

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
IDP (B.Tech + M.Tech) in COMPUTER SCIENCE AND ENGINEERING
COURSE STRUCTURE, I & II YEAR SYLLABUS (R22 Regulations)

Applicable from AY 2022-23 Batch

I Year I Semester

S. No.	Course Code	Course	L	T	P	Credits
1.		Matrices and Calculus	3	1	0	4
2.		Engineering Chemistry	3	1	0	4
3.		Programming for Problem Solving	3	0	0	3
4.		Basic Electrical Engineering	2	0	0	2
5.		Computer Aided Engineering Graphics	1	0	4	3
6.		Elements of Computer Science & Engineering	0	0	2	1
7.		Engineering Chemistry Laboratory	0	0	2	1
8.		Programming for Problem Solving Laboratory	0	0	2	1
9.		Basic Electrical Engineering Laboratory	0	0	2	1
Total			12	2	12	20

I Year II Semester

S. No.	Course Code	Course	L	T	P	Credits
1.		Ordinary Differential Equations and Vector Calculus	3	1	0	4
2.		Applied Physics	3	1	0	4
3.		Engineering Workshop	0	1	3	2.5
4.		English for Skill Enhancement	2	0	0	2
5.		Electronic Devices and Circuits	2	0	0	2
6.		Applied Physics Laboratory	0	0	3	1.5
7.		Python Programming Laboratory	0	1	2	2
8.		English Language and Communication Skills Laboratory	0	0	2	1
9.		IT Workshop	0	0	2	1
10.	MC*	Environmental Science	3	0	0	0
Total			10	4	12	20

II YEAR I SEMESTER

S.No.	Course Code	Course Title	L	T	P	Credits
1		Digital Electronics	3	0	0	3
2		Data Structures	3	0	0	3
3		Computer Oriented Statistical Methods	3	1	0	4
4		Computer Organization and Architecture	3	0	0	3
5		Object Oriented Programming through Java	3	0	0	3
6		Data Structures Lab	0	0	3	1.5
7		Object Oriented Programming through Java Lab	0	0	3	1.5
8	MC*	Gender Sensitization Lab	0	0	2	0
9		Skill Development Course (Data visualization- R Programming/ Power BI)	0	0	2	1
Total			15	1	10	20

II YEAR II SEMESTER

S. No.	Course Code	Course Title	L	T	P	Credits
1		Discrete Mathematics	3	0	0	3
2		Business Economics & Financial Analysis	3	0	0	3
3		Operating Systems	3	0	0	3
4		Database Management Systems	3	0	0	3
5		Software Engineering	3	0	0	3
6		Operating Systems Lab	0	0	2	1
7		Database Management Systems Lab	0	0	2	1
8		Real-time Research Project/ Societal Related Project	0	0	4	2
9	MC*	Constitution of India	3	0	0	0
10		Skill Development Course (Node JS/ React JS/ Django)	0	0	2	1
Total			18	0	10	20

III YEAR I SEMESTER

S. No.	Course Code	Course Title	L	T	P	Credits
1		Design and Analysis of Algorithms	3	1	0	4
2		Computer Networks	3	0	0	3
3		DevOps	3	0	0	3
4		Professional Elective-I	3	0	0	3
5		Professional Elective -II	3	0	0	3
6		Computer Networks Lab	0	0	2	1
7		DevOps Lab	0	0	2	1
8		Advanced Communication Skills Lab	0	0	2	1
9	MC*	Intellectual Property Rights	3	0	0	0
10		Skill Development Course (UI design- Flutter)	0	0	2	1
Total			18	1	8	20

III YEAR II SEMESTER

S.No.	Course Code	Course Title	L	T	P	Credits
1		Machine Learning	3	0	0	3
2		Formal Languages and Automata Theory	3	0	0	3
3		Artificial Intelligence	3	0	0	3
4		Professional Elective – III	3	0	0	3
5		Open Elective-I	3	0	0	3
6		Machine Learning Lab	0	0	2	1
7		Professional Elective-III Lab	0	0	2	1
8		Industrial Oriented Mini Project/ Internship/ Skill Development Course (Big data-Spark)	0	0	4	2
9	MC*	Environmental Science	3	0	0	0
Total			18	0	8	20

Environmental Science in III Yr II Sem Should be Registered by Lateral Entry Students Only.

IV YEAR I SEMESTER

S. No.	JG/PG	Course Code	Course Title	L	T	P	Credits
1	UG		Professional Core: Cyber Security	3	1	0	4
2	UG		Professional Core: Grid and Cloud Computing	3	0	0	3
3	UG		Professional Elective IV	3	0	0	3
4	UG		Professional Elective V	3	0	0	3
5	UG		Open Elective II	3	0	0	3
6	PG		Profession Core I: Advanced Data Structures	3	0	0	3
7	PG		Audit Course I	2	0	0	0
8	PG		Lab I(Based on Professional Core: Advanced Data Structures Lab)	0	0	4	2
9	UG		Project Stage - I	0	0	6	3
			Total Credits				24 (19UG+05PG)

IV YEAR II SEMESTER

S. No.	PG/UG	Course Code	Course Title	L	T	P	Credits
1	PG		Professional Core II: Advanced Algorithms	3	0	0	3
2	PG		Professional Core III: Mathematical Foundations of Computer Science	3	0	0	3
3	PG		Professional Elective I 1. Database Programming with PL/SQL 2. Deep Learning 3. Image & Video Processing	3	0	0	3
4	PG		Professional Elective II 1. Applied Cryptography 2. Software Quality Engineering 3. Mining Massive Datasets	3	0	0	3
5	PG		Research Methodologies and IPR	2	0	0	2
6	PG		LAB II(based on Professional Core Advanced Algorithms)	0	0	4	2
7	PG		LAB III(based on Professional Elective-I)	0	0	4	2
8	UG		Project Stage – II	0	0	22	11
			Total Credits				29 (11UG+18PG)

V YEAR I SEMESTER

S. No.	UG/PG	Course Code	Course Title	L	T	P	Credits
1	PG		Mini Project with Seminar	0	0	4	2
2	PG		Professional Core IV: Advanced Computer Architecture	3	0	0	3
3	PG		Professional Elective III 1. Enterprise Cloud Concepts 2. Advanced Computer Networks 3. Edge Analytics	3	0	0	3
4	PG		Professional Elective IV 1. Bioinformatics 2. Nature Inspired Computing 3. Social Media Mining	3	0	0	3
5	PG		Audit Course II	2	0	0	0
6	PG		Open Elective	3	0	0	3
7	PG		LAB IV(Based on Professional Elective-III)	0	0	4	2
8	PG		Dissertation Work Review I	0	0	12	6
Total Credits							22

V YEAR II SEMESTER

S. No.	PG/UG	Course Code	Course Title	L	T	P	Credits
1	PG		Dissertation Work Review II	0	0	12	6
2	PG		Dissertation Viva-Voce	0	0	28	14
Total Credits							20

*MC – Satisfactory/Unsatisfactory

#Skill Course - 1 credit with 2 Practical Hours

Professional Elective - I

	Quantum Computing
	Advanced Computer Architecture
	Data Analytics
	Image Processing
	Principles of Programming Languages

Professional Elective - II

	Computer Graphics
	Embedded Systems
	Information Retrieval Systems
	Distributed Databases
	Natural Language Processing

Professional Elective - III

	Full Stack Development
	Internet of Things
	Scripting Languages
	Mobile Application Development
	Software Testing Methodologies

Courses in PE - III and PE - III Lab must be in 1-1 correspondence.

Professional Elective -IV

	Graph Theory
	Advanced Operating Systems
	Soft Computing
	Cloud Computing
	Ad hoc & Sensor Networks

Professional Elective -V

	Advanced Algorithms
	Agile Methodology
	Robotic Process Automation
	Blockchain Technology
	Software Process & Project Management

Open Elective-I:

1. CS611OE: Data Structures
2. CS612OE: Database Management Systems

Open Elective-II:

1. CS721OE: Operating Systems
2. CS722OE: Software Engineering

Audit Course I&II:

1. English for Research Paper Writing
2. Disaster Management
3. Sanskrit for Technical Knowledge
4. Value Education
5. Constitution of India
6. Pedagogy Studies
7. Stress Management by yoga
8. Personality Development Through Life Enlightenment Skills

Open Electives for other Departments:

1. IPR
2. Fault Tolerance Systems
3. Intrusion Detection Systems
4. Digital Forensics
5. Optimization Techniques
6. Cyber Physical Systems
7. Graph Analytics

MATRICES AND CALCULUS

L	T	P	C
3	1	0	4

Pre-requisites: Mathematical Knowledge at pre-university level

Course Objectives: To learn

- Types of matrices and their properties.
- Concept of a rank of the matrix and applying this concept to know the consistency and solving the system of linear equations.
- Concept of eigenvalues and eigenvectors and to reduce the quadratic form to canonical form
- Geometrical approach to the mean value theorems and their application to the mathematical problems
- Evaluation of surface areas and volumes of revolutions of curves.
- Evaluation of improper integrals using Beta and Gamma functions.
- Partial differentiation, concept of total derivative
- Finding maxima and minima of function of two and three variables.
- Evaluation of multiple integrals and their applications

Course outcomes: After learning the contents of this paper the student must be able to

- Write the matrix representation of a set of linear equations and to analyse the solution of the system of equations
- Find the Eigenvalues and Eigen vectors
- Reduce the quadratic form to canonical form using orthogonal transformations.
- Solve the applications on the mean value theorems.
- Evaluate the improper integrals using Beta and Gamma functions
- Find the extreme values of functions of two variables with/ without constraints.
- Evaluate the multiple integrals and apply the concept to find areas, volumes

UNIT - I: Matrices**10 L**

Rank of a matrix by Echelon form and Normal form, Inverse of Non-singular matrices by Gauss-Jordan method, System of linear equations: Solving system of Homogeneous and Non-Homogeneous equations by Gauss elimination method, Gauss Seidel Iteration Method.

UNIT - II: Eigen values and Eigen vectors**10 L**

Linear Transformation and Orthogonal Transformation: Eigenvalues, Eigenvectors and their properties, Diagonalization of a matrix, Cayley-Hamilton Theorem (without proof), finding inverse and power of a matrix by Cayley-Hamilton Theorem, Quadratic forms and Nature of the Quadratic Forms, Reduction of Quadratic form to canonical forms by Orthogonal Transformation.

UNIT - III: Calculus**10 L**

Mean value theorems: Rolle's theorem, Lagrange's Mean value theorem with their Geometrical Interpretation and applications, Cauchy's Mean value Theorem, Taylor's Series.

Applications of definite integrals to evaluate surface areas and volumes of revolutions of curves (Only in Cartesian coordinates), Definition of Improper Integral: Beta and Gamma functions and their applications.

UNIT - IV: Multivariable Calculus (Partial Differentiation and applications)**10 L**

Definitions of Limit and continuity.

Partial Differentiation: Euler's Theorem, Total derivative, Jacobian, Functional dependence & independence. Applications: Maxima and minima of functions of two variables and three variables using method of Lagrange multipliers.

UNIT-V: Multivariable Calculus (Integration)**8 L**

Evaluation of Double Integrals (Cartesian and polar coordinates), change of order of integration (only Cartesian form), Evaluation of Triple Integrals: Change of variables (Cartesian to polar) for double and (Cartesian to Spherical and Cylindrical polar coordinates) for triple integrals.
Applications: Areas (by double integrals) and volumes (by double integrals and triple integrals).

TEXT BOOKS:

1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.
2. R.K. Jain and S.R.K. Iyengar, Advanced Engineering Mathematics, Narosa Publications, 5th Editon, 2016.

REFERENCE BOOKS:

1. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
2. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.
3. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.
4. H. K. Dass and Er. Rajnish Verma, Higher Engineering Mathematics, S Chand and Company Limited, New Delhi.

ENGINEERING CHEMISTRY

L T P C

3 1 0 4 Course Objectives:

1. To bring adaptability to new developments in Engineering Chemistry and to acquire the skills required to become a perfect engineer.
2. To include the importance of water in industrial usage, fundamental aspects of battery chemistry, significance of corrosion its control to protect the structures.
3. To imbibe the basic concepts of petroleum and its products.
4. To acquire required knowledge about engineering materials like cement, smart materials and Lubricants.

Course Outcomes:

1. Students will acquire the basic knowledge of electrochemical procedures related to corrosion and its control.
2. The students are able to understand the basic properties of water and its usage in domestic and industrial purposes.
3. They can learn the fundamentals and general properties of polymers and other engineering materials.
4. They can predict potential applications of chemistry and practical utility in order to become good engineers and entrepreneurs.

UNIT - I: Water and its treatment: [8]

Introduction to hardness of water – Estimation of hardness of water by complexometric method and related numerical problems. Potable water and its specifications - Steps involved in the treatment of potable water - Disinfection of potable water by chlorination and break - point chlorination. Defluoridation - Determination of F⁻ ion by ion-selective electrode method.

Boiler troubles: Sludges, Scales and Caustic embrittlement. Internal treatment of Boiler feed water - Calgon conditioning - Phosphate conditioning - Colloidal conditioning, External treatment methods - Softening of water by ion- exchange processes. Desalination of water – Reverse osmosis.

UNIT – II Battery Chemistry & Corrosion [8]

Introduction - Classification of batteries- primary, secondary and reserve batteries with examples. Basic requirements for commercial batteries. Construction, working and applications of: Zn-air and Lithium ion battery, Applications of Li-ion battery to electrical vehicles. Fuel Cells- Differences between battery and a fuel cell, Construction and applications of Methanol Oxygen fuel cell and Solid oxide fuel cell. Solar cells - Introduction and applications of Solar cells.

Corrosion: Causes and effects of corrosion – theories of chemical and electrochemical corrosion – mechanism of electrochemical corrosion, Types of corrosion: Galvanic, water-line and pitting corrosion. Factors affecting rate of corrosion, Corrosion control methods- Cathodic protection – Sacrificial anode and impressed current methods.

UNIT - III: Polymeric materials: [8]

Definition – Classification of polymers with examples – Types of polymerization – addition (free radical addition) and condensation polymerization with examples – Nylon 6:6, Terylene

Plastics: Definition and characteristics- thermoplastic and thermosetting plastics, Preparation, Properties and engineering applications of PVC and Bakelite, Teflon, Fiber reinforced plastics (FRP).

Rubbers: Natural rubber and its vulcanization.

Elastomers: Characteristics –preparation – properties and applications of Buna-S, Butyl and Thiokol rubber.

Conducting polymers: Characteristics and Classification with examples-mechanism of conduction in trans-polyacetylene and applications of conducting polymers.

Biodegradable polymers: Concept and advantages - Polylactic acid and poly vinyl alcohol and their applications.

UNIT - IV: Energy Sources: [8]

Introduction, Calorific value of fuel – HCV, LCV- Dulong's formula. Classification- solid fuels: coal – analysis of coal – proximate and ultimate analysis and their significance. Liquid fuels – petroleum and its refining, cracking types – moving bed catalytic cracking. Knocking – octane and cetane rating, synthetic petrol - Fischer-Tropsch's process; Gaseous fuels – composition and uses of natural gas, LPG and CNG, Biodiesel – Transesterification, advantages.

UNIT - V: Engineering Materials: [8]

Cement: Portland cement, its composition, setting and hardening.

