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The interphase is formed due to chemical reaction between the matrix and 

filler materials or the use of protective coatings on the reinforcement during 

manufacturing. It is the weakest link in the load path, and consequently most 

failures in particulate reinforced composites, such as debonding, and matrix 

cracking, occur in or near this region. In this article two types of RVE 

models have been implemented using finite element analysis. Aluminum 

nitride nanoparticles were used as a reinforcing material in the matrix of 

AA5154 aluminum alloy. It has been observed that the nanoparticle did not 

overload during the transfer of load from the matrix to the nanoparticle via 

the interphase due to existence of interphase between the nanoparticle and 

the matrix. The tensile strength has increased from 424.22 to 435.78 MPa 

with an interphase around aluminum nitride nanoparticle in the AA5154/AlN 

nanocomposites. 
Copy Right, IJAR, 2015,. All rights reserved 

 

INTRODUCTION  

 
Metal matrix composites (MMCs) have been drawn attention in recent years owing to the need for materials with 

high strength and stiffness in the field for a large number of functional and structural applications. The higher 

stiffness of ceramic particles can lead to an incremental increase in the stiffness of a composite (Reddy, 2009; Reddy 

& Zitoun, 2011). One of the major challenges when processing nanocomposites is achieving a homogeneous 

distribution of reinforcement in the matrix as it has a strong impact on the properties and the quality of the material.  

The current processing methods often generate agglomerated particles in the ductile matrix and as a result they 

exhibit extremely low ductility (Deng & Chawla, 2006). Particle clusters act as crack or decohesion nucleation sites 

at stresses lower than the matrix yield strength, causing the nanocomposite to fail at unpredictable low stress levels. 

Possible reasons resulting in particle clustering are chemical binding, surface energy reduction or particle 

segregation (Reeves et al., 1992; Kotiveerachari & Reddy, 1999; Reddy, 2004)]. While manufacturing Al alloy-AlN 

nanocomposites, the wettability factor is the main concern irrespective of the manufacturing method. Its high surface 

activity restricts its incorporation in the metal matrix. One of the methods is to add surfactant which acts as a wetting 

agent in molten metal to enhance wettability of particulates. Researchers have successfully used several surfactants 

like Li, Mg, Ca, Zr, Ti, Cu, and Si for the synthesis of nanocomposites (Ren, 2011; Sobczak et al., 1993; Davidson 

& Regenar, 2000).  

The objective of this article was to develop AA5154/AlN nanocomposites with and without wetting criteria 

of AlN by AA5154 molten metal. The RVE models were used to analyze the nanocomposites using finite Element 

analysis. A homogeneous interphase region was assumed in the models.  

 

1. Theoretical Background 

Analyzing structures on a microstructural level, however, is clearly an inflexible problem. Analysis methods have 

therefore sought to approximate composite structural mechanics by analyzing a representative section of the 

composite microstructure, commonly called a Representative Volume Element (RVE). One of the first formal 
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definitions of the RVE was given by Hill, 1963 who stated that the RVE was (1) structurally entirely typical of the 

composite material on average and (2) contained a sufficient number of inclusions such that the apparent moduli 

were independent of the RVE boundary displacements or tractions. Under axisymmetric as well as antisymmetric 

loading, a 2-D axisymmetric model can be applied for the cylindrical RVE, which can significantly reduce the 

computational work (Liu & Chen, 2003).  

2.1 Determination Effective Material Properties 

To derive the formulae for deriving the equivalent material constants, a homogenized elasticity model of the square 

representative volume element (RVE) as shown in figure 1 is considered. The dimensions of the three-dimensional 

RVE are 2a x 2a x 2a. The cross-sectional area of the RVE is 2a x 2a. The elasticity model is filled with a single, 

transversely isotropic material that has five independent material constants (elastic moduli Ey and Ez, Poison’s ratios 

vxy, vyz and shear modulus Gyz).  The general strain-stress relations relating the normal stresses and the normal stains 

are given below: 

 εx =
σx

Ex
−

vxy σy

Ey
−

vxz σz

Ez
         (1) 

 εy = −
vyx σx

Ey
+

σy

Ey
−

vyz σz

Ez
         (2) 

 εz = −
vzx σx

Ex
−

vzy σy

Ey
+

σz

Ez
         (3) 

Let assume that 𝜎𝑥𝑦 = 𝜎𝑦𝑥 , 𝜎𝑦𝑧 = 𝜎𝑧𝑦  and 𝜎𝑧𝑥 = 𝜎𝑥𝑧 . For plane strain conditions, 𝜖𝑧 = 0, 𝜖𝑦𝑧 = 𝜀𝑧𝑥 = 0 

and εyz = εzx . The above equations are rewritten as follows: 
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To determine Ey and Ez, vxy and vyz, four equations are required. Two loading cases as shown in figure 2 

have been designed to give four such equations based on the theory of elasticity. For load case (figure 2a), the stress 

and strain components on the lateral surface are: 

 𝜎𝑥 = 𝜎𝑦 = 0  

 𝜀𝑥 =
∆𝑎

𝑎
 along 𝑥 = ±𝑎 and 𝜀𝑦 =

∆𝑎

𝑎
 along 𝑦 = ±𝑎 

 𝜀𝑧 =
∆𝑎

𝑎
  

where ∆a is the change of dimension a of cross-section under the stretch ∆a in the z-direction. Integrating and 

averaging Eq. (6) on the plane z = a, the following equation can be arrived: 

 𝐸𝑧 =
𝜎𝑎𝑣𝑒

𝜀𝑧
=

𝑎

∆𝑎
𝜎𝑎𝑣𝑒          (7) 

where the average value of σz is given by: 

 𝜎𝑎𝑣𝑒 =  𝜎𝑧  𝑥, 𝑦, 𝑎 𝑑𝑥𝑑𝑦        (8) 

The value of σave is evaluated for the RVE using finite element analysis (FEA) results. 

Using Eq. (5) and the result (7), the strain along 𝑦 = ±𝑎: 

 𝜀𝑦 = −
𝑣𝑦𝑧 𝜎𝑧

𝐸𝑧
= −𝑣𝑦𝑧

∆𝑎

𝑎
=

∆𝑎

𝑎
  

Hence, the expression for the Poisson’s ratio vyz is as follows: 

  𝑣𝑦𝑧 = −1         (9) 

 For load case (figure 2b), the square representative volume element (RVE) is loaded with a uniformly 

distributed load (negative pressure), P in a lateral direction, for instance, the x-direction. The RVE is constrained in 

the z-direction so that the plane strain condition is sustained to simulate the interactions of RVE with surrounding 

materials in the z-direction. Since 𝜀𝑧 = 0, 𝜎𝑧 = 𝑣𝑦𝑧  𝜎𝑥 + 𝜎𝑦  for the plain stress, the strain-stress relations can be 

reduced as follows: 

 𝜀𝑥 =  
1
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1

𝐸𝑧
 𝜎𝑥 −  

𝑣𝑥𝑦
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+

1
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For the elasticity model as shown in figure 2b, one can have the following results for the normal stress and strain 

components at a point on the lateral surface: 

  𝜎𝑦 = 0, 𝜎𝑥 = 𝑃  
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 𝜀𝑥 =
∆𝑥

𝑎
 along 𝑥 = ±𝑎 and εy =

∆y

a
 along 𝑦 = ±𝑎 

where ∆x (>0) and ∆y (<0) are the changes of dimensions in the x- and y- direction, respectively for the load case 

shown in figure 2b. Applying Eq. (11) for points along 𝑦 = ±𝑎 and Eq. (10) for points along 𝑥 = ±𝑎, we get the 

following: 
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By solving Eqs. (12) and (13), the effective elastic modulus and Poisson’s ratio in the transverse direction (xy-plane) 

as follows: 
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1

∆𝑥
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+

1
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1
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In which Ez can be determined from Eq. (7). Once the change in lengths along x- and y- direction (∆x and ∆y) are 

determined for the square RVE from the FEA, Ey (= Ex) and vxy can be determined from Eqs. (14) and (15), 

correspondingly. 

 

2.2 Empirical Models for Elastic Moduli and Strength of Nanocomposites 

The strength of a particulate metal matrix composite depends on the strength of the weakest zone and metallurgical 

phenomena in it (Reddy, 2015). A new criterion is suggested by the author considering adhesion, formation of 

precipitates, particle size, agglomeration, voids/porosity, obstacles to the dislocation, and the interfacial reaction of 

the particle/matrix. The formula for the strength of composite is stated below: 

 𝜎𝑐 =  𝜎𝑚  
1− 𝑣𝑝+𝑣𝑣 

2/3

1−1.5 𝑣𝑝+𝑣𝑣 
  𝑒

𝑚𝑝 𝑣𝑝+𝑣𝑣 + 𝑘𝑑𝑝
−1/2

         (16) 

  k = Em mm Epmp  

where, vv and vp are the volume fractions of voids/porosity and nanoparticles in the composite respectively, mp and 

mm are the possion’s ratios of the nanoparticles and matrix respectively, dp is the mean nanoparticle size (diameter) 

and Em and Ep is elastic moduli of the matrix and the particle respectively. Elastic modulus (Young’s modulus) is a 

measure of the stiffness of a material and is a quantity used to characterize materials. Elastic modulus is the same in 

all orientations for isotropic materials. Anisotropy can be seen in many composites. The proposed equations (Reddy, 

2015) by the author to find Young’s modulus of composites and interphase including the effect of voids/porosity as 

given below: 

The upper-bound equation is given by 

 
𝐸𝑐

𝐸𝑚
=  

1−𝑣𝑣
2/3

1−𝑣𝑣
2/3+𝑣𝑣

 +
1+ 𝛿−1 𝑣𝑝

2/3

1+ 𝛿−1  𝑣𝑝
2/3−𝑣𝑝  

       (17) 

The lower-bound equation is given by 

 
𝐸𝑐

𝐸𝑚
= 1 +

𝑣𝑝−𝑣𝑝

𝛿  𝛿−1  −(𝑣𝑝+𝑣𝑣)
1/3                         (18) 

where, mp EEδ = . 

The transverse modulus is given by 

 𝐸𝑡 =
𝐸𝑚 𝐸𝑝

𝐸𝑚 + 𝐸𝑝  1−𝑣𝑝
2/3 𝑣𝑝

2/3 
+ 𝐸𝑚 1 − 𝑣𝑝

2/3 − 𝑣𝑣
2/3        (19) 

The young’s modulus of the interphase is obtained by the following formula: 

 𝐸𝑖 𝑟 =  𝛼𝐸𝑝 − 𝐸𝑚  
𝑟𝑖−𝑟

𝑟𝑖−𝑟𝑝
 + 𝐸𝑚            (20) 

 

2. Materials Methods 

The matrix material was AA5154 aluminum alloy. AA5154 contains Si (12.50%), Cr (0.10%), Cu (1.20%), Fe 

(1.00%), Mg (1.10%), Ni (1.00%) and Zn (0.25%) as its major alloying elements. The reinforcement material was 

aluminum nitride (AlN) nanoparticles of average size 100nm. The mechanical properties of materials used in the 

present work are given in table 1. 

 The representative volume element (RVE or the unit cell) is the smallest volume over which a 

measurement can be made that will yield a value representative of the whole. In this research, a cubical RVE was 

implemented to analyze the tensile behavior AA3015/AlN nanocomposites (figure 6). The determination of the 
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RVE’s dimensional conditions requires the establishment of a volumetric fraction of spherical nanoparticles in the 

composite. Hence, the weight fractions of the particles were converted to volume fractions. The volume fraction of a 

particle in the RVE (Vp,rve ) is determined using Eq.(21): 

 𝑣𝑝,𝑟𝑣𝑒 =
𝑉𝑜𝑙𝑢𝑚𝑒  𝑜𝑓 𝑛𝑎𝑛𝑜𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

𝑉𝑜𝑙𝑢𝑚𝑒  𝑜𝑓 𝑅𝑉𝐸
=

16

3
×  

𝑟

𝑎
 

3

              (21) 

where, r represents the particle radius and a indicates the diameter of the cylindrical RVE. The volume fraction of 

the particles in the composite (Vp) is obtained using equation 

 Vp = (wp/p)/(wp/p+wm/m)         (22) 

where m and p denote the matrix and particle densities, and wm and wp indicate the matrix and particle weight 

fractions, respectively. 

 The RVE dimension (a) was determined by equalizing Eqs. (21) and (22).  Two RVE schemes namely: 

without interphase (adhesion) and with interphase were applied between the matrix and the filler. The loading on the 

RVE was defined as symmetric displacement, which provided equal displacements at both ends of the RVE. To 

obtain the nanocomposite modulus and yield strength, the force reaction was defined against displacement. The 

large strain PLANE183 element (Alavala, 2008) was used in the matrix and the interphase regions in all the models. 

In order to model the adhesion between the interphase and the particle, a COMBIN14 spring-damper element was 

used. The stiffness of this element was taken as unity for perfect adhesion which could determine the interfacial 

strength for the interface region. 

 To converge an exact nonlinear solution, it is also important to set the strain rates of the FEM models based 

on the experimental tensile tests’ setups. Hence, FEM models of different RVEs with various particle contents 

should have comparable error values. In this respect, the ratio of the tensile test speed to the gauge length of the 

specimens should be equal to the corresponding ratio in the RVE displacement model. Therefore, the rate of 

displacement in the RVEs was set to be 0.1 (1/min). 

 

3. Result and Discussion  

The AlN/AA5154 nanocomposites with or without interphase were modeled using finite element analysis (ANSYS) 

to analyze the tensile behavior and fracture.  

 

4.1 Tensile Behavior 

An increase of AlN content in the matrix could increase the tensile strength of the nanocomposite (figure 3). The 

maximum difference between the FEA results without interphase and the experimental results was 54.95 MPa.  This 

differentiation can be attributed to lack of bonding between the AlN nanoparticle and the AA5154 matrix. The 

maximum difference between the FEA results with interphase and the experiments results was 43.55 MPa.  This 

discrepancy can be endorsed to the presence of voids in the nanocomposites. Author’s model includes the effect of 

voids present in the nanocomposite. The results obtained from author’s model (with voids) were nearly equal to the 

experimental values with maximum variation of 24.29 MPa. On the other hand, the deviation of FEA (RVE model) 

results with the experimental results possibly was as a result of micro-metallurgical factors (such as formation of 

voids and nanoparticle clustering) that were not considered in the RVE models.  

 For 10%, 20% and 30%Vp of AlN in AA5154, without interphase and barely consideration of adhesive 

bonding between the AlN nanoparticle and the AA5154 matrix, the loads transferred from the AlN nanoparticle to 

the AA5154 matrix were, respectively, 65.08 MPa, 102.36 MPa and 104.29 MPa (figure 4) along the tensile load 

direction. Similarly, for 10%, 20% and 30%Vp of AlN in AA5154, with interphase and wetting between the ALN 

nanoparticle and the AA5154 matrix, the loads transferred from the AlN nanoparticle to the AA5154 matrix were, 

respectively, 97.90 MPa, 134.42 MPa and 108.31 MPa (figure 4) along the tensile load direction. Zhengang et al 

(Zhengang et al., 2010) carried a study improving wettability by adding Mg as the wetting agent. They suggested 

that the wettability between molten Al-Mg matrix and SiC particles is improved and the surface tension of molten 

Al-Mg alloy with SiC particle is reduced, and results in homogeneous particles distribution and high interfacial bond 

strength. For instance, addition of Mg to composite matrix lead to the formation of MgO and MgAl2O3 at the 

interface and this enhances the wettability and the strength of the composite (Reddy & Zitoun, 2009). 

 According to strains developed in the nanocomposites (figure 5), the RVE was expanded elastically away 

from the particle in the direction of the tensile loading. This would increase the contact area between the particle and 

the matrix in the perpendicular direction to the tensile loading and would decrease the contact area between the 

particle and the matrix in the direction of the tensile loading.  In addition, the deformation was propagated from the 

matrix to the nanoparticle in the normal direction to the tensile loading. The same kind of trend was observed with 

the nanocomposites consisting of interphase. The only difference was the propagation of deformation from the 
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matrix to the nanoparticle. This was high with interphase as it would improve the wettability of the nanoparticle with 

the matrix. The interphase extends the yielding character of the nano composite. For the homogenization analysis 

only one cell was analyzed for each volume fraction since the periodicity assumption gives the same result for any 

number of cells. The local RVE strain was not equal to the average RVE strain but fluctuates about the average RVE 

strain. The relationship between the average RVE strain and any applied boundary condition was not unique. 

Increasing the nanoparticle volume fraction reduce the effect of boundary conditions on the variation of the RVE 

local strain distribution. 

 

By increasing the volume fraction of AlN, the tensile elastic modulus increased appreciably (figure 6). The results of 

tensile moduli obtained FEA were within the limits of author’s models and were closer to the results obtained by the 

Rule of Mixture. The transverse moduli were nearly equal to the results obtained by the author’s models and the 

Rule of Mixture.  

 

4.2 Fracture 

Figure 7 depicts the increase of von Mises stress with increase of volume fraction of AlN. The shear stresses 

induced in the nanocomposites with and without interphase are shown in figure 8. In the case of nanocomposites 

with interphase between the nanoparticle and the matrix, the stress was transferred through shear from the matrix to 

the particles resulting low stress in the matrix. The stress transfer from the matrix to the nanoparticle was less for the 

nanocomposites without interphase resulting high stress in the matrix.  Landis and McMeeking (1999) assume that 

the fibers carry the entire axial load, and the matrix material only transmits shear between the fibers. Based on these 

assumptions alone, it is generally accepted that these methods will be most accurate when the fiber volume fraction 

Vf and the fiber-to matrix moduli ratio Ef /Em are high. In the present case the elastic moduli of AA5154 matrix and 

AlN nano particle are, respectively, 70.3 GPa and 330 GPa. 

 

Table 1: Mechanical properties of AA5154 matrix and AlN nanoparticles 

 

Property AA5154 AlN 

Density, g/cc 2.66 3.26 

Elastic modulus, GPa 70.3 330 

Ultimate tensile strength, MPa 310 270 

Poisson’s ratio 0.33 0.24 

 

 
Figure 1: A square RVE containing a nanoparticle. 
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Figure 2: RVE models 

 

 
Figure 3: Effect of volume fraction on tensile strength along tensile load direction. 

 

 
Figure 4: Tensile stresses (a) without interphase and (b) with interphase normal to load direction. 
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Figure 5: Elastic strain (a) without interphase, parallel, (b) with interphase, normal, (c) without interphase, parallel 

and (d) with interphase, normal to load direction. 

 

 
Figure 6: Elastic moduli of AA3105/AlN nano composite. 

 

 
Figure 7: von Mises stress (a) and shear stress (b). 
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4. Conclusion 

The RVE models give the trend of phenomenon happening in the nanocomposites. Without interphase and barely 

consideration of adhesive bonding, the tensile strength has been found to be 424.22 MPa for the nanocomposites 

consisting of 30%Aln nanoparticles. Due to interphase between the nanoparticle and the matrix, the tensile strength 

increases to 435.78 MPa. The tensile strengths obtained by author’s model (with voids) are in good agreement with 

the experimental results. In the case of nanocomposites with interphase between the nanoparticle and the matrix, the 

stress is transferred through shear from the matrix to the particles. The transverse moduli of AlN/AA5154 

nanocomposites have been found to be 23.87 GPa and 20.35 GPa, respectively, without and with interphase. 
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