of transferring load to and between 
fibers, and safeguard the composites from environmental conditions and handling. 
The majority of matrix materials are epoxy, polyether ether keton (PEEK), and 
polyphenylene sulfide (PPS). 
 Unidirectional continuous fiber-reinforced polymer composites reveal significant 
tribological anisotropy due to their heterogeneity. Fiber orientations encompass a 
significant influence on the wear and friction performance of FRP composites [3]. 
Experimental explorations have shown that the major wear resistance in FRP 
composites occurred when the sliding was normal to the fiber orientation, while the 
lowest wear resistance occurred when the fiber orientation was in the transverse 
direction. Experiments have also publicized that the coefficient of friction and the 
wear in FRP composites depend on several factors including the material 
combination, the fiber orientation, and the surface roughness. The wear phenomena in 
the carbon/epoxy and Kevlar/epoxy composites were enlightened using a 
delamination theory [4]. In this work, the wear was found to be related to the stress 
field under the indentation of an asperity, the mechanics of the crack nucleation and 
propagation, and the material properties. A series of experiments were conducted to 
ascertain the influence of fiber orientation, elastic modulus, loading conditions, 
friction coefficient, interlaminar shear strength, and the fracture strain on the wear rate 
of FRP composites [5]. Based on the experimental results, the following empirical 
wear rate equation was anticipated: 

  
s

n

IE

fp
w

1
⎟
⎠

⎞
⎜
⎝

⎛= ρ�   (1) 

 
where,  
 ρ is the wear constant, 
 n is an exponential parameter, 
 f is the friction coefficient, 
 p is the applied pressure, 
 E is the elastic modulus, and 
 Is is the interlaminar shear strength. 
 
 By means of the empirical wear equation (1), the tribological properties of 
unidirectional polyphenylene sulfide-carbon fiber laminate composites were 
established to qualitatively explain the cause of fiber orientation in terms of difference 
in the interlaminar shear strength and the fracture strain of the three principal fiber 
orientations [6]. In order to theoretically explain the influence of fiber orientation on 
the wear of composites, a relationship was established between the wear rate of 
normally oriented FRP composites and the fiber debonding depth under the 
indentation of a spherical asperity [7]. For the wear of FRP composites in the parallel 
orientation, a model of a beam lying on a foundation to simulate the fibers in a 
polymer matrix was constructed [8]. These models clearly express the wear modes in 
the three principal directions and the influence of the microstructures of FRP 
composites on the wear. 
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Table 2: Strength properties of carbon/epoxy FRP composites. 
 
FRP Strength 
Carbon 
 + 
Epoxy 

Longitudinal tensile 
strength (MPa) 

Longitudinal 
compression strength 
(MPa) 

Transverse tensile 
strength (MPa) 

Shear 
strength 
(MPa) 

 1375 -1000 70 110 
 
 
 When the coordinates coincide with the principal axes of the elastic half-plane (as 
shown in Figure 2), the stress-strain relationship of uni-directional composites can be 
sufficiently described using five elastic constants. In such a condition the X-Y plane is 
considered transversely isotropic, and the generalized Hook’s law becomes: 
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 The mechanical and strength properties of carbon/epoxy FRP composites are 
given Table 1 and 2. 
 
 
Development of Wear Model 
Wear is closely associated with failure stresses for isotropic materials because the 
wear process involves plastic yielding and deformation. It has been recapitulated that 
there are three main contributions to wear: adhesion, abrasive, and asperity 
deformation [9]. Abrasive and adhesive wear are the two principal mechanisms for 
most ductile isotropic materials. For these materials, the wear rate may be expressed 
in the form [10]:  

  
H

F
kw =�   (2) 

 
where, k is the abrasive/adhesive wear constant factor; F is the applied force; and 