Smart materials and their engineering applications

Shape memory materials- Poly L- Lactic acid. Thermoresponsive materials- Polyacryl amides, Poly vinyl amides

Lubricants: Classification of lubricants with examples-characteristics of a good lubricants - mechanism of lubrication (thick film, thin film and extreme pressure)- properties of lubricants: viscosity, cloud point, pour point, flash point and fire point.

TEXT BOOKS:

1. Engineering Chemistry by P.C. Jain and M. Jain, Dhanpatrai Publishing Company, 2010
2. Engineering Chemistry by Rama Devi, Venkata Ramana Reddy and Rath, Cengage learning, 2016
3. A text book of Engineering Chemistry by M. Thirumala Chary, E. Laxminarayana and K. Shashikala, Pearson Publications, 2021.
4. Textbook of Engineering Chemistry by Jaya Shree Anireddy, Wiley Publications.

REFERENCE BOOKS:

1. Engineering Chemistry by Shikha Agarwal, Cambridge University Press, Delhi (2015)
2. Engineering Chemistry by Shashi Chawla, Dhanpatrai and Company (P) Ltd. Delhi (2011)

PROGRAMMING FOR PROBLEM SOLVING

L	T	P	C
3	0	0	3

Course Objectives:

- To learn the fundamentals of computers.
- To understand the various steps in program development.
- To learn the syntax and semantics of the C programming language.
- To learn the usage of structured programming approaches in solving problems.

Course Outcomes: The student will learn

- To write algorithms and to draw flowcharts for solving problems.
- To convert the algorithms/flowcharts to C programs.
- To code and test a given logic in the C programming language.
- To decompose a problem into functions and to develop modular reusable code.
- To use arrays, pointers, strings and structures to write C programs.
- Searching and sorting problems.

UNIT - I: Introduction to Programming

Compilers, compiling and executing a program.

Representation of Algorithm - Algorithms for finding roots of a quadratic equations, finding minimum and maximum numbers of a given set, finding if a number is prime number Flowchart/Pseudocode with examples, Program design and structured programming

Introduction to C Programming Language: variables (with data types and space requirements), Syntax and Logical Errors in compilation, object and executable code, Operators, expressions and precedence, Expression evaluation, Storage classes (auto, extern, static and register), type conversion, The main method and command line arguments Bitwise operations: Bitwise AND, OR, XOR and NOT operators

Conditional Branching and Loops: Writing and evaluation of conditionals and consequent branching with if, if-else, switch-case, ternary operator, goto, Iteration with for, while, do- while loops

I/O: Simple input and output with scanf and printf, formatted I/O, Introduction to stdin, stdout and stderr. Command line arguments

UNIT - II: Arrays, Strings, Structures and Pointers:

Arrays: one and two dimensional arrays, creating, accessing and manipulating elements of arrays

Strings: Introduction to strings, handling strings as array of characters, basic string functions available in C (strlen, strcat, strcpy, strstr etc.), arrays of strings

Structures: Defining structures, initializing structures, unions, Array of structures

Pointers: Idea of pointers, Defining pointers, Pointers to Arrays and Structures, Use of Pointers in selfreferential structures, usage of self referential structures in linked list (no implementation)

Enumeration data type

UNIT - III: Preprocessor and File handling in C:

Preprocessor: Commonly used Preprocessor commands like include, define, undef, if, ifdef, ifndef Files: Text and Binary files, Creating and Reading and writing text and binary files, Appending data to existing files, Writing and reading structures using binary files, Random access using fseek, ftell and rewind functions.

UNIT - IV: Function and Dynamic Memory Allocation:

Functions: Designing structured programs, Declaring a function, Signature of a function, Parameters and return type of a function, passing parameters to functions, call by value, Passing arrays to functions, passing pointers to functions, idea of call by reference, Some C standard functions and libraries

Recursion: Simple programs, such as Finding Factorial, Fibonacci series etc., Limitations of Recursive functions Dynamic memory allocation: Allocating and freeing memory, Allocating memory for arrays of different data types

UNIT - V: Searching and Sorting:

Basic searching in an array of elements (linear and binary search techniques), Basic algorithms to sort array of elements (Bubble, Insertion and Selection sort algorithms), Basic concept of order of complexity through the example programs

TEXT BOOKS:

1. Jeri R. Hanly and Elliot B. Koffman, Problem solving and Program Design in C 7th Edition, Pearson
2. B.A. Forouzan and R.F. Gilberg C Programming and Data Structures, Cengage Learning, (3rd Edition)

REFERENCE BOOKS:

1. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall of India
2. E. Balagurusamy, Computer fundamentals and C, 2nd Edition, McGraw-Hill
3. Yashavant Kanetkar, Let Us C, 18th Edition, BPB
4. R.G. Dromey, How to solve it by Computer, Pearson (16th Impression) 5. Programming in C, Stephen G. Kochan, Fourth Edition, Pearson Education.
6. Herbert Schildt, C: The Complete Reference, Mc Graw Hill, 4th Edition
7. Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill

BASIC ELECTRICAL ENGINEERING

B.Tech. I Year I Sem.

L	T	P	C
2	0	0	2

Prerequisites: Mathematics

Course Objectives:

- To understand DC and Single & Three phase AC circuits
- To study and understand the different types of DC, AC machines and Transformers.
- To import the knowledge of various electrical installations and the concept of power, power factor and its improvement.

Course Outcomes: After learning the contents of this paper the student must be able to

- Understand and analyze basic Electrical circuits
- Study the working principles of Electrical Machines and Transformers Introduce components of Low Voltage Electrical Installations.

Course Objectives	Program Outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
To understand DC and Single & Three phase AC circuits.	3	2	1		2	0	0	1	2	0	1	2
To study and understand the different types of DC, AC machines and Transformers.	3	2	1	1	3	0	0	0	2	0	1	1
To import the knowledge of various electrical installations and the concept of power, power factor and its improvement.	3	2	0		3	0	0	0	1	2	1	1

Course Outcomes	Program Outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Understand and analyse basic Electrical circuits	3	2	1	0	1	0	0	0	2	0	2	2
Study the working principles of Electrical Machines and Transformers	3	2	1	0	3	1	0	1	1	2	1	2
Introduce components of Low Voltage Electrical Installations.	3	2	1	1	3	2	0	0	1	0	2	2

UNIT-I:

D.C. Circuits: Electrical circuit elements (R, L and C), voltage and current sources, KVL&KCL, analysis of simple circuits with dc excitation. Superposition, Thevenin and Norton Theorems. Time-domain analysis of first-order RL and RC circuits.

UNIT-II:

A.C. Circuits: Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor, Analysis of single-phase ac circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel), resonance in series R-L-C circuit. Three-phase balanced circuits, voltage and current relations in star and delta connections.

UNIT-III:

Transformers: Ideal and practical transformer, equivalent circuit, losses in transformers, regulation and efficiency. Auto-transformer and three-phase transformer connections.

UNIT-IV:

Electrical Machines: Construction and working principle of dc machine, performance characteristics of dc shunt machine. Generation of rotating magnetic field, Construction and working of a three-phase induction motor, Significance of torque-slip characteristics. Single-phase induction motor, Construction and working. Construction and working of synchronous generator.

UNIT-V:

Electrical Installations: Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing. Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup.

TEXT BOOKS:

1. D.P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 4th Edition, 2019.
2. MS Naidu and S Kamakshaiah, "Basic Electrical Engineering", Tata McGraw Hill, 2nd Edition, 2008.

REFERENCE BOOKS:

1. P. Ramana, M. Suryakalavathi, G.T. Chandrasheker, "Basic Electrical Engineering", S. Chand, 2nd Edition, 2019.
2. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009
3. M. S. Sukhija, T. K. Nagsarkar, "Basic Electrical and Electronics Engineering", Oxford, 1st Edition, 2012.
4. Abhijit Chakrabarti, Sudipta Debnath, Chandan Kumar Chanda, "Basic Electrical Engineering", 2nd Edition, McGraw Hill, 2021.
5. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.
6. E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
7. V. D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989

COMPUTER AIDED ENGINEERING GRAPHICS

B.Tech. I Year I Sem.

L	T	P	C
1	0	4	3

Course Objectives:

- To develop the ability of visualization of different objects through technical drawings
- To acquire computer drafting skill for communication of concepts, ideas in the design of engineering products

Course Outcomes: At the end of the course, the student will be able to:

- Apply computer aided drafting tools to create 2D and 3D objects
- sketch conics and different types of solids
- Appreciate the need of Sectional views of solids and Development of surfaces of solids
- Read and interpret engineering drawings
- Conversion of orthographic projection into isometric view and vice versa manually and by using computer aided drafting

UNIT – I:

Introduction to Engineering Graphics: Principles of Engineering Graphics and their Significance, Scales – Plain & Diagonal, Conic Sections including the Rectangular Hyperbola – General method only. Cycloid, Epicycloid and Hypocycloid, Introduction to Computer aided drafting – views, commands and conics

UNIT- II:

Orthographic Projections: Principles of Orthographic Projections – Conventions – Projections of Points and Lines, Projections of Plane regular geometric figures. Auxiliary Planes. Computer aided orthographic projections – points, lines and planes

UNIT – III:

Projections of Regular Solids – Auxiliary Views - Sections or Sectional views of Right Regular Solids – Prism, Cylinder, Pyramid, Cone – Auxiliary views, Computer aided projections of solids – sectional views

UNIT – IV:

Development of Surfaces of Right Regular Solids – Prism, Cylinder, Pyramid and Cone, Development of surfaces using computer aided drafting

UNIT – V:

Isometric Projections: Principles of Isometric Projection – Isometric Scale – Isometric Views – Conventions – Isometric Views of Lines, Plane Figures, Simple and Compound Solids – Isometric Projection of objects having non- isometric lines. Isometric Projection of Spherical Parts. Conversion of Isometric Views to Orthographic Views and Vice-versa –Conventions. Conversion of orthographic projection into isometric view using computer aided drafting.

TEXT BOOKS:

1. Engineering Drawing N.D. Bhatt / Charotar
2. Engineering Drawing and graphics Using AutoCAD Third Edition, T. Jeyapoovan, Vikas: S. Chand and company Ltd.

REFERENCE BOOKS:

1. Engineering Drawing, Basant Agrawal and C M Agrawal, Third Edition McGraw Hill
2. Engineering Graphics and Design, WILEY, Edition 2020
3. Engineering Drawing, M. B. Shah, B.C. Rane / Pearson.
4. Engineering Drawing, N. S. Parthasarathy and Vela Murali, Oxford
5. Computer Aided Engineering Drawing – K Balaveera Reddy et al – CBS Publishers

Note: - External examination is conducted in conventional mode and internal evaluation to be done by both conventional as well as using computer aided drafting.

ELEMENTS OF COMPUTER SCIENCE AND ENGINEERING

B.Tech. I Year I Sem.

L	T	P	C
0	0	2	1

Course Objective: To provide an overview of the subjects of computer science and engineering.

Course Outcomes:

1. Know the working principles of functional units of a basic Computer
2. Understand program development, the use of data structures and algorithms in problem solving.
3. Know the need and types of operating system, database systems.
4. Understand the significance of networks, internet, WWW and cyber security.
5. Understand Autonomous systems, the application of artificial intelligence.

UNIT – I

Basics of a Computer – Hardware, Software, Generations of computers. Hardware - functional units, Components of CPU, Memory – hierarchy, types of memory, Input and output devices. Software – systems software, application software, packages, frameworks, IDEs.

UNIT – II

Software development – waterfall model, Agile, Types of computer languages – Programming, markup, scripting Program Development – steps in program development, flowcharts, algorithms, data structures – definition, types of data structures

UNIT – III

Operating systems: Functions of operating systems, types of operating systems, Device & Resource management

Database Management Systems: Data models, RDBMS, SQL, Database Transactions, data centers, cloud services

UNIT – IV

Computer Networks: Advantages of computer networks, LAN, WAN, MAN, internet, WiFi, sensor networks, vehicular networks, 5G communication.

World Wide Web – Basics, role of HTML, CSS, XML, Tools for web designing, Social media, Online social networks.

Security – information security, cyber security, cyber laws

UNIT – V

Autonomous Systems: IoT, Robotics, Drones, Artificial Intelligence – Learning, Game Development, natural language processing, image and video processing.

Cloud Basics

TEXT BOOK:

1. Invitation to Computer Science, G. Michael Schneider, Macalester College, Judith L. Gersting University of Hawaii, Hilo, Contributing author: Keith Miller University of Illinois, Springfield.

REFERENCE BOOKS:

1. Fundamentals of Computers, Reema Thareja, Oxford Higher Education, Oxford University Press.
2. Introduction to computers, Peter Norton, 8th Edition, Tata McGraw Hill.
3. Computer Fundamentals, Anita Goel, Pearson Education India, 2010.
4. Elements of computer science, Cengage.

ENGINEERING CHEMISTRY LABORATORY

B.Tech. I Year I Sem.

L	T	P	C
0	0	2	1

Course Objectives: The course consists of experiments related to the principles of chemistry required for engineering student. The student will learn:

- Estimation of hardness of water to check its suitability for drinking purpose.
- Students are able to perform estimations of acids and bases using conductometry, potentiometry and pH metry methods.
- Students will learn to prepare polymers such as Bakelite and nylon-6 in the laboratory.
- Students will learn skills related to the lubricant properties such as saponification value, surface tension and viscosity of oils.

Course Outcomes: The experiments will make the student gain skills on:

- Determination of parameters like hardness of water and rate of corrosion of mild steel in various conditions.
- Able to perform methods such as conductometry, potentiometry and pH metry in order to find out the concentrations or equivalence points of acids and bases.
- Students are able to prepare polymers like bakelite and nylon-6.
- Estimations saponification value, surface tension and viscosity of lubricant oils.

List of Experiments:

I. Volumetric Analysis: Estimation of Hardness of water by EDTA Complexometry method.

II. Conductometry: Estimation of the concentration of an acid by Conductometry.

III. Potentiometry: Estimation of the amount of Fe^{+2} by Potentiometry.

IV. pH Metry: Determination of an acid concentration using pH meter. **V. Preparations:**

1. Preparation of Bakelite.
2. Preparation Nylon – 6.

VI. Lubricants:

1. Estimation of acid value of given lubricant oil.
2. Estimation of Viscosity of lubricant oil using Ostwald's Viscometer.

VII. Corrosion: Determination of rate of corrosion of mild steel in the presence and absence of inhibitor.

VIII. Virtual lab experiments

1. Construction of Fuel cell and its working.
2. Smart materials for Biomedical applications
3. Batteries for electrical vehicles.
4. Functioning of solar cell and its applications.

REFERENCE BOOKS:

1. Lab manual for Engineering chemistry by B. Ramadevi and P. Aparna, S Chand Publications, New Delhi (2022)
2. Vogel's text book of practical organic chemistry 5th edition
3. Inorganic Quantitative analysis by A.I. Vogel, ELBS Publications.
4. College Practical Chemistry by V.K. Ahluwalia, Narosa Publications Ltd. New Delhi (2007).

PROGRAMMING FOR PROBLEM SOLVING LABORATORY

B.Tech. I Year I Sem.

L	T	P	C
0	0	2	1

[Note: The programs may be executed using any available Open Source/ Freely available IDE Some of the Tools available are:

CodeLite: <https://codelite.org/>

CodeBlocks: <http://www.codeblocks.org/>

DevCpp : <http://www.bloodshed.net/devcpp.html>

Eclipse: <http://www.eclipse.org>

This list is not exhaustive and is NOT in any order of preference]

Course Objectives: The students will learn the following:

- To work with an IDE to create, edit, compile, run and debug programs
- To analyze the various steps in program development.
- To develop programs to solve basic problems by understanding basic concepts in C like operators, control statements etc.
- To develop modular, reusable and readable C Programs using the concepts like functions, arrays etc.
- To Write programs using the Dynamic Memory Allocation concept.
- To create, read from and write to text and binary files

Course Outcomes: The candidate is expected to be able to:

- formulate the algorithms for simple problems
- translate given algorithms to a working and correct program
- correct syntax errors as reported by the compilers
- identify and correct logical errors encountered during execution
- represent and manipulate data with arrays, strings and structures
- use pointers of different types
- create, read and write to and from simple text and binary files
- modularize the code with functions so that they can be reused

Practice sessions:

- a. Write a simple program that prints the results of all the operators available in C (including pre/post increment, bitwise and/or/not, etc.). Read required operand values from standard input.
- b. Write a simple program that converts one given data type to another using auto conversion and casting. Take the values from standard input.

Simple numeric problems:

- a. Write a program for finding the max and min from the three numbers.
- b. Write the program for the simple, compound interest.
- c. Write a program that declares Class awarded for a given percentage of marks, where mark <40% = Failed, 40% to <60% = Second class, 60% to <70% = First class, >= 70% = Distinction. Read percentage from standard input.
- d. Write a program that prints a multiplication table for a given number and the number of rows in the table. For example, for a number 5 and rows = 3, the output should be: e. $5 \times 1 = 5$
- f. $5 \times 2 = 10$
- g. $5 \times 3 = 15$
- h. Write a program that shows the binary equivalent of a given positive number between 0 to 255.

Expression Evaluation:

- a. A building has 10 floors with a floor height of 3 meters each. A ball is dropped from the top of the building. Find the time taken by the ball to reach each floor. (Use the formula $s = ut + (1/2)at^2$ where u and a are the initial velocity in m/sec (= 0) and acceleration in m/sec 2 (= 9.8 m/s 2)).
- b. Write a C program, which takes two integer operands and one operator from the user, performs the operation and then prints the result. (Consider the operators +, -, *, /, % and use Switch Statement)
- c. Write a program that finds if a given number is a prime number
- d. Write a C program to find the sum of individual digits of a positive integer and test given number is palindrome.
- e. A Fibonacci sequence is defined as follows: the first and second terms in the sequence are 0 and 1. Subsequent terms are found by adding the preceding two terms in the sequence. Write a C program to generate the first n terms of the sequence.
- f. Write a C program to generate all the prime numbers between 1 and n , where n is a value supplied by the user.
- g. Write a C program to find the roots of a Quadratic equation.
- h. Write a C program to calculate the following, where x is a fractional value.
- i. $1-x/2 +x^2/4-x^3/6$
- j. Write a C program to read in two numbers, x and n , and then compute the sum of this geometric progression: $1+x+x^2+x^3+\dots+x^n$. For example: if n is 3 and x is 5, then the program computes $1+5+25+125$.

Arrays, Pointers and Functions:

- a. Write a C program to find the minimum, maximum and average in an array of integers.
- b. Write a function to compute mean, variance, Standard Deviation, sorting of n elements in a single dimension array.
- c. Write a C program that uses functions to perform the following:
- d. Addition of Two Matrices
- e. Multiplication of Two Matrices
- f. Transpose of a matrix with memory dynamically allocated for the new matrix as row and column counts may not be the same.
- g. Write C programs that use both recursive and non-recursive functions
- h. To find the factorial of a given integer.
- i. To find the GCD (greatest common divisor) of two given integers.
- j. To find x^n
- k. Write a program for reading elements using a pointer into an array and display the values using the array.
- l. Write a program for display values reverse order from an array using a pointer.
- m. Write a program through a pointer variable to sum of n elements from an array.

Files:

- a. Write a C program to display the contents of a file to standard output device.
- b. Write a C program which copies one file to another, replacing all lowercase characters with their uppercase equivalents.
- c. Write a C program to count the number of times a character occurs in a text file. The file name and the character are supplied as command line arguments.
- d. Write a C program that does the following:
It should first create a binary file and store 10 integers, where the file name and 10 values are given in the command line. (hint: convert the strings using atoi function)
Now the program asks for an index and a value from the user and the value at that index should be changed to the new value in the file. (hint: use fseek function) The program should then read all 10 values and print them back.
- e. Write a C program to merge two files into a third file (i.e., the contents of the first file followed by those of the second are put in the third file).

Strings:

- Write a C program to convert a Roman numeral ranging from I to L to its decimal equivalent.
- Write a C program that converts a number ranging from 1 to 50 to Roman equivalent
- Write a C program that uses functions to perform the following operations:
- To insert a sub-string into a given main string from a given position.
- To delete n Characters from a given position in a given string.
- Write a C program to determine if the given string is a palindrome or not (Spelled same in both directions with or without a meaning like madam, civic, noon, abcba, etc.)
- Write a C program that displays the position of a character ch in the string S or – 1 if S doesn't contain ch.
- Write a C program to count the lines, words and characters in a given text.

Miscellaneous:

- Write a menu driven C program that allows a user to enter n numbers and then choose between finding the smallest, largest, sum, or average. The menu and all the choices are to be functions. Use a switch statement to determine what action to take. Display an error message if an invalid choice is entered.
- Write a C program to construct a pyramid of numbers as follows:

1	*	1	1	*
1 2	* *	2 3	2 2	* *
1 2 3	* * *	4 5 6	3 3 3	* * *
			4 4 4 4	* *
				*

Sorting and Searching:

- Write a C program that uses non recursive function to search for a Key value in a given list of integers using linear search method.
- Write a C program that uses non recursive function to search for a Key value in a given sorted list of integers using binary search method.
- Write a C program that implements the Bubble sort method to sort a given list of f. integers in ascending order.
- Write a C program that sorts the given array of integers using selection sort in descending order
- Write a C program that sorts the given array of integers using insertion sort in ascending order
- Write a C program that sorts a given array of names

TEXT BOOKS:

- Jeri R. Hanly and Elliot B. Koffman, Problem solving and Program Design in C 7th Edition, Pearson
- B.A. Forouzan and R.F. Gilberg C Programming and Data Structures, Cengage Learning, (3rd Edition)

REFERENCE BOOKS:

- Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, PHI
- E. Balagurusamy, Computer fundamentals and C, 2nd Edition, McGraw-Hill
- Yashavant Kanetkar, Let Us C, 18th Edition, BPB
- R.G. Dromey, How to solve it by Computer, Pearson (16th Impression) 5. Programming in C, Stephen G. Kochan, Fourth Edition, Pearson Education.
- Herbert Schildt, C: The Complete Reference, Mc Graw Hill, 4th Edition
- Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill

BASIC ELECTRICAL ENGINEERING LABORATORY

B.Tech. I Year I Sem.

L	T	P	C
0	0	2	1

Prerequisites: Basic Electrical Engineering

Course Objectives:

- To measure the electrical parameters for different types of DC and AC circuits using conventional and theorems approach.
- To study the transient response of various R, L and C circuits using different excitations.
- To determine the performance of different types of DC, AC machines and Transformers.

Course Outcomes: After learning the contents of this paper the student must be able to

- Verify the basic Electrical circuits through different experiments.
- Evaluate the performance calculations of Electrical Machines and Transformers through various testing methods.
- Analyze the transient responses of R, L and C circuits for different input conditions.

Course Objectives	Program Outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
To measure the electrical parameters for different types of DC and AC circuits using conventional and theorems approach	3	2	1		2	0	0	1	2	0	1	2
To study the transient response of various R, L and C circuits using different excitations	3	2	1	1	3	0	0	0	2	0	1	1
To determine the performance of different types of DC, AC machines and Transformers	3	2	0		3	0	0	0	1	2	1	1

Course Outcomes	Program Outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Verify the basic Electrical circuits through different experiments	3	2	1	0	1	0	0	0	2	0	2	2
Evaluate the performance calculations of Electrical Machines and Transformers through various testing methods	3	2	1	0	3	1	0	1	1	2	1	2

Analyse the transient responses of R, L and C circuits for different input conditions	3	2	1	1	3	2	0	0	1	0	2	2
---	---	---	---	---	---	---	---	---	---	---	---	---

List of experiments/demonstrations:**PART- A (compulsory)**

1. Verification of KVL and KCL
2. Verification of Thevenin's and Norton's theorem
3. Transient Response of Series RL and RC circuits for DC excitation
4. Resonance in series RLC circuit
5. Calculations and Verification of Impedance and Current of RL, RC and RLC series circuits
6. Measurement of Voltage, Current and Real Power in primary and Secondary Circuits of a Single-Phase Transformer
7. Performance Characteristics of a DC Shunt Motor
8. Torque-Speed Characteristics of a Three-phase Induction Motor.

PART-B (any two experiments from the given list)

1. Verification of Superposition theorem.
2. Three Phase Transformer: Verification of Relationship between Voltages and Currents (Star-Delta, Delta-Delta, Delta-star, Star-Star)
3. Load Test on Single Phase Transformer (Calculate Efficiency and Regulation)
4. Measurement of Active and Reactive Power in a balanced Three-phase circuit
5. No-Load Characteristics of a Three-phase Alternator

TEXT BOOKS:

1. D.P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 4th Edition, 2019.
2. MS Naidu and S Kamakshaiah, "Basic Electrical Engineering", Tata McGraw Hill, 2nd Edition, 2008.

REFERENCE BOOKS:

1. P. Ramana, M. Suryakalavathi, G.T.Chandrasheker,"Basic Electrical Engineering", S. Chand, 2nd Edition, 2019.
2. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009
3. M. S. Sukhija, T. K. Nagsarkar, "Basic Electrical and Electronics Engineering", Oxford, 1st Edition, 2012.
4. Abhijit Chakrabarti, Sudipta Debnath, Chandan Kumar Chanda, "Basic Electrical Engineering", 2nd Edition, McGraw Hill, 2021.
5. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.
6. E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
7. V. D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989.

ORDINARY DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS

B.Tech. I Year II Sem.

L	T	P	C
3	1	0	4

Pre-requisites: Mathematical Knowledge at pre-university level

Course Objectives: To learn

- Methods of solving the differential equations of first and higher order.
- Concept, properties of Laplace transforms
- Solving ordinary differential equations using Laplace transforms techniques.
- The physical quantities involved in engineering field related to vector valued functions
- The basic properties of vector valued functions and their applications to line, surface and volume integrals

Course outcomes: After learning the contents of this paper the student must be able to

- Identify whether the given differential equation of first order is exact or not
- Solve higher differential equation and apply the concept of differential equation to real world problems.
- Use the Laplace transforms techniques for solving ODE's.
- Evaluate the line, surface and volume integrals and converting them from one to another

UNIT-I: First Order ODE

8 L

Exact differential equations, Equations reducible to exact differential equations, linear and Bernoulli's equations, Orthogonal Trajectories (only in Cartesian Coordinates). Applications: Newton's law of cooling, Law of natural growth and decay.

UNIT-II: Ordinary Differential Equations of Higher Order

10 L

Second order linear differential equations with constant coefficients: Non-Homogeneous terms of the type e^{rt} , $\sin rt$, $\cos rt$, polynomials in t , $e^{rt}f(t)$ and $t^m f(t)$, method of variation of parameters, Equations reducible to linear ODE with constant coefficients: Legendre's equation, Cauchy-Euler equation. Applications: Electric Circuits

UNIT-III: Laplace transforms

10 L

Laplace Transforms: Laplace Transform of standard functions, First shifting theorem, Second shifting theorem, Unit step function, Dirac delta function, Laplace transforms of functions when they are multiplied and divided by 't', Laplace transforms of derivatives and integrals of function, Evaluation of integrals by Laplace transforms, Laplace transform of periodic functions, Inverse Laplace transform by different methods, convolution theorem (without proof). Applications: solving Initial value problems by Laplace Transform method.

UNIT-IV: Vector Differentiation

10 L

Vector point functions and scalar point functions, Gradient, Divergence and Curl, Directional derivatives, Tangent plane and normal line, Vector Identities, Scalar potential functions, Solenoidal and Irrotational vectors.

UNIT-V: Vector Integration

10 L

Line, Surface and Volume Integrals, Theorems of Green, Gauss and Stokes (without proofs) and their applications.

TEXT BOOKS:

1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010
2. R.K. Jain and S.R.K. Iyengar, Advanced Engineering Mathematics, Narosa Publications, 5th Edition, 2016.

REFERENCE BOOKS:

1. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
2. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.
3. H. K. Dass and Er. Rajnish Verma, Higher Engineering Mathematics, S Chand and Company Limited, New Delhi.
4. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.

APPLIED PHYSICS

B.Tech. I Year II Sem.

L	T	P	C
3	1	0	4

Pre-requisites: 10 + 2 Physics

Course Objectives: The objectives of this course for the student are to:

1. Understand the basic principles of quantum physics and band theory of solids.
2. Understand the underlying mechanism involved in construction and working principles of various semiconductor devices.
3. Study the fundamental concepts related to the dielectric, magnetic and energy materials.
4. Identify the importance of nanoscale, quantum confinement and various fabrications techniques.
5. Study the characteristics of lasers and optical fibres.

Course Outcomes: At the end of the course the student will be able to:

1. Understand physical world from fundamental point of view by the concepts of Quantum mechanics and visualize the difference between conductor, semiconductor, and an insulator by classification of solids.
2. Identify the role of semiconductor devices in science and engineering Applications.
3. Explore the fundamental properties of dielectric, magnetic materials and energy for their applications.
4. Appreciate the features and applications of Nanomaterials.
5. Understand various aspects of Lasers and Optical fiber and their applications in diverse fields.

UNIT - I: QUANTUM PHYSICS AND SOLIDS

Quantum Mechanics: Introduction to quantum physics, blackbody radiation – Stefan-Boltzmann's law, Wein's and Rayleigh-Jean's law, Planck's radiation law - photoelectric effect - Davisson and Germer experiment –Heisenberg uncertainty principle - Born interpretation of the wave function – time independent Schrodinger wave equation - particle in one dimensional potential box.

Solids: Symmetry in solids, free electron theory (Drude & Lorentz, Sommerfeld) - Fermi-Dirac distribution - Bloch's theorem -Kronig-Penney model – E-K diagram- effective mass of electron-origin of energy bands- classification of solids.

UNIT - II: SEMICONDUCTORS AND DEVICES

Intrinsic and extrinsic semiconductors – Hall effect - direct and indirect band gap semiconductors - construction, principle of operation and characteristics of P-N Junction diode, Zener diode and bipolar junction transistor (BJT)–LED, PIN diode, avalanche photo diode (APD) and solar cells, their structure, materials, working principle and characteristics.

UNIT - III: DIELECTRIC, MAGNETIC AND ENERGY MATERIALS

Dielectric Materials: Basic definitions- types of polarizations (qualitative) - ferroelectric, piezoelectric, and pyroelectric materials – applications – liquid crystal displays (LCD) and crystal oscillators.

Magnetic Materials: Hysteresis - soft and hard magnetic materials - magnetostriction, magnetoresistance - applications - bubble memory devices, magnetic field sensors and multiferroics.

Energy Materials: Conductivity of liquid and solid electrolytes- superionic conductors - materials and electrolytes for super capacitors - rechargeable ion batteries, solid fuel cells.

UNIT - IV: NANOTECHNOLOGY

Nanoscale, quantum confinement, surface to volume ratio, bottom-up fabrication: sol-gel, precipitation, combustion methods – top-down fabrication: ball milling - physical vapor deposition (PVD) - chemical vapor deposition (CVD) - characterization techniques - XRD, SEM &TEM - applications of nanomaterials.

UNIT - V: LASER AND FIBER OPTICS

Lasers: Laser beam characteristics-three quantum processes-Einstein coefficients and their relations-lasing action - pumping methods- ruby laser, He-Ne laser , CO₂laser, Argon ion Laser, Nd:YAG laser-semiconductor laser-applications of laser.

Fiber Optics: Introduction to optical fiber- advantages of optical Fibers - total internal reflection-construction of optical fiber - acceptance angle - numerical aperture- classification of optical fibers-losses in optical fiber - optical fiber for communication system - applications.

TEXT BOOKS:

1. M. N. Avadhanulu, P.G. Kshirsagar & TVS Arun Murthy" A Text book of Engineering Physics"- S. Chand Publications, 11th Edition 2019.
2. Engineering Physics by Shatendra Sharma and Jyotsna Sharma, Pearson Publication,2019
3. Semiconductor Physics and Devices- Basic Principle – Donald A, Neamen, Mc Graw Hill, 4thEdition,2021.
4. B.K. Pandey and S. Chaturvedi, Engineering Physics, Cengage Learning, 2ndEdition,2022.
5. Essentials of Nanoscience & Nanotechnology by Narasimha Reddy Katta, Typical Creatives NANO DIGEST, 1st Edition, 2021.

REFERENCE BOOKS:

1. Quantum Physics, H.C. Verma, TBS Publication, 2nd Edition 2012.
2. Fundamentals of Physics – Halliday, Resnick and Walker, John Wiley & Sons,11th Edition, 2018.
3. Introduction to Solid State Physics, Charles Kittel, Wiley Eastern, 2019.
4. Elementary Solid State Physics, S.L. Gupta and V. Kumar, Pragathi Prakashan, 2019.
5. A.K. Bhandhopadhyay - Nano Materials, New Age International, 1stEdition, 2007.
6. Energy Materials a Short Introduction to Functional Materials for Energy Conversion and Storage Aliaksandr S. Bandarenka, CRC Press Taylor & Francis Group
7. Energy Materials, Taylor & Francis Group, 1st Edition, 2022.

ENGINEERING WORKSHOP

B.Tech. I Year II Sem.

L	T	P	C
0	1	3	2.5

Pre-requisites: Practical skill

Course Objectives:

- To Study of different hand operated power tools, uses and their demonstration.
- To gain a good basic working knowledge required for the production of various engineering products.
- To provide hands on experience about use of different engineering materials, tools, equipments and processes those are common in the engineering field.
- To develop a right attitude, team working, precision and safety at work place.
- It explains the construction, function, use and application of different working tools, equipment and machines.
- To study commonly used carpentry joints.
- To have practical exposure to various welding and joining processes.
- Identify and use marking out tools, hand tools, measuring equipment and to work to prescribed tolerances.

Course Outcomes: At the end of the course, the student will be able to:

- Study and practice on machine tools and their operations
- Practice on manufacturing of components using workshop trades including plumbing, fitting, carpentry, foundry, house wiring and welding.
- Identify and apply suitable tools for different trades of Engineering processes including drilling, material removing, measuring, chiseling.
- Apply basic electrical engineering knowledge for house wiring practice.

1. TRADES FOR EXERCISES:

At least two exercises from each trade:

- I. Carpentry – (T-Lap Joint, Dovetail Joint, Mortise & Tenon Joint)
- II. Fitting – (V-Fit, Dovetail Fit & Semi-circular fit)
- III. Tin-Smithy – (Square Tin, Rectangular Tray & Conical Funnel)
- IV. Foundry – (Preparation of Green Sand Mould using Single Piece and Split Pattern) V. Welding Practice – (Arc Welding & Gas Welding)
- VI. House-wiring – (Parallel & Series, Two-way Switch and Tube Light) VII. Black Smithy – (Round to Square, Fan Hook and S-Hook)

2. TRADES FOR DEMONSTRATION & EXPOSURE:

Plumbing, Machine Shop, Metal Cutting (Water Plasma), Power tools in construction and Wood Working

TEXT BOOKS:

1. Workshop Practice /B. L. Juneja / Cengage 2.
- Workshop Manual / K. Venugopal / Anuradha.

REFERENCE BOOKS:

1. Work shop Manual - P. Kannaiah/ K.L. Narayana/ Scitech
2. Workshop Manual / Venkat Reddy/ BSP

ENGLISH FOR SKILL ENHANCEMENT

B.Tech. I Year II Sem.

2 0 0 2

Course Objectives: This course will enable the students to:

1. Improve the language proficiency of students in English with an emphasis on Vocabulary, Grammar, Reading and Writing skills.
2. Develop study skills and communication skills in various professional situations.
3. Equip students to study engineering subjects more effectively and critically using the theoretical and practical components of the syllabus.

Course Outcomes: Students will be able to:

1. Understand the importance of vocabulary and sentence structures.
2. Choose appropriate vocabulary and sentence structures for their oral and written communication.
3. Demonstrate their understanding of the rules of functional grammar.
4. Develop comprehension skills from the known and unknown passages.
5. Take an active part in drafting paragraphs, letters, essays, abstracts, précis and reports in various contexts.
6. Acquire basic proficiency in reading and writing modules of English.

UNIT - I

Chapter entitled '**Toasted English**' by R.K.Narayan from "**English: Language, Context and Culture**" published by Orient BlackSwan, Hyderabad.

Vocabulary: The Concept of Word Formation -The Use of Prefixes and Suffixes - Acquaintance with Prefixes and Suffixes from Foreign Languages to form Derivatives - Synonyms and Antonyms

Grammar: Identifying Common Errors in Writing with Reference to Articles and Prepositions.

Reading: Reading and Its Importance- Techniques for Effective Reading.

Writing: Sentence Structures -Use of Phrases and Clauses in Sentences- Importance of Proper Punctuation- Techniques for Writing precisely – Paragraph Writing – Types, Structures and Features of a Paragraph - Creating Coherence-Organizing Principles of Paragraphs in Documents.

UNIT - II

Chapter entitled '**Appro JRD**' by Sudha Murthy from "**English: Language, Context and Culture**" published by Orient BlackSwan, Hyderabad.

Vocabulary: Words Often Misspelt - Homophones, Homonyms and Homographs

Grammar: Identifying Common Errors in Writing with Reference to Noun-pronoun Agreement and Subject-verb Agreement.

Reading: Sub-Skills of Reading – Skimming and Scanning – Exercises for Practice

Writing: Nature and Style of Writing- Defining /Describing People, Objects, Places and Events – Classifying- Providing Examples or Evidence.

UNIT - III

Chapter entitled '**Lessons from Online Learning**' by F.Haider Alvi, Deborah Hurst et al from "**English: Language, Context and Culture**" published by Orient BlackSwan, Hyderabad.

Vocabulary: Words Often Confused - Words from Foreign Languages and their Use in English. **Grammar:** Identifying Common Errors in Writing with Reference to Misplaced Modifiers and Tenses.

Reading: Sub-Skills of Reading – Intensive Reading and Extensive Reading – Exercises for Practice.

Writing: Format of a Formal Letter-Writing Formal Letters E.g., Letter of Complaint, Letter of Requisition, Email Etiquette, Job Application with CV/Resume.

UNIT - IV

Chapter entitled '**Art and Literature**' by **Abdul Kalam** from "**English: Language, Context and Culture**" published by Orient BlackSwan, Hyderabad.

Vocabulary: Standard Abbreviations in English

Grammar: Redundancies and Clichés in Oral and Written Communication.

Reading: Survey, Question, Read, Recite and Review (SQ3R Method) - Exercises for Practice

Writing: Writing Practices- Essay Writing-Writing Introduction and Conclusion -Précis Writing.

UNIT - V

Chapter entitled '**Go, Kiss the World**' by **Subroto Bagchi** from "**English: Language, Context and Culture**" published by Orient BlackSwan, Hyderabad.

Vocabulary: Technical Vocabulary and their Usage

Grammar: Common Errors in English (*Covering all the other aspects of grammar which were not covered in the previous units*)

Reading: Reading Comprehension-Exercises for Practice

Writing: Technical Reports- Introduction – Characteristics of a Report – Categories of Reports Formats- Structure of Reports (Manuscript Format) -Types of Reports - Writing a Report.

Note: *Listening and Speaking Skills which are given under Unit-6 in AICTE Model Curriculum are covered in the syllabus of ELCS Lab Course.*

- **Note:** 1. As the syllabus of English given in *AICTE Model Curriculum-2018 for B.Tech First Year* is **Open-ended**, besides following the prescribed textbook, it is required to prepare teaching/learning materials **by the teachers collectively** in the form of handouts based on the needs of the students in their respective colleges for effective teaching/learning in the class.
- **Note:** 2. Based on the recommendations of NEP2020, teachers are requested to be flexible to adopt Blended Learning in dealing with the course contents .They are advised to teach 40 percent of each topic from the syllabus in blended mode.

TEXT BOOK:

1. "English: Language, Context and Culture" by Orient BlackSwan Pvt. Ltd, Hyderabad. 2022. Print.

REFERENCE BOOKS:

1. Effective Academic Writing by Liss and Davis (OUP)
2. Richards, Jack C. (2022) Interchange Series. Introduction, 1,2,3. Cambridge University Press
3. Wood, F.T. (2007). Remedial English Grammar. Macmillan.
4. Chaudhuri, Santanu Sinha. (2018). Learn English: A Fun Book of Functional Language, Grammar and Vocabulary. (2nd ed.,). Sage Publications India Pvt. Ltd.
5. (2019). Technical Communication. Wiley India Pvt. Ltd.
6. Vishwamohan, Aysha. (2013). English for Technical Communication for Engineering Students. Mc Graw-Hill Education India Pvt. Ltd.
7. Swan, Michael. (2016). Practical English Usage. Oxford University Press. Fourth Edition.

ELECTRONIC DEVICES AND CIRCUITS

B.Tech. I Year II Sem.

2 0 0 2

Course Objectives:

1. To introduce components such as diodes, BJTs and FETs.
2. To know the applications of devices.
3. To know the switching characteristics of devices.

Course Outcomes: Upon completion of the Course, the students will be able to:

1. Acquire the knowledge of various electronic devices and their use on real life.
2. Know the applications of various devices.
3. Acquire the knowledge about the role of special purpose devices and their applications.

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	-	-	1	1	-	-	-	-	1
CO2	3	2	3	-	-	2	1	-	-	-	-	1
CO3	3	3	3	-	-	2	1	-	-	-	-	1

UNIT - I

Diodes: Diode - Static and Dynamic resistances, Equivalent circuit, Diffusion and Transition Capacitances, V-I Characteristics, Diode as a switch- switching times.

UNIT - II

Diode Applications: Rectifier - Half Wave Rectifier, Full Wave Rectifier, Bridge Rectifier, Rectifiers with Capacitive and Inductive Filters, Clippers-Clipping at two independent levels, Clamper-Clamping Circuit Theorem, Clamping Operation, Types of Clampers.

UNIT - III

Bipolar Junction Transistor (BJT): Principle of Operation, Common Emitter, Common Base and Common Collector Configurations, Transistor as a switch, switching times,

UNIT - IV

Junction Field Effect Transistor (FET): Construction, Principle of Operation, Pinch-Off Voltage, VoltAmpere Characteristic, Comparison of BJT and FET, FET as Voltage Variable Resistor, MOSFET, MOSTET as a capacitor.

UNIT - V

Special Purpose Devices: Zener Diode - Characteristics, Zener diode as Voltage Regulator, Principle of Operation - SCR, Tunnel diode, UJT, Varactor Diode, Photo diode, Solar cell, LED, Schottky diode.

TEXT BOOKS:

1. Jacob Millman - Electronic Devices and Circuits, McGraw Hill Education
2. Robert L. Boylestead, Louis Nashelsky- Electronic Devices and Circuits theory, 11th Edition, 2009, Pearson.

REFERENCE BOOKS:

1. Horowitz -Electronic Devices and Circuits, David A. Bell – 5thEdition, Oxford.
2. Chinmoy Saha, Arindam Halder, Debaati Ganguly - Basic Electronics-Principles and Applications, Cambridge, 2018.

APPLIED PHYSICS LABORATORY

B.Tech. I Year II Sem.

0 0 3 1.5

Course Objectives: The objectives of this course for the student to

1. Capable of handling instruments related to the Hall effect and photoelectric effect experiments and their measurements.
2. Understand the characteristics of various devices such as PN junction diode, Zener diode, BJT, LED, solar cell, lasers and optical fiber and measurement of energy gap and resistivity of semiconductor materials.
3. Able to measure the characteristics of dielectric constant of a given material.
4. Study the behavior of B-H curve of ferromagnetic materials.
5. Understanding the method of least squares fitting.

Course Outcomes: The students will be able to:

1. Know the determination of the Planck's constant using Photo electric effect and identify the material whether it is n-type or p-type by Hall experiment.
2. Appreciate quantum physics in semiconductor devices and optoelectronics.
3. Gain the knowledge of applications of dielectric constant.
4. Understand the variation of magnetic field and behavior of hysteresis curve.
5. Carried out data analysis.

LIST OF EXPERIMENTS:

1. Determination of work function and Planck's constant using photoelectric effect.
2. Determination of Hall co-efficient and carrier concentration of a given semiconductor.
3. Characteristics of series and parallel LCR circuits.
4. V-I characteristics of a p-n junction diode and Zener diode
5. Input and output characteristics of BJT (CE, CB & CC configurations)
6. a) V-I and L-I characteristics of light emitting diode (LED)
b) V-I Characteristics of solar cell
7. Determination of Energy gap of a semiconductor.
8. Determination of the resistivity of semiconductor by two probe method.
9. Study B-H curve of a magnetic material.
10. Determination of dielectric constant of a given material
11. a) Determination of the beam divergence of the given LASER beam
b) Determination of Acceptance Angle and Numerical Aperture of an optical fiber.
12. Understanding the method of least squares – torsional pendulum as an example.

Note: Any 8 experiments are to be performed.

REFERENCE BOOK:

1. S. Balasubramanian, M.N. Srinivasan "A Text book of Practical Physics"- S Chand Publishers, 2017.

PYTHON PROGRAMMING LABORATORY

B.Tech. I Year II Sem.

0 1 2 Course Objectives:

- To install and run the Python interpreter □ To learn control structures.
- To Understand Lists, Dictionaries in python
- To Handle Strings and Files in Python

Course Outcomes: After completion of the course, the student should be able to

- Develop the application specific codes using python.
- Understand Strings, Lists, Tuples and Dictionaries in Python
- Verify programs using modular approach, file I/O, Python standard library
- Implement Digital Systems using Python

Note: The lab experiments will be like the following experiment examples

Week -1:

1. i) Use a web browser to go to the Python website <http://python.org>. This page contains information about Python and links to Python-related pages, and it gives you the ability to search the Python documentation.
ii) Start the Python interpreter and type `help()` to start the online help utility.
2. Start a Python interpreter and use it as a Calculator.
3. i) Write a program to calculate compound interest when principal, rate and number of periods are given. ii) Given coordinates (x_1, y_1) , (x_2, y_2) find the distance between two points
4. Read name, address, email and phone number of a person through keyboard and print the details.

Week - 2:

1. Print the below triangle using for loop.
5
4 4
3 3 3
2 2 2 2
1 1 1 1 1
2. Write a program to check whether the given input is digit or lowercase character or uppercase character or a special character (use 'if-else-if' ladder)
3. Python Program to Print the Fibonacci sequence using while loop
4. Python program to print all prime numbers in a given interval (use break)

Week - 3:

1. i) Write a program to convert a list and tuple into arrays.
ii) Write a program to find common values between two arrays.
2. Write a function called `gcd` that takes parameters `a` and `b` and returns their greatest common divisor.
3. Write a function called `palindrome` that takes a string argument and returns `True` if it is a palindrome and `False` otherwise. Remember that you can use the built-in function `len` to check the length of a string.

Week - 4:

1. Write a function called `is_sorted` that takes a list as a parameter and returns `True` if the list is sorted in ascending order and `False` otherwise.
2. Write a function called `has_duplicates` that takes a list and returns `True` if there is any element that appears more than once. It should not modify the original list.
i). Write a function called `remove_duplicates` that takes a list and returns a new list with only the unique elements from the original. Hint: they don't have to be in the same order.

ii). The wordlist I provided, words.txt, doesn't contain single letter words. So you might want to add "I", "a", and the empty string. iii). Write a python code to read dictionary values from the user. Construct a function to invert its content. i.e., keys should be values and values should be keys.

3. i) Add a comma between the characters. If the given word is 'Apple', it should become 'A,p,p,l,e' ii) Remove the given word in all the places in a string?

iii) Write a function that takes a sentence as an input parameter and replaces the first letter of every word with the corresponding upper case letter and the rest of the letters in the word by corresponding letters in lower case without using a built-in function?

4. Writes a recursive function that generates all binary strings of n-bit length

Week - 5:

1. i) Write a python program that defines a matrix and prints ii) Write a python program to perform addition of two square matrices iii) Write a python program to perform multiplication of two square matrices
2. How do you make a module? Give an example of construction of a module using different geometrical shapes and operations on them as its functions.
3. Use the structure of exception handling all general purpose exceptions.

Week-6:

1. a. Write a function called draw_rectangle that takes a Canvas and a Rectangle as arguments and draws a representation of the Rectangle on the Canvas.
b. Add an attribute named color to your Rectangle objects and modify draw_rectangle so that it uses the color attribute as the fill color.
c. Write a function called draw_point that takes a Canvas and a Point as arguments and draws a representation of the Point on the Canvas.
d. Define a new class called Circle with appropriate attributes and instantiate a few Circle objects. Write a function called draw_circle that draws circles on the canvas.
2. Write a Python program to demonstrate the usage of Method Resolution Order (MRO) in multiple levels of Inheritances.
3. Write a python code to read a phone number and email-id from the user and validate it for correctness.

Week- 7

1. Write a Python code to merge two given file contents into a third file.
2. Write a Python code to open a given file and construct a function to check for given words present in it and display on found.
3. Write a Python code to Read text from a text file, find the word with most number of occurrences
4. Write a function that reads a file *file1* and displays the number of words, number of vowels, blank spaces, lower case letters and uppercase letters.

Week - 8:

1. Import numpy, Plotpy and Scipy and explore their functionalities.
2. a) Install NumPy package with pip and explore it.
3. Write a program to implement Digital Logic Gates – AND, OR, NOT, EX-OR
4. Write a program to implement Half Adder, Full Adder, and Parallel Adder
5. Write a GUI program to create a window wizard having two text labels, two text fields and two buttons as Submit and Reset.

TEXT BOOKS:

1. Supercharged Python: Take your code to the next level, Overland 2.
Learning Python, Mark Lutz, O'reilly

REFERENCE BOOKS:

1. Python Programming: A Modern Approach, Vamsi Kurama, Pearson

2. Python Programming A Modular Approach with Graphics, Database, Mobile, and Web Applications, Sheetal Taneja, Naveen Kumar, Pearson
3. Programming with Python, A User's Book, Michael Dawson, Cengage Learning, India Edition
4. Think Python, Allen Downey, Green Tea Press
5. Core Python Programming, W. Chun, Pearson
6. Introduction to Python, Kenneth A. Lambert, Cengage

ENGLISH LANGUAGE AND COMMUNICATION SKILLS LABORATORY

B.Tech. I Year II Sem.

L T P C

0 0 2 1 The English Language and Communication

Skills (ELCS) Lab focuses on the production and practice of sounds of language and familiarizes the students with the use of English in everyday situations both in formal and informal contexts.

Course Objectives:

- ✓ To facilitate computer-assisted multi-media instruction enabling individualized and independent language learning
- ✓ To sensitize the students to the nuances of English speech sounds, word accent, intonation and rhythm
- ✓ To bring about a consistent accent and intelligibility in students' pronunciation of English by providing an opportunity for practice in speaking
- ✓ To improve the fluency of students in spoken English and neutralize the impact of dialects.
- ✓ To train students to use language appropriately for public speaking, group discussions and interviews

Course Outcomes: Students will be able to:

- ✓ Understand the nuances of English language through audio- visual experience and group activities
- ✓ Neutralise their accent for intelligibility
- ✓ Speak with clarity and confidence which in turn enhances their employability skills

Syllabus: English Language and Communication Skills Lab (ELCS) shall have two parts:

- a. Computer Assisted Language Learning (CALL) Lab
- b. Interactive Communication Skills (ICS) Lab

Listening Skills:

Objectives

1. To enable students develop their listening skills so that they may appreciate the role in the LSRW skills approach to language and improve their pronunciation
2. To equip students with necessary training in listening, so that they can comprehend the speech of people of different backgrounds and regions

Students should be given practice in listening to the sounds of the language, to be able to recognize them and find the distinction between different sounds, to be able to mark stress and recognize and use the right intonation in sentences.

- Listening for general content
- Listening to fill up information
- Intensive listening
- Listening for specific information

Speaking Skills:

Objectives

1. To involve students in speaking activities in various contexts
2. To enable students express themselves fluently and appropriately in social and professional contexts
 - Oral practice
 - Describing objects/situations/people
 - Role play – Individual/Group activities
 - Just A Minute (JAM) Sessions

The following course content is prescribed for the **English Language and Communication Skills Lab**.

Exercise – I**CALL Lab:**

Understand: Listening Skill- Its importance – Purpose- Process- Types- Barriers- Effective Listening.

Practice: Introduction to Phonetics – Speech Sounds – Vowels and Consonants – Minimal Pairs- Consonant Clusters- Past Tense Marker and Plural Marker- *Testing Exercises ICS Lab:*

Understand: Spoken vs. Written language- Formal and Informal English.

Practice: Ice-Breaking Activity and JAM Session- Situational Dialogues – Greetings – Taking Leave – Introducing Oneself and Others.

Exercise – II**CALL Lab:**

Understand: Structure of Syllables – Word Stress– Weak Forms and Strong Forms – Stress pattern in sentences – Intonation.

Practice: Basic Rules of Word Accent - Stress Shift - Weak Forms and Strong Forms- Stress pattern in sentences – Intonation - *Testing Exercises ICS Lab:*

Understand: Features of Good Conversation – Strategies for Effective Communication.

Practice: Situational Dialogues – Role Play- Expressions in Various Situations –Making Requests and Seeking Permissions - Telephone Etiquette.

Exercise - III**CALL Lab:**

Understand: Errors in Pronunciation-Neutralising Mother Tongue Interference (MTI).

Practice: Common Indian Variants in Pronunciation – Differences between British and American Pronunciation -*Testing Exercises ICS Lab:*

Understand: Descriptions- Narrations- Giving Directions and Guidelines – Blog Writing

Practice: Giving Instructions – Seeking Clarifications – Asking for and Giving Directions – Thanking and Responding – Agreeing and Disagreeing – Seeking and Giving Advice – Making Suggestions.

Exercise – IV**CALL Lab:**

Understand: Listening for General Details.

Practice: Listening Comprehension Tests - *Testing Exercises ICS*

Lab:

Understand: Public Speaking – Exposure to Structured Talks - Non-verbal Communication- Presentation Skills.

Practice: Making a Short Speech – Extempore- Making a Presentation.

Exercise – V**CALL Lab:**

Understand: Listening for Specific Details.

Practice: Listening Comprehension Tests -*Testing Exercises ICS*

Lab:

Understand: Group Discussion

Practice: Group Discussion

Minimum Requirement of infrastructural facilities for ELCS Lab:**1. Computer Assisted Language Learning (CALL) Lab:**

The Computer Assisted Language Learning Lab has to accommodate 40 students with 40 systems, with one Master Console, LAN facility and English language learning software for self- study by students.

System Requirement (Hardware component):

Computer network with LAN facility (minimum 40 systems with multimedia) with the following specifications:

- i) Computers with Suitable Configuration
- ii) High Fidelity Headphones

2. Interactive Communication Skills (ICS) Lab :

The Interactive Communication Skills Lab: A Spacious room with movable chairs and audiovisual aids with a Public Address System, a T. V. or LCD, a digital stereo –audio & video system and camcorder etc.

Source of Material (Master Copy):

- *Exercises in Spoken English. Part 1,2,3.* CIEFL and Oxford University Press

Note: Teachers are requested to make use of the master copy and get it tailor-made to suit the contents of the syllabus.

Suggested Software:

- Cambridge Advanced Learners' English Dictionary with CD.
- Grammar Made Easy by Darling Kindersley.
- Punctuation Made Easy by Darling Kindersley.
- Oxford Advanced Learner's Compass, 10th Edition.
- English in Mind (Series 1-4), Herbert Puchta and Jeff Stranks with Meredith Levy, Cambridge.
- English Pronunciation in Use (Elementary, Intermediate, Advanced) Cambridge University Press.
- English Vocabulary in Use (Elementary, Intermediate, Advanced) Cambridge University Press.
- TOEFL & GRE (KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS).
- Digital All
- Orell Digital Language Lab (Licensed Version)

REFERENCE BOOKS:

1. (2022). *English Language Communication Skills – Lab Manual cum Workbook.* Cengage Learning India Pvt. Ltd.
2. Shobha, KN & Rayen, J. Lourdes. (2019). *Communicative English – A workbook.* Cambridge University Press
3. Kumar, Sanjay & Lata, Pushp. (2019). *Communication Skills: A Workbook.* Oxford University Press
4. Board of Editors. (2016). *ELCS Lab Manual: A Workbook for CALL and ICS Lab Activities.* Orient Black Swan Pvt. Ltd.
5. Mishra, Veerendra et al. (2020). *English Language Skills: A Practical Approach.* Cambridge University Press.

IT WORKSHOP

B.Tech. I Year II Sem.

L	T	P	C
0	0	2	1

Course Objectives: The IT Workshop for engineers is a training lab course spread over 60 hours.

The modules include training on PC Hardware, Internet & World Wide Web and Productivity tools including Word, Excel, PowerPoint and Publisher.

Course Outcomes:

- Perform Hardware troubleshooting
- Understand Hardware components and inter dependencies
- Safeguard computer systems from viruses/worms
- Document/ Presentation preparation
- Perform calculations using spreadsheets

PC Hardware

Task 1: Identify the peripherals of a computer, components in a CPU and its functions. Draw the block diagram of the CPU along with the configuration of each peripheral and submit to your instructor.

Task 2: Every student should disassemble and assemble the PC back to working condition. Lab instructors should verify the work and follow it up with a Viva. Also students need to go through the video which shows the process of assembling a PC. A video would be given as part of the course content.

Task 3: Every student should individually install MS windows on the personal computer. Lab instructor should verify the installation and follow it up with a Viva.

Task 4: Every student should install Linux on the computer. This computer should have windows installed. The system should be configured as dual boot with both Windows and Linux. Lab instructors should verify the installation and follow it up with a Viva

Internet & World Wide Web

Task1: Orientation & Connectivity Boot Camp: Students should get connected to their Local Area Network and access the Internet. In the process they configure the TCP/IP setting. Finally students should demonstrate, to the instructor, how to access the websites and email. If there is no internet connectivity preparations need to be made by the instructors to simulate the WWW on the LAN.

Task 2: Web Browsers, Surfing the Web: Students customize their web browsers with the LAN proxy settings, bookmarks, search toolbars and pop up blockers. Also, plug-ins like Macromedia Flash and JRE for applets should be configured.

Task 3: Search Engines & Netiquette: Students should know what search engines are and how to use the search engines. A few topics would be given to the students for which they need to search on Google. This should be demonstrated to the instructors by the student.

Task 4: Cyber Hygiene: Students would be exposed to the various threats on the internet and would be asked to configure their computer to be safe on the internet. They need to customize their browsers to block pop ups, block active x downloads to avoid viruses and/or worms.

LaTeX and WORD

Task 1 – Word Orientation: The mentor needs to give an overview of LaTeX and Microsoft (MS) office or equivalent (FOSS) tool word: Importance of LaTeX and MS office or equivalent (FOSS) tool Word as word Processors, Details of the four tasks and features that would be covered in each, Using LaTeX and word – Accessing, overview of toolbars, saving files, Using help and resources, rulers, format painter in word.

Task 2: Using LaTeX and Word to create a project certificate. Features to be covered:- Formatting Fonts in word, Drop Cap in word, Applying Text effects, Using Character Spacing, Borders and Colors, Inserting Header and Footer, Using Date and Time option in both LaTeX and Word.

Task 3: Creating project abstract Features to be covered:-Formatting Styles, Inserting table, Bullets and Numbering, Changing Text Direction, Cell alignment, Footnote, Hyperlink, Symbols, Spell Check, Track Changes.

Task 4: Creating a Newsletter: Features to be covered:- Table of Content, Newspaper columns, Images from files and clipart, Drawing toolbar and Word Art, Formatting Images, Textboxes, Paragraphs and Mail Merge in word.

Excel

Excel Orientation: The mentor needs to tell the importance of MS office or equivalent (FOSS) tool Excel as a Spreadsheet tool, give the details of the four tasks and features that would be covered in each. Using Excel – Accessing, overview of toolbars, saving excel files, Using help and resources.

Task 1: Creating a Scheduler - Features to be covered: Gridlines, Format Cells, Summation, auto fill, Formatting Text

Task 2 : Calculating GPA - .Features to be covered:- Cell Referencing, Formulae in excel – average, std. deviation, Charts, Renaming and Inserting worksheets, Hyper linking, Count function, LOOKUP/VLOOKUP

Task 3: Split cells, freeze panes, group and outline, Sorting, Boolean and logical operators, Conditional formatting

Powerpoint

Task 1: Students will be working on basic power point utilities and tools which help them create basic powerpoint presentations. PPT Orientation, Slide Layouts, Inserting Text, Word Art, Formatting Text, Bullets and Numbering, Auto Shapes, Lines and Arrows in PowerPoint.

Task 2: Interactive presentations - Hyperlinks, Inserting –Images, Clip Art, Audio, Video, Objects, Tables and Charts.

Task 3: Master Layouts (slide, template, and notes), Types of views (basic, presentation, slide slotter, notes etc), and Inserting – Background, textures, Design Templates, Hidden slides.

REFERENCE BOOKS:

1. Comdex Information Technology course tool kit Vikas Gupta, *WILEY Dreamtech*
2. The Complete Computer upgrade and repair book, 3rd edition Cheryl A Schmidt, *WILEY Dreamtech*
3. Introduction to Information Technology, ITL Education Solutions limited, *Pearson Education*. 4. PC Hardware - A Handbook – Kate J. Chase *PHI* (Microsoft)
5. LaTeX Companion – Leslie Lamport, *PHI/Pearson*.
6. IT Essentials PC Hardware and Software Companion Guide Third Edition by David Anfinson and Ken Quamme. – *CISCO Press, Pearson Education*.
7. IT Essentials PC Hardware and Software Labs and Study Guide Third Edition by Patrick Regan – *CISCO Press, Pearson Education*.

ENVIRONMENTAL SCIENCE**B.Tech. I Year I Sem.**

L	T	P	C
3	0	0	0

Course Objectives:

- Understanding the importance of ecological balance for sustainable development.
- Understanding the impacts of developmental activities and mitigation measures. □

Understanding the environmental policies and regulations

Course Outcomes:

- Based on this course, the Engineering graduate will understand /evaluate / develop technologies on the basis of ecological principles and environmental regulations which in turn helps in sustainable development

UNIT - I

Ecosystems: Definition, Scope, and Importance of ecosystem. Classification, structure, and function of an ecosystem, Food chains, food webs, and ecological pyramids. Flow of energy, Biogeochemical cycles, Bioaccumulation, Biomagnification, ecosystem value, services and carrying capacity, Field visits.

UNIT - II

Natural Resources: Classification of Resources: Living and Non-Living resources, **water resources:** use and over utilization of surface and ground water, floods and droughts, Dams: benefits and problems. **Mineral resources:** use and exploitation, environmental effects of extracting and using mineral resources, **Land resources:** Forest resources, **Energy resources:** growing energy needs, renewable and non-renewable energy sources, use of alternate energy source, case studies.

UNIT - III

Biodiversity and Biotic Resources: Introduction, Definition, genetic, species and ecosystem diversity. Value of biodiversity; consumptive use, productive use, social, ethical, aesthetic and optional values. India as a mega diversity nation, Hot spots of biodiversity. Field visit. Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts; conservation of biodiversity: In-Situ and Ex-situ conservation. National Biodiversity act.

UNIT - IV

Environmental Pollution and Control Technologies: **Environmental Pollution:** Classification of pollution, **Air Pollution:** Primary and secondary pollutants, Automobile and Industrial pollution, Ambient air quality standards. **Water pollution:** Sources and types of pollution, drinking water quality standards.

Soil Pollution: Sources and types, Impacts of modern agriculture, degradation of soil. **Noise Pollution:** Sources and Health hazards, standards, **Solid waste:** Municipal Solid Waste management, composition and characteristics of e-Waste and its management. **Pollution control technologies:**

Wastewater Treatment methods: Primary, secondary and Tertiary.

Overview of air pollution control technologies, Concepts of bioremediation. **Global Environmental Issues and Global Efforts:** Climate change and impacts on human environment. Ozone depletion and Ozone depleting substances (ODS). Deforestation and desertification. International conventions / Protocols: Earth summit, Kyoto protocol, and Montréal Protocol. NAPCC-GoI Initiatives.

UNIT - V

Environmental Policy, Legislation & EIA: Environmental Protection act, Legal aspects Air Act- 1981, Water Act, Forest Act, Wild life Act, Municipal solid waste management and handling rules, biomedical waste management and handling rules, hazardous waste management and handling rules. EIA: EIA structure, methods of baseline data acquisition.

Overview on Impacts of air, water, biological and Socioeconomical aspects. Strategies for risk assessment, Concepts of Environmental Management Plan (EMP). **Towards Sustainable Future:** Concept of Sustainable Development Goals, Population and its explosion, Crazy Consumerism, Environmental Education, Urban Sprawl, Human health, Environmental Ethics, Concept of Green Building, Ecological Foot Print, Life Cycle assessment (LCA), Low carbon life style.

TEXT BOOKS:

- 1 Textbook of Environmental Studies for Undergraduate Courses by Erach Bharucha for University Grants Commission.
- 2 Environmental Studies by R. Rajagopalan, Oxford University Press.

REFERENCE BOOKS:

1. Environmental Science: towards a sustainable future by Richard T. Wright. 2008 PHL Learning Private Ltd. New Delhi.
2. Environmental Engineering and science by Gilbert M. Masters and Wendell P. Ela. 2008 PHI Learning Pvt. Ltd.
3. Environmental Science by Daniel B. Botkin & Edward A. Keller, Wiley INDIA edition.
4. Environmental Studies by Anubha Kaushik, 4th Edition, New age international publishers.
5. Text book of Environmental Science and Technology - Dr. M. Anji Reddy 2007, BS Publications.
6. Introduction to Environmental Science by Y. Anjaneyulu, BS. Publications.

DIGITAL ELECTRONICS

B.Tech. II Year I Sem.

L	T	P	C
3	0	0	3

Course Objectives: This course aims at through understanding of binary number system, logic gates, combination logic and synchronous and asynchronous logic.

UNIT - I:

BOOLEAN ALGEBRA AND LOGIC GATES: Digital Systems, Binary Numbers, Number base conversions, Octal and Hexadecimal Numbers, complements, Signed binary numbers, Binary codes, Binary Storage and Registers, Binary logic.

Basic Definitions, Axiomatic definition of Boolean Algebra, Basic theorems and properties of Boolean algebra, Boolean functions, canonical and standard forms, other logic operations, Digital logic gates.

UNIT - II:

GATE – LEVEL MINIMIZATION: The map method, Four-variable map, Five-Variable map, product of sums simplification Don't-care conditions, NAND and NOR implementation other Two-level implementations, Exclusive – Or function.

UNIT - III:

COMBINATIONAL LOGIC: Combinational Circuits, Analysis procedure Design procedure, Binary Adder-Subtractor Decimal Adder, Binary multiplier, magnitude comparator, Decoders, Encoders, Multiplexers, HDL for combinational circuits.

UNIT - IV:

SEQUENTIAL LOGIC: Sequential circuits, latches, Flip-Flops Analysis of clocked sequential circuits, state Reduction and Assignment, Design Procedure. Registers, shift Registers, Ripple counters, synchronous counters, other counters.

UNIT - V

MEMORIES AND ASYNCHRONOUS SEQUENTIAL LOGIC: Introduction, Random-Access Memory, Memory Decoding, Error Detection and correction Read-only memory, Programmable logic Array programmable Array logic, Sequential Programmable Devices.

Introduction, Analysis Procedure, Circuits with Latches, Design Procedure, Reduction of state and Flow Tables, Race-Free state Assignment Hazards, Design Example.

TEXT BOOKS:

1. Digital Design – Third Edition, M. Morris Mano, Pearson Education/PHI.
2. Digital Principles and Applications Albert Paul Malvino Donald P. Leach TATA McGraw Hill Edition.
3. Fundamentals of Logic Design, Roth, 5th Edition, Thomson.

REFERENCE BOOKS:

1. Switching and Finite Automata Theory by Zvi. Kohavi, Tata McGraw Hill.
2. Switching and Logic Design, C.V.S. Rao, Pearson Education
3. Digital Principles and Design – Donald D.Givone, Tata McGraw Hill, Edition.
4. Fundamentals of Digital Logic and Microcomputer Design, 5TH Edition, M. Rafiquzzaman John Wiley.

DATA STRUCTURES

B.Tech. II Year I Sem.

L	T	P	C
3	0	0	3

Prerequisites: Programming for Problem Solving

Course Objectives

- Exploring basic data structures such as stacks and queues.
- Introduces a variety of data structures such as hash tables, search trees, tries, heaps, graphs.
 - Introduces sorting and pattern matching algorithms

Course Outcomes

- Ability to select the data structures that efficiently model the information in a problem.
- Ability to assess efficiency trade-offs among different data structure implementations or combinations.
- Implement and know the application of algorithms for sorting and pattern matching.
- Design programs using a variety of data structures, including hash tables, binary and general tree structures, search trees, tries, heaps, graphs, and AVL-trees.

UNIT - I

Introduction to Data Structures, abstract data types, Linear list – singly linked list implementation, insertion, deletion and searching operations on linear list, Stacks- Operations, array and linked representations of stacks, stack applications, Queues- operations, array and linked representations.

UNIT - II

Dictionaries: linear list representation, skip list representation, operations - insertion, deletion and searching.

Hash Table Representation: hash functions, collision resolution-separate chaining, open addressinglinear probing, quadratic probing, double hashing, rehashing, extendible hashing.

UNIT - III

Search Trees: Binary Search Trees, Definition, Implementation, Operations- Searching, Insertion and Deletion, B- Trees, B+ Trees, AVL Trees, Definition, Height of an AVL Tree, Operations – Insertion, Deletion and Searching, Red –Black, Splay Trees.

UNIT - IV

Graphs: Graph Implementation Methods. Graph Traversal Methods.

Sorting: Quick Sort, Heap Sort, External Sorting- Model for external sorting, Merge Sort.

UNIT - V

Pattern Matching and Tries: Pattern matching algorithms-Brute force, the Boyer –Moore algorithm, the Knuth-Morris-Pratt algorithm, Standard Tries, Compressed Tries, Suffix tries.

TEXT BOOKS:

1. Fundamentals of Data Structures in C, 2 nd Edition, E. Horowitz, S. Sahni and Susan Anderson Freed, Universities Press.
2. Data Structures using C – A. S.Tanenbaum, Y. Langsam, and M.J. Augenstein, PHI/Pearson Education.

REFERENCE BOOK:

1. Data Structures: A Pseudocode Approach with C, 2 nd Edition, R. F. Gilberg and B.A.Forouzan, Cengage Learning.

COMPUTER ORIENTED STATISTICAL METHODS**B.Tech. II Year I Sem.**

L	T	P	C
3	1	0	4

Pre-requisites: Mathematics courses of first year of study.**Course Objectives:** To learn

- The theory of Probability, Probability distributions of single and multiple random variables
- The sampling theory, testing of hypothesis and making statistical inferences
- Stochastic process and Markov chains.

Course outcomes: After learning the contents of this paper the student must be able to

- Apply the concepts of probability and distributions to case studies.
- Formulate and solve problems involving random variables and apply statistical methods for analyzing experimental data.
- Apply concept of estimation and testing of hypothesis to case studies.
- Correlate the concepts of one unit to the concepts in other units.

UNIT - I: Probability**10 L**

Sample Space, Events, Counting Sample Points, Probability of an Event, Additive Rules, Conditional Probability, Independence, and the Product Rule, Baye's Rule,

Random Variables and Probability Distributions: Concept of a Random Variable, Discrete Probability Distributions, Continuous Probability Distributions.

UNIT - II: Expectation and discrete distributions**10 L**

Mean of a Random Variable, Variance and Covariance of Random Variables, Means and Variances of Linear Combinations of Random Variables, Chebyshev's Theorem.

Discrete Probability Distributions: Binomial Distribution, Poisson distribution.

UNIT - III: Continuous and Sampling Distributions**10 L**

Uniform Distribution, Normal Distribution, Areas under the Normal Curve, Applications of the Normal Distribution, Normal Approximation to the Binomial Distributions.

Fundamental Sampling Distributions: Random Sampling, Some Important Statistics, Sampling Distributions, Sampling Distribution of Means and the Central Limit Theorem, t - Distribution, FDistribution.

UNIT - IV: Sample Estimation & Tests of Hypotheses**10 L**

Introduction, Statistical Inference, Classical Methods of Estimation, Single Sample: Estimating the mean, standard error of a point estimate, prediction interval. Two sample: Estimating the difference between two means, Single sample: Estimating a proportion, Two samples: Estimating the difference between two proportions, Two samples: Estimating the ratio of two variances.

Statistical Hypotheses: General Concepts, Testing a Statistical Hypothesis, Single sample: Tests concerning a single mean, Two samples: tests on two means, One sample: test on a single proportion. Two samples: tests on two proportions, Two- sample tests concerning variances.

UNIT-V: Stochastic Processes and Markov Chains**8L**

Introduction to Stochastic processes- Markov process. Transition Probability, Transition Probability Matrix, First order and Higher order Markov process, n-step transition probabilities, Markov chain, Steady state condition, Markov analysis.

TEXT BOOKS:

1. Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, Probability & Statistics For Engineers & Scientists, 9th Ed. Pearson Publishers.
2. S C Gupta and V K Kapoor, Fundamentals of Mathematical statistics, Khanna publications.
3. S.D.Sharma, Operations Research, Kedarnath and Ramnath Publishers, Meerut, Delhi.

REFERENCE BOOKS:

1. T.T. Soong, Fundamentals of Probability and Statistics For Engineers, John Wiley & Sons, Ltd, 2004.
2. Sheldon M Ross, Probability and statistics for Engineers and scientists, academic press.
3. Miller and Freund's, Probability and Statistics for Engineers, 8th Edition, Pearson Educations.

COMPUTER ORGANIZATION AND ARCHITECTURE

B.Tech. II Year I Sem.

L	T	P	C
3	0	0	3

Co-requisite: A Course on “Digital Electronics”.

Course Objectives

- The purpose of the course is to introduce principles of computer organization and the basic architectural concepts.
- It begins with basic organization, design, and programming of a simple digital computer and introduces simple register transfer language to specify various computer operations.
- Topics include computer arithmetic, instruction set design, microprogrammed control unit, pipelining and vector processing, memory organization and I/O systems, and multiprocessors

Course Outcomes

- Understand the basics of instruction sets and their impact on processor design.
- Demonstrate an understanding of the design of the functional units of a digital computer system.
- Evaluate cost performance and design trade-offs in designing and constructing a computer processor including memory.
- Design a pipeline for consistent execution of instructions with minimum hazards.
- Recognize and manipulate representations of numbers stored in digital computers

UNIT - I

Digital Computers: Introduction, Block diagram of Digital Computer, Definition of Computer Organization, Computer Design and Computer Architecture.

Register Transfer Language and Micro operations: Register Transfer language, Register Transfer, Bus and memory transfers, Arithmetic Micro operations, logic micro operations, shift micro operations, Arithmetic logic shift unit.

Basic Computer Organization and Design: Instruction codes, Computer Registers Computer instructions, Timing and Control, Instruction cycle, Memory Reference Instructions, Input – Output and Interrupt.

UNIT - II

Microprogrammed Control: Control memory, Address sequencing, micro program example, design of control unit.

Central Processing Unit: General Register Organization, Instruction Formats, Addressing modes, Data Transfer and Manipulation, Program Control.

UNIT - III

Data Representation: Data types, Complements, Fixed Point Representation, Floating Point Representation.

Computer Arithmetic: Addition and subtraction, multiplication Algorithms, Division Algorithms, Floating – point Arithmetic operations. Decimal Arithmetic unit, Decimal Arithmetic operations.

UNIT - IV

Input-Output Organization: Input-Output Interface, Asynchronous data transfer, Modes of Transfer, Priority Interrupt Direct memory Access.

Memory Organization: Memory Hierarchy, Main Memory, Auxiliary memory, Associate Memory, Cache Memory.

UNIT - V

Reduced Instruction Set Computer: CISC Characteristics, RISC Characteristics.

Pipeline and Vector Processing: Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction Pipeline, RISC Pipeline, Vector Processing, Array Processor.

Multi Processors: Characteristics of Multiprocessors, Interconnection Structures, Interprocessor arbitration, Interprocessor communication and synchronization, Cache Coherence.

TEXT BOOK:

1. Computer System Architecture – M. Morris Mano, Third Edition, Pearson/PHI.

REFERENCE BOOKS:

1. Computer Organization – Carl Hamacher, Zvonks Vranesic, SafeaZaky, V th Edition, McGraw Hill.
2. Computer Organization and Architecture – William Stallings Sixth Edition, Pearson/PHI.
3. Structured Computer Organization – Andrew S. Tanenbaum, 4 th Edition, PHI/Pearson.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA

B.Tech. II Year I Sem.

L	T	P	C
3	0	0	3

Course Objectives

- To Understand the basic object-oriented programming concepts and apply them in problem solving.
- To Illustrate inheritance concepts for reusing the program.
- To Demonstrate multitasking by using multiple threads and event handling • To Develop data-centric applications using JDBC.
- To Understand the basics of java console and GUI based programming

Course Outcomes

- Demonstrate the behavior of programs involving the basic programming constructs like control structures, constructors, string handling and garbage collection.
- Demonstrate the implementation of inheritance (multilevel, hierarchical and multiple) by using extend and implement keywords
- Use multithreading concepts to develop inter process communication.
- Understand the process of graphical user interface design and implementation using AWT or swings.
- Develop applets that interact abundantly with the client environment and deploy on the server.

UNIT - I

Object oriented thinking and Java Basics- Need for oop paradigm, summary of oop concepts, coping with complexity, abstraction mechanisms. A way of viewing world – Agents, responsibility, messages, methods, History of Java, Java buzzwords, data types, variables, scope and lifetime of variables, arrays, operators, expressions, control statements, type conversion and casting, simple java program, concepts of classes, objects, constructors, methods, access control, this keyword, garbage collection, overloading methods and constructors, method binding, inheritance, overriding and exceptions, parameter passing, recursion, nested and inner classes, exploring string class.

UNIT - II

Inheritance, Packages and Interfaces – Hierarchical abstractions, Base class object, subclass, subtype, substitutability, forms of inheritance specialization, specification, construction, extension, limitation, combination, benefits of inheritance, costs of inheritance. Member access rules, super uses, using final with inheritance, polymorphism- method overriding, abstract classes, the Object class. Defining, Creating and Accessing a Package, Understanding CLASSPATH, importing packages, differences between classes and interfaces, defining an interface, implementing interface, applying interfaces, variables in interface and extending interfaces. Exploring java.io.

UNIT - III

Exception handling and Multithreading-- Concepts of exception handling, benefits of exception handling, Termination or resumptive models, exception hierarchy, usage of try, catch, throw, throws and finally, built in exceptions, creating own exception subclasses. String handling, Exploring java.util. Differences between multithreading and multitasking, thread life cycle, creating threads, thread priorities, synchronizing threads, inter thread communication, thread groups, daemon threads. Enumerations, autoboxing, annotations, generics.

UNIT - IV

Event Handling: Events, Event sources, Event classes, Event Listeners, Delegation event model, handling mouse and keyboard events, Adapter classes. The AWT class hierarchy, user interface components- labels, button, canvas, scrollbars, text components, check box, checkbox groups, choices, lists panels – scrollpane, dialogs, menubar, graphics, layout manager – layout manager types – border, grid, flow, card and grid bag.

UNIT - V

Applets – Concepts of Applets, differences between applets and applications, life cycle of an applet, types of applets, creating applets, passing parameters to applets. Swing – Introduction, limitations of AWT, MVC architecture, components, containers, exploring swing- JApplet, JFrame and JComponent, Icons and Labels, text fields, buttons – The JButton class, Check boxes, Radio buttons, Combo boxes, Tabbed Panes, Scroll Panes, Trees, and Tables.

TEXT BOOKS:

1. Java the complete reference, 7th edition, Herbert schildt, TMH.
2. Understanding OOP with Java, updated edition, T. Budd, Pearson education.

REFERENCE BOOKS:

1. An Introduction to programming and OO design using Java, J.Nino and F.A. Hosch, John wiley & sons.
2. An Introduction to OOP, third edition, T. Budd, Pearson education.
3. Introduction to Java programming, Y. Daniel Liang, Pearson education.
4. An introduction to Java programming and object-oriented application development, R.A. Johnson- Thomson.
5. Core Java 2, Vol 1, Fundamentals, Cay.S. Horstmann and Gary Cornell, eighth Edition, Pearson Education.
6. Core Java 2, Vol 2, Advanced Features, Cay.S. Horstmann and Gary Cornell, eighth Edition, Pearson Education
7. Object Oriented Programming with Java, R.Buyya, S.T.Selvi, X.Chu, TMH.
8. Java and Object Orientation, an introduction, John Hunt, second edition, Springer. 9. Maurach's Beginning Java2 JDK 5, SPD.

DATA STRUCTURES LAB**B.Tech. II Year I Sem.**

L	T	P	C
0	0	3	1.5

Prerequisites: A Course on “Programming for problem solving”.**Course Objectives:**

- It covers various concepts of C programming language
- It introduces searching and sorting algorithms
- It provides an understanding of data structures such as stacks and queues.

Course Outcomes:

- Ability to develop C programs for computing and real-life applications using basic elements like control statements, arrays, functions, pointers and strings, and data structures like stacks, queues and linked lists.
- Ability to Implement searching and sorting algorithms

List of Experiments:

1. Write a program that uses functions to perform the following operations on singly linked list.:
 - i) Creation
 - ii) Insertion
 - iii) Deletion
 - iv) Traversal
2. Write a program that uses functions to perform the following operations on doubly linked list.:
 - i) Creation
 - ii) Insertion
 - iii) Deletion
 - iv) Traversal
3. Write a program that uses functions to perform the following operations on circular linked list.:
 - i) Creation
 - ii) Insertion
 - iii) Deletion
 - iv) Traversal
4. Write a program that implement stack (its operations) using
 - i) Arrays
 - ii) Pointers
5. Write a program that implement Queue (its operations) using
 - i) Arrays
 - ii) Pointers
6. Write a program that implements the following sorting methods to sort a given list of integers in ascending order
 - i) Quick sort
 - ii) Heap sort
 - iii) Merge sort
7. Write a program to implement the tree traversal methods(Recursive and Non Recursive).
8. Write a program to implement
 - i) Binary Search tree
 - ii) B Trees
 - iii) B+ Trees
 - iv) AVL trees
 - v) Red - Black trees
9. Write a program to implement the graph traversal methods.
10. Implement a Pattern matching algorithms using Boyer- Moore, Knuth-Morris-Pratt

TEXT BOOKS:

1. Fundamentals of Data Structures in C, 2nd Edition, E. Horowitz, S. Sahni and Susan Anderson Freed, Universities Press.
2. Data Structures using C – A. S. Tanenbaum, Y. Langsam, and M. J. Augenstein, PHI/Pearson Education.

REFERENCE BOOK:

1. Data Structures: A Pseudocode Approach with C, 2nd Edition, R. F. Gilberg and B. A. Forouzan, Cengage Learning.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA LAB

B.Tech. II Year I Sem.

L	T	P	C
0	0	3	1.5

Course Objectives:

- To write programs using abstract classes.
- To write programs for solving real world problems using the java collection framework.
- To write multithreaded programs.
- To write GUI programs using swing controls in Java.
- To introduce java compiler and eclipse platform.
- To impart hands-on experience with java programming.

Course Outcomes:

- Able to write programs for solving real world problems using the java collection framework.
- Able to write programs using abstract classes.
- Able to write multithreaded programs.
- Able to write GUI programs using swing controls in Java.

Note:

1. Use LINUX and MySQL for the Lab Experiments. Though not mandatory, encourage the use of the Eclipse platform.
2. The list suggests the minimum program set. Hence, the concerned staff is requested to add more problems to the list as needed.

List of Experiments:

1. Use Eclipse or Net bean platform and acquaint yourself with the various menus. Create a test project, add a test class, and run it. See how you can use auto suggestions, auto fill. Try code formatter and code refactoring like renaming variables, methods, and classes. Try debug step by step with a small program of about 10 to 15 lines which contains at least one if else condition and a for loop.
2. Write a Java program that works as a simple calculator. Use a grid layout to arrange buttons for the digits and for the +, -, *, % operations. Add a text field to display the result. Handle any possible exceptions like divided by zero.
3. A) Develop an applet in Java that displays a simple message.
B) Develop an applet in Java that receives an integer in one text field, and computes its factorial Value and returns it in another text field, when the button named “Compute” is clicked.
4. Write a Java program that creates a user interface to perform integer divisions. The user enters two numbers in the text fields, Num1 and Num2. The division of Num1 and Num 2 is displayed in the Result field when the Divide button is clicked. If Num1 or Num2 were not an integer, the program would throw a Number Format Exception. If Num2 were Zero, the program would throw an Arithmetic Exception. Display the exception in a message dialog box.
5. Write a Java program that implements a multi-thread application that has three threads. First thread generates a random integer every 1 second and if the value is even, the second thread computes the square of the number and prints. If the value is odd, the third thread will print the value of the cube of the number.
6. Write a Java program for the following: Create a doubly linked list of elements.
Delete a given element from the above list.
Display the contents of the list after deletion.

7. Write a Java program that simulates a traffic light. The program lets the user select one of three lights: red, yellow, or green with radio buttons. On selecting a button, an appropriate message with "Stop" or "Ready" or "Go" should appear above the buttons in the selected color. Initially, there is no message shown.

8. Write a Java program to create an abstract class named Shape that contains two integers and an empty method named print Area (). Provide three classes named Rectangle, Triangle, and Circle such that each one of the classes extends the class Shape. Each one of the classes contains only the method print Area () that prints the area of the given shape.

9. Suppose that a table named Table.txt is stored in a text file. The first line in the file is the header, and the remaining lines correspond to rows in the table. The elements are separated by commas. Write a java program to display the table using Labels in Grid Layout.

10. Write a Java program that handles all mouse events and shows the event name at the center of the window when a mouse event is fired (Use Adapter classes).

11. Write a Java program that loads names and phone numbers from a text file where the data is organized as one line per record and each field in a record are separated by a tab (t). It takes a name or phone number as input and prints the corresponding other value from the hash table (hint: use hash tables).

12. Write a Java program that correctly implements the producer – consumer problem using the concept of inter thread communication.

13. Write a Java program to list all the files in a directory including the files present in all its subdirectories.

REFERENCE BOOKS:

1. Java for Programmers, P. J. Deitel and H. M. Deitel, 10th Edition Pearson education.
2. Thinking in Java, Bruce Eckel, Pearson Education.
3. Java Programming, D. S. Malik and P. S. Nair, Cengage Learning.
4. Core Java, Volume 1, 9th edition, Cay S. Horstmann and G Cornell, Pearson.

GENDER SENSITIZATION LAB

B.Tech. II Year I Sem.

L	T	P	C
0	0	2	0

COURSE DESCRIPTION

This course offers an introduction to Gender Studies, an interdisciplinary field that asks critical questions about the meanings of sex and gender in society. The primary goal of this course is to familiarize students with key issues, questions and debates in Gender Studies, both historical and contemporary. It draws on multiple disciplines – such as literature, history, economics, psychology, sociology, philosophy, political science, anthropology and media studies – to examine cultural assumptions about sex, gender, and sexuality.

This course integrates analysis of current events through student presentations, aiming to increase awareness of contemporary and historical experiences of women, and of the multiple ways that sex and gender interact with race, class, caste, nationality and other social identities. This course also seeks to build an understanding and initiate and strengthen programmes combating gender-based violence and discrimination. The course also features several exercises and reflective activities designed to examine the concepts of gender, gender-based violence, sexuality, and rights. It will further explore the impact of gender-based violence on education, health and development.

Objectives of the Course

- To develop students' sensibility with regard to issues of gender in contemporary India.
- To provide a critical perspective on the socialization of men and women.
- To introduce students to information about some key biological aspects of genders.
- To expose the students to debates on the politics and economics of work.
- To help students reflect critically on gender violence.
- To expose students to more egalitarian interactions between men and women.

Learning Outcomes

- Students will have developed a better understanding of important issues related to gender in contemporary India.
- Students will be sensitized to basic dimensions of the biological, sociological, psychological and legal aspects of gender. This will be achieved through discussion of materials derived from research, facts, everyday life, literature and film.
- Students will attain a finer grasp of how gender discrimination works in our society and how to counter it.
- Students will acquire insight into the gendered division of labor and its relation to politics and economics.
- Men and women students and professionals will be better equipped to work and live together as equals.
- Students will develop a sense of appreciation of women in all walks of life.
- Through providing accounts of studies and movements as well as the new laws that provide protection and relief to women, the textbook will empower students to understand and respond to gender violence.

Unit-I: UNDERSTANDING GENDER

Introduction: Definition of Gender-Basic Gender Concepts and Terminology-Exploring Attitudes towards Gender-Construction of Gender-Socialization: Making Women, Making Men - Preparing for Womanhood. Growing up Male. First lessons in Caste.

Unit – II: GENDER ROLES AND RELATIONS

Two or Many? -Struggles with Discrimination-Gender Roles and Relations-Types of Gender RolesGender Roles and Relationships Matrix-Missing Women-Sex Selection and Its Consequences-Declining Sex Ratio. Demographic Consequences-Gender Spectrum: Beyond the Binary

Unit – III: GENDER AND LABOUR

Division and Valuation of Labour-Housework: The Invisible Labor- "My Mother doesn't Work." "Share the Load."-Work: Its Politics and Economics -Fact and Fiction. Unrecognized and Unaccounted work. -Gender Development Issues-Gender, Governance and Sustainable Development-Gender and Human Rights-Gender and Mainstreaming

Unit – IV: GENDER - BASED VIOLENCE

The Concept of Violence- Types of Gender-based Violence-Gender-based Violence from a Human Rights Perspective-Sexual Harassment: Say No!-Sexual Harassment, not Eve-teasing- Coping with Everyday Harassment- Further Reading: "*Chupulu*".

Domestic Violence: Speaking Outls Home a Safe Place? -When Women Unite [Film]. Rebuilding Lives. Thinking about Sexual Violence Blaming the Victim-"I Fought for my Life...."

Unit – V: GENDER AND CULTURE

Gender and Film-Gender and Electronic Media-Gender and Advertisement-Gender and Popular Literature- Gender Development Issues-Gender Issues-Gender Sensitive Language-Gender and Popular Literature - Just Relationships: Being Together as Equals

Mary Kom and Onler. Love and Acid just do not Mix. Love Letters. Mothers and Fathers. Rosa ParksThe Brave Heart.

Note: Since it is Interdisciplinary Course, Resource Persons can be drawn from the fields of English Literature or Sociology or Political Science or any other qualified faculty who has expertise in this field from engineering departments.

- *Classes will consist of a combination of activities: dialogue-based lectures, discussions, collaborative learning activities, group work and in-class assignments. Apart from the above prescribed book, Teachers can make use of any authentic materials related to the topics given in the syllabus on "Gender".*
- **ESSENTIAL READING:** The Textbook, "Towards a World of Equals: A Bilingual Textbook on Gender" written by A.Suneetha, Uma Bhrugubanda, Duggirala Vasanta, Rama Melkote, Vasudha Nagaraj, Asma Rasheed, Gogu Shyamala, Deepa Sreenivas and Susie Tharu published by Telugu Akademi, Telangana Government in 2015.

ASSESSMENT AND GRADING:

- Discussion & Classroom Participation: 20%
- Project/Assignment: 30%
- End Term Exam: 50%

SKILL DEVELOPMENT COURSE (DATA VISUALIZATION - R PROGRAMMING/ POWER BI)**B.Tech. II Year I Sem.**

L	T	P	C
0	0	2	1

Course Objectives:

- Effective use of Business Intelligence (BI) technology (Tableau) to apply data visualization • To discern patterns and relationships in the data.
- To build Dashboard applications.
- To communicate the results clearly and concisely.
- To be able to work with different formats of data sets.

Course Outcomes: At the end of the course a student should be able to

- Understand How to import data into Tableau.
- Understand Tableau concepts of Dimensions and Measures.
- Develop Programs and understand how to map Visual Layouts and Graphical Properties.
- Create a Dashboard that links multiple visualizations.
- Use graphical user interfaces to create Frames for providing solutions to real world • problems.

Lab Problems:

1. Understanding Data, What is data, where to find data, Foundations for building Data Visualizations, Creating Your First visualization?
2. Getting started with Tableau Software using Data file formats, connecting your Data to Tableau, creating basic charts(line, bar charts, Tree maps),Using the Show me panel.
3. Tableau Calculations, Overview of SUM, AVR, and Aggregate features, Creating custom calculations and fields.
4. Applying new data calculations to your visualizations, Formatting Visualizations, Formatting Tools and Menus, Formatting specific parts of the view.
5. Editing and Formatting Axes, Manipulating Data in Tableau data, Pivoting Tableau data.
6. Structuring your data, Sorting and filtering Tableau data, Pivoting Tableau data.
7. Advanced Visualization Tools: Using Filters, Using the Detail panel, using the Size panels, customizing filters, Using and Customizing tooltips, Formatting your data with colors.
8. Creating Dashboards & Storytelling, creating your first dashboard and Story, Design for different displays, adding interactivity to your Dashboard, Distributing & Publishing your Visualization.
9. Tableau file types, publishing to Tableau Online, Sharing your visualizations, printing, and Exporting.
10. Creating custom charts, cyclical data and circular area charts, Dual Axis charts.

REFERENCE BOOKS:

1. Microsoft Power BI cookbook, Brett Powell, 2nd edition.
2. R Programming for Data Science by Roger D. Peng (References)
3. The Art of R Programming by Norman Matloff Cengage Learning India.

DISCRETE MATHEMATICS

Course Objectives:

- Introduces elementary discrete mathematics for computer science and engineering.
- Topics include formal logic notation, methods of proof, induction, sets, relations, algebraic structures, elementary graph theory, permutations and combinations, counting principles; recurrence relations and generating functions.

Course Outcomes:

- Understand and construct precise mathematical proofs
- Apply logic and set theory to formulate precise statements
- Analyze and solve counting problems on finite and discrete structures
- Describe and manipulate sequences
- Apply graph theory in solving computing problems

UNIT - I

Mathematical logic: Introduction, Statements and Notation, Connectives, Normal Forms, Theory of Inference for the Statement Calculus, The Predicate Calculus, Inference Theory of the Predicate Calculus.

UNIT - II

Set theory: Introduction, Basic Concepts of Set Theory, Representation of Discrete Structures, Relations and Ordering, Functions.

UNIT - III

Algebraic Structures: Introduction, Algebraic Systems, Semi groups and Monoids, Lattices as Partially Ordered Sets, Boolean Algebra.

UNIT - IV

Elementary Combinatorics: Basics of Counting, Combinations and Permutations, Enumeration of Combinations and Permutations, Enumerating Combinations and Permutations with Repetitions, Enumerating Permutation with Constrained Repetitions, Binomial Coefficient, The Binomial and Multinomial Theorems, The Principle of Exclusion.

UNIT - V

Graph Theory: Basic Concepts, Isomorphism and Subgraphs, Trees and their Properties, Spanning Trees, Directed Trees, Binary Trees, Planar Graphs, Euler's Formula, Multi-graphs and Euler Circuits, Hamiltonian Graphs, Chromatic Numbers, The Four-Color Problem.

TEXT BOOKS:

1. Discrete Mathematical Structures with Applications to Computer Science: J.P. Tremblay, R. Manohar, McGraw-Hill, 1st ed.
2. Discrete Mathematics for Computer Scientists & Mathematicians: Joe I. Mott, Abraham Kandel, Theodore P. Baker, Prentis Hall of India, 2nd ed.

REFERENCE BOOKS:

1. Discrete and Combinatorial Mathematics - an applied introduction: Ralph.P. Grimaldi, Pearson education, 5th edition.
2. Discrete Mathematical Structures: Thomas Koshy, Tata McGraw Hill publishing co.

BUSINESS ECONOMICS AND FINANCIAL ANALYSIS

Course Objective: To learn the basic business types, impact of the economy on Business and Firms specifically. To analyze the Business from the Financial Perspective.

Course Outcome: The students will understand the various Forms of Business and the impact of economic variables on the Business. The Demand, Supply, Production, Cost, Market Structure, Pricing aspects are learnt. The Students can study the firm's financial position by analysing the Financial Statements of a Company.

Unit – I: Introduction to Business and Economics

Business: Structure of Business Firm, Theory of Firm, Types of Business Entities, Limited Liability Companies, Sources of Capital for a Company, Non-Conventional Sources of Finance.

Economics: Significance of Economics, Micro and Macro Economic Concepts, Concepts and Importance of National Income, Inflation, Money Supply and Inflation, Business Cycle, Features and Phases of Business Cycle. Nature and Scope of Business Economics, Role of Business Economist, Multidisciplinary nature of Business Economics.

UNIT - II: Demand and Supply Analysis

Elasticity of Demand: Elasticity, Types of Elasticity, Law of Demand, Measurement and Significance of Elasticity of Demand, Factors affecting Elasticity of Demand, Elasticity of Demand in decision making, Demand Forecasting: Characteristics of Good Demand Forecasting, Steps in Demand Forecasting, Methods of Demand Forecasting.

Supply Analysis: Determinants of Supply, Supply Function and Law of Supply.

UNIT - III: Production, Cost, Market Structures & Pricing

Production Analysis: Factors of Production, Production Function, Production Function with one variable input, two variable inputs, Returns to Scale, Different Types of Production Functions.

Cost analysis: Types of Costs, Short run and Long run Cost Functions.

Market Structures: Nature of Competition, Features of Perfect competition, Monopoly, Oligopoly, Monopolistic Competition. **Pricing:** Types of Pricing, Product Life Cycle based Pricing, Break Even Analysis, Cost Volume Profit Analysis.

UNIT - IV: Financial Accounting: Accounting concepts and Conventions, Accounting Equation, Double-Entry system of Accounting, Rules for maintaining Books of Accounts, Journal, Posting to Ledger, Preparation of Trial Balance, Elements of Financial Statements, Preparation of Final Accounts (Simple Problems).

UNIT - V: Financial Ratios Analysis: Concept of Ratio Analysis, Importance and Types of Ratios, Liquidity Ratios, Turnover Ratios, Profitability Ratios, Proprietary Ratios, Solvency, Leverage Ratios – Analysis and Interpretation (simple problems).

TEXT BOOKS:

1. D. D. Chaturvedi, S. L. Gupta, Business Economics - Theory and Applications, International Book House Pvt. Ltd. 2013.
2. Dhanesh K Khatri, Financial Accounting, Tata Mc –Graw Hill, 2011.
3. Geethika Ghosh, Piyali Gosh, Purba Roy Choudhury, Managerial Economics, 2e, Tata Mc Graw Hill Education Pvt. Ltd. 2012.

REFERENCE BOOKS:

1. Paresh Shah, Financial Accounting for Management 2e, Oxford Press, 2015.
2. S. N. Maheshwari, Sunil K Maheshwari, Sharad K Maheshwari, Financial Accounting, 5e, Vikas Publications, 2013.

OPERATING SYSTEMS

Prerequisites:

1. A course on “Computer Programming and Data Structures”.
2. A course on “Computer Organization and Architecture”.

Course Objectives:

- Introduce operating system concepts (i.e., processes, threads, scheduling, synchronization, deadlocks, memory management, file and I/O subsystems and protection)
- Introduce the issues to be considered in the design and development of operating system
- Introduce basic Unix commands, system call interface for process management, interprocess communication and I/O in Unix

Course Outcomes:

- Will be able to control access to a computer and the files that may be shared
- Demonstrate the knowledge of the components of computers and their respective roles in computing.
- Ability to recognize and resolve user problems with standard operating environments.
- Gain practical knowledge of how programming languages, operating systems, and architectures interact and how to use each effectively.

UNIT - I

Operating System - Introduction, Structures - Simple Batch, Multiprogrammed, Time-shared, Personal Computer, Parallel, Distributed Systems, Real-Time Systems, System components, Operating System services, System Calls

Process - Process concepts and scheduling, Operations on processes, Cooperating Processes, Threads

UNIT - II

CPU Scheduling - Scheduling Criteria, Scheduling Algorithms, Multiple -Processor Scheduling. System call interface for process management-fork, exit, wait, waitpid, exec

Deadlocks - System Model, Deadlocks Characterization, Methods for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, and Recovery from Deadlock

UNIT - III

Process Management and Synchronization - The Critical Section Problem, Synchronization Hardware, Semaphores, and Classical Problems of Synchronization, Critical Regions, Monitors

Interprocess Communication Mechanisms: IPC between processes on a single computer system, IPC between processes on different systems, using pipes, FIFOs, message queues, shared memory.

UNIT - IV

Memory Management and Virtual Memory - Logical versus Physical Address Space, Swapping, Contiguous Allocation, Paging, Segmentation, Segmentation with Paging, Demand Paging, Page Replacement, Page Replacement Algorithms.

UNIT - V

File System Interface and Operations -Access methods, Directory Structure, Protection, File System Structure, Allocation methods, Free-space Management. Usage of open, create, read, write, close, lseek, stat, ioctl system calls.

TEXT BOOKS:

1. Operating System Principles- Abraham Silberchatz, Peter B. Galvin, Greg Gagne 7th Edition, John Wiley.
2. Advanced programming in the UNIX environment, W.R. Stevens, Pearson education.

REFERENCE BOOKS:

1. Operating Systems- Internals and Design Principles, William Stallings, Fifth Edition–2005, Pearson Education/PHI
2. Operating System A Design Approach- Crowley, TMH.
3. Modern Operating Systems, Andrew S. Tanenbaum 2nd edition, Pearson/PHI
4. UNIX programming environment, Kernighan and Pike, PHI/ Pearson Education
5. UNIX Internals -The New Frontiers, U. Vahalia, Pearson Education.

DATABASE MANAGEMENT SYSTEMS

3 0 0 3

Prerequisites: A course on “Data Structures”.

Course Objectives:

- To understand the basic concepts and the applications of database systems.
- To master the basics of SQL and construct queries using SQL.
- Topics include data models, database design, relational model, relational algebra, transaction control, concurrency control, storage structures and access techniques.

Course Outcomes:

- Gain knowledge of fundamentals of DBMS, database design and normal forms
- Master the basics of SQL for retrieval and management of data.
- Be acquainted with the basics of transaction processing and concurrency control.
- Familiarity with database storage structures and access techniques

UNIT - I

Database System Applications: A Historical Perspective, File Systems versus a DBMS, the Data Model, Levels of Abstraction in a DBMS, Data Independence, Structure of a DBMS

Introduction to Database Design: Database Design and ER Diagrams, Entities, Attributes, and Entity Sets, Relationships and Relationship Sets, Additional Features of the ER Model, Conceptual Design With the ER Model

UNIT - II

Introduction to the Relational Model: Integrity constraint over relations, enforcing integrity constraints, querying relational data, logical database design, introduction to views, destroying/altering tables and views.

Relational Algebra, Tuple relational Calculus, Domain relational calculus.

UNIT - III

SQL: QUERIES, CONSTRAINTS, TRIGGERS: form of basic SQL query, UNION, INTERSECT, and EXCEPT, Nested Queries, aggregation operators, NULL values, complex integrity constraints in SQL, triggers and active databases.

Schema Refinement: Problems caused by redundancy, decompositions, problems related to decomposition, reasoning about functional dependencies, First, Second, Third normal forms, BCNF, lossless join decomposition, multivalued dependencies, Fourth normal form, Fifth normal form.

UNIT - IV

Transaction Concept, Transaction State, Implementation of Atomicity and Durability, Concurrent Executions, Serializability, Recoverability, Implementation of Isolation, Testing for serializability, Lock Based Protocols, Timestamp Based Protocols, Validation- Based Protocols, Multiple Granularity, Recovery and Atomicity, Log-Based Recovery, Recovery with Concurrent Transactions.

UNIT - V

Data on External Storage, File Organization and Indexing, Cluster Indexes, Primary and Secondary Indexes, Index data Structures, Hash Based Indexing, Tree based Indexing, Comparison of File Organizations, Indexes- Intuitions for tree Indexes, Indexed Sequential Access Methods (ISAM), B+ Trees: A Dynamic Index Structure.

TEXT BOOKS:

1. Database System Concepts, Silberschatz, Korth, McGraw hill, V edition.3rd Edition
2. Database Management Systems, Raghurama Krishnan, Johannes Gehrke, Tata Mc Graw Hill

REFERENCE BOOKS:

1. Database Systems design, Implementation, and Management, Peter Rob & Carlos Coronel 7th Edition.

2. Fundamentals of Database Systems, Elmasri Navrate, Pearson Education
3. Introduction to Database Systems, C. J. Date, Pearson Education
4. Oracle for Professionals, The X Team, S.Shah and V. Shah, SPD.
5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI.
6. Fundamentals of Database Management Systems, M. L. Gillenson, Wiley Student Edition.

SOFTWARE ENGINEERING

3 0 0 3

Course Objectives

- The aim of the course is to provide an understanding of the working knowledge of the techniques for estimation, design, testing and quality management of large software development projects.
- Topics include process models, software requirements, software design, software testing, software process/product metrics, risk management, quality management and UML diagrams

Course Outcomes

- Ability to translate end-user requirements into system and software requirements, using e.g. UML, and structure the requirements in a Software Requirements Document (SRD).
- Identify and apply appropriate software architectures and patterns to carry out high level design of a system and be able to critically compare alternative choices.
- Will have experience and/or awareness of testing problems and will be able to develop a simple testing report

UNIT - I

Introduction to Software Engineering: The evolving role of software, changing nature of software, software myths. **A Generic view of process:** Software engineering- a layered technology, a process framework, the capability maturity model integration (CMMI). **Process models:** The waterfall model, Spiral model and Agile methodology

UNIT - II

Software Requirements: Functional and non-functional requirements, user requirements, system requirements, interface specification, the software requirements document.

Requirements engineering process: Feasibility studies, requirements elicitation and analysis, requirements validation, requirements management.

UNIT - III

Design Engineering: Design process and design quality, design concepts, the design model. Creating an architectural design: software architecture, data design, architectural styles and patterns, architectural design, conceptual model of UML, basic structural modeling, class diagrams, sequence diagrams, collaboration diagrams, use case diagrams, