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Abstract: The ceramic shells were fabricated with ceramic slurry containing alpaha and gamma alumina as filler materials and 

colloidal silica binder. The shell characteristics in terms of bending strength and thermal expansion were measured. The phase 

transformation from gamma to alpha alumina were observed with transmission electron microscopy (TEM) and selected area 

electron diffraction (SAED) patterns.  The metal to mould reaction were revealed with optical microstructures and hardness 

distribution. The bonding mechanism in the alumina and colloidal silica binder system was due to formation siloxane bonds. The 

phase transition γ- → α-Al2O3 occurs in two phases, respectively in the temperature ranges of 600°C - 850°C cubic crystal 

structure and from 850°C - 1000°C, α-Al2O3 with corundum crystal structure. The cracks have been observed in the investment 

shells made of gamma alumina after 7075 Al-alloy pouring. 
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1. Introduction 
7075 are often used in transport applications, including 

marine, automotive and aviation, due to their high strength-

to-density ratio. One interesting use for 7075 is in the 

manufacture of M16 rifles for the American military. In 

particular high quality M16 rifle lower and upper receivers as 

well as extension tubes are made from 7075-T6 alloy [1]. 

Al2O3 is a chemical compound of aluminum and oxygen. It is 

an electrical insulator but has a relatively high thermal 

conductivity for a ceramic material.  The materials used to 

build the investment shell moulds, especially refractories, 

play a vital role in the production of quality castings [2-6]. 

The properties of refractory fillers, which affect the shell 

quality, are melting point, thermal expansion, and metal - 

mould interaction. During the casting process, molten 

zirconium alloys can easily react with the mold materials and 

produce a surface contamination layer. 

 

In the present work, alumina was used as refractory filler 

material to fabricate investment shell moulds for casting of 

magnesium alloy AZ91E alloys. 

 

2. Materials and Methods 

The colloidal silica binder was used to fabricate the ceramic 

shells from alumina (Al2O3) as a reinforced filler material. 

The specifications of colloidal silica binder is given in table 

1. Two grades (primary and backup sands) of stuccoing sand 

were employed in the present investigation. Finer grade silica 

sand having AFS grain fineness number 120 was employed 

for primary coats. This is synthetic sand. This sand was used 

for first two coats, called prime coats to get good surface 

finish and every detail of the wax pattern. Coarser grade sand 

having AFS grain fineness number 42 was employed for back 

up coats. This is river sand. The backup sand was employed 

to develop more thickness to the shell walls with minimum 

coats.  

Table 1. Specifications of silox binder 
 

                Property Amount 

Silica (SiO2)  Wt% 30 

PH at 250C 10.5 

Titrable Alkali (Na2O) 0.6 

Chlorides/ Sulphates Traces 

Specific gravity, g/cc 1.23 
 

2.1 Manufacture of ceramic shells and 7075 alloy castings 

The preparation of investment slurry is shown in figure 1. 

Dip coating slurries were prepared by adding the refractory 

filler powder to the binder liquid, using sufficient agitation to 

break up agglomerates and thoroughly wet and disperse the 

powder. The filler/binder ratio in the slurry was according to 

the design of experiments. The fabrication of investment 

shells and casting of 7075 aluminum alloy is shown in figure 

2. The investment shells were made of applying a series of 

ceramic coatings to the wax patterns. The pattern was first 

dipped into the dip-coating slurry bath. The pattern drains off 

excess magnesia slurry and to produce a uniform layer. The 

wet layer was immediately stuccoed with coarse silica sand. 

Each coating was allowed to dry in the open air. The 

operations of coating, stuccoing, and drying were repeated six 

times. The seventh coat was left unstuccoed to avoid the 

occurrence of loose particles on the shell surface. The first 

two coats were stuccoed with sand of AFS fineness number 

120 and the next four coats were with sand of AFS fineness 

number 42. After all coats, the shells were air dried for 24 

hours. Two shells of each treatment were made.  

The 7075 aluminum alloy was melted in an oil fired furnace. 

During melting, the alloy was coated with flux (covral-11S) 
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to prevent the oxidation of the metal. The

degasified with tetrachloroethane tablets 

with sodium. The liquid alloy was gravit

pre-heated ceramic shells. The shells wer

hand hammer after solidification of the mo

were cleaned with soft brush and visually 

and projections. 

Figure 1. Preparation of investme

Figure 2. Fabrication investments shells an

aluminum alloy. 

2.2 Hot strength of ceramic shells 
The dimensions of specimens are 25mm 

where t is the thickness of the shell. The s

bending test are shown in figure 3. The test

rupture was conducted on the universal san

machine.  

Figure 3. Specimens for bend

2.3 % thermal expansion of ceramic shel

It was measured in terms of %volume 

investment shells [9]. The length, width an

shells were measured using vernier calipe

sintering in the electrical oven. The % ther

computed using the following formula: 

% thermal expansion = 
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binder is stable water-based suspens
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3.3 Metal-shell reaction 

Figure 11 shows the hardness profile of a sample from 25mm 

thick 7075 Al-alloy castings made in alumina investment 

shell molds. The hardness has a function of depth from the 

surface decrease with an increase in depth. The hardness 

profile was nearly same in the castings made in alpha and 

gamma alumina investment shells (figure 12). Fine grain 

structure was revealed at the metal-mould interface as the 

general phenomena of beginning of nucleation at the metal-

mould interface (figure 12 b). Formation of intermetallic 

phases (figure 12d) was observed from the microstructure 

cited at metal-mould interface. The metal-mould reactions 

were also confirmed from EDX graph shown in figure 12c. 

 

Figure 11. Harness distribution across cross-section of 7075 Al-alloy 

specimens. 

 

 
 

Figure 12. Metal-mould reaction (a) schematic representation grain 

formation in shell mould, (b) fine grain structure as metal-mould 

interface (c) EDX graph representing metal-mould reactions and (d) 

formation of intermetallic phases due to metal-mould reactions 

 

4. Conclusions 
The bonding mechanism in the alumina and colloidal silica 

binder system is due to formation siloxane bonds. The phase 

transition γ- → α-Al2O3 occurs in two phases, respectively in 

the temperature ranges of 600°C - 850°C cubic crystal 

structure and from 850°C - 1000°C, α-Al2O3 with corundum 

crystal structure. The cracks have been observed in the 

investment shells made of gamma alumina after 7075 Al-

alloy pouring. Intermetallic compounds have been formed 

due to metal-mould reactions. 
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