H is the material hardness. k, describing the probability that the material loses as wear 
debris, is dependent on materials. The hardness, defined as the applied load divided 
by the projected indentation area, is a measure of the plastic deformation in the 
contact region. The relationship between the hardness and the yield strength for 
isotropic materials has been given by the equation [11]: 
  yH σ8.2=   (3) 
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 The yield stress σy in equation (3) may be obtained according to von Mises shear 
strain energy criterion or Tresca’s plastic criterion. Equations (2) and (3) demonstrate 
the quantitative relationship between wear and the failure strength. The adhesive and 
abrasive wear mechanisms have been found in anisotropic FRP composites in the 
same way [3]. The wear of FRP composites, but, cannot be characterized directly in 
terms of Equations (2) and (3) because the von Mises yield criterion cannot be applied 
to FRP composites due to the anisotropy. In addition, the equations (2) and (3) do not 
include the influence of the fiber orientation on the wear. As observed on their worn 
surfaces [5], the wear modes of fiber-reinforced composites entail fiber fracture, fiber 
pullout, matrix crack, and fiber and matrix thinning. With the exception of the fiber 
and matrix thinning, all of the above wear modes are similar to the micro-scale failure 
modes of the fibrous composites. Hence, it is practical to assume that the anisotropic 
failure criteria can be employed to characterize the wear of fiber-reinforced 
composites. 
 The application of a macro-scale anisotropic failure criteria implicitly requires that 
the wear of FRP composites satisfy two hypotheses: (1) the composites are 
homogeneous and (2) the contact and wear behavior of composites results from the 
averaged or mixed constituent material properties in a direction. In general, the above 
two assumptions are well conceived because the wear performance largely depends 
upon the bulk mechanical properties of materials. In this case, FRP composites may 
be assumed quasi-homogeneous and anisotropic. The Tsai-Wu failure criterion is a 
quadratic tensor polynomial criterion that includes linear terms [12].  
 The relationship between the stresses in the principal material coordinate system 
(Figure 3) and those in the global coordinate system is: 
  θθτθσθσσ cossin2sincos 22

1 xyyx ++=   (4) 

  θθτθσθσσ cossin2cossin 22
2 xyyx −+=   (5) 

  θτθθσθθστ 2cos2cossincossin12 xyyx ++−=   (6) 

 
where 1σ  and 2σ  are principal stresses and θ is the orientation of fibers. 

 

 
 

Figure 3: Illustration of principal stresses in the FRP composites. 
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 From the equations (4) to (6), the influence of friction on the failure strength can 
be abstracted. When the composites are under the compressive shear stresses, the 
friction shear stress is: 
  xxy fστ =   (7) 

 
where f is the coefficient of friction. 
 Here, the stress in the horizontal direction of the composites is not considered to 
elucidate the effect of friction ( 0=yσ ). 

 Wear rate is a function of loading conditions, material properties, and interface 
characteristics. An empirical wear rate equation should not only curve-fit the 
experimental data at reasonable accuracy, but also elucidate the wear phenomena. In 
this work, an anisotropic wear rate equation is constructed based on the following two 
physical criteria: 

1. In a fiber orientation, the greater the fracture strength, the less the wear. 
2. In a fiber orientation, the greater the stress, the more the wear. 

 
 Using the above two conditions as a hypothesis, the following first-order 
anisotropic wear model is proposed: 

  
x

P
kw

σ
max=�   (8) 

 
 Where, w�  is the wear rate, 
 k is a composite material wear factor;  
 Pmax is the maximum contact pressure varying with fiber orientations;  
 σx is the failure compressive stress. 
 
 The physical meaning of this model represents the probability that material loss 
occurs. In the equation (8), the maximum contact pressure substitutes the applied load 
in the original abrasive or adhesive model equation (2). The maximum contact 
pressure is used because the contact behavior of fiber-reinforced composites is 
anisotropic and the same loading may lead to different contact stress levels in 
different fiber orientations. In general, the maximum contact pressure in the normal 
orientation is several times that in the transverse orientation. Based on the equation 
(8), the wear of fiber-reinforced composites can be theoretically predicted and 
investigated. 
 Compared to equations (1) and (2), the wear model in equation (4) offers the 
following favorable features: 

1. It is an anisotropic and includes anisotropic stress and strength. 
2. The friction condition is implicitly included in the strength. 
3. The contact behavior is expressed in terms of the maximum contact pressure, 

which is a function of the directional elastic properties of composites and the 
external loading. equation (1) only considers a single Young’s modulus of the 
composites. 
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Figure 4: Effect of fiber orientation on the compressive strength. 
 
 
Comparison Theoretical Data with Experimental Data 
In figure 4, it is exposed that the coefficient of friction has significant influence on the 
failure strength when the fiber orientation is near to 900. It indicates that the failure 
mechanism at the normal orientation of fibers is governed by the compressive when 
the friction coefficient is small; when the friction coefficient is large, the failure 
mechanism is dominated by the shear strength and transverse compressive strength. In 
the empirical wear rate equation (1), the wear is assumed to be proportional to the 
friction coefficient. Here, the friction loading is implicitly included in the failure 
strength as a nonlinear term. With the relationships between the strength and the fiber 
orientations, an anisotropic wear model may be constructed for the fiber-reinforced 
polymer composites. 
 A theoretical predication of wear for carbon/epoxy is exercised as a function of 
the fiber orientation as it varies from the transverse to the normal orientation. It is 
important to note that the composite material in the model is in a plane stress state as 
shown in Fig.1. The elastic constants are transformed as below: 
  3333 / CCCCc jiijij −=�   (9) 

 
 Since the wear factor is dependent on materials, it can be used to construct a 
method to verify the wear model in equation (8) because k should be constant for a 
specific material. According to equation (8), the wear factor is: 
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 In equation (10), the wear factor equals to the ratio of the test wear data over the 

theoretical values, ( ) ⎟
⎠
⎞

⎜
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⎛

x

Pw σ
max/� . If equation (8) accurately predicts the wear rate for 
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a specific material, the ratios of test wear data over the theoretical values, 

( ) ⎟
⎠
⎞

⎜
⎝
⎛

x

Pw σ
max/� , should be equal for different fiber orientations, i.e.: 

  tconskk tan.....21 ===   (11) 
 
 Therefore, in order to examine the above relationship (equation 11), the wear 
factors for carbon/epoxy are shown in figure 5.  

 

 
 

Figure 5: Variation wear factor with fiber orientation in the carbon/epoxy FRP 
Composites. 

 

 
 

Figure 6: Comparison of theoretical with experimental wear rate in the transverse 
orientation of carbon/epoxy composites. 
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Figure 7: Comparison of theoretical with experimental wear rate in the parallel 
orientation of carbon/epoxy composites. 
 
 
 The trend of predicted wear rate in the transverse orientation is invariable with the 
experiment results as shown in figure 6. The trend of predicted wear rate in the 
parallel orientation is larger than the experimental results as sighted in figure 7. The 
predicted wear rate in the parallel orientation is slightly greater than in the transverse 
orientation (figure 8), which is inconsistent with the experimental results as observed 
in figure 9. The experimental wear in transverse orientation was 1.4 times that in 
parallel orientation [4]. This indicates that a two-dimensional plane stress model is not 
sufficient to distinguish the wear difference between the parallel and the transverse 
orientations. A three-dimensional geometrical model is required to accommodate the 
difference of the shear stress strength among three principal material orientations for 
highly anisotropic materials. 

 
 

Figure 8: Comparison of theoretical wear between parallel and transverse orientations 
of carbon/epoxy composites. 

0

1

2

3

4

5

6

7

8

9

10

0 15 30 45 60 75 90 105

Orientation, Degree

W
ea

r 
ra

te
/K

(*
0.

01
)

Experimental

Theoretical

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100

Orientation, Degree

w
ea

r 
ra

te
 /

k(
*0

.0
1)

Transverse

Parallel



56  A. Chennakesava Reddy and M. Vidya Sagar 

 

 
 

Figure 9: Comparison of experimental wear between parallel and transverse 
orientations of carbon/epoxy composites  
 
 
Conclusion 
In this investigation, anisotropic strength theories are employed to analyze the wear of 
FRP composites. A two-dimensional anisotropic wear model is constructed to predict 
the anisotropic wear of composites based on the anisotropic strength and the contact 
behavior. Compared with the experimental data, the predicted results for the wear rate 
in the transverse orientation of fibers exhibit a reasonable accuracy.  
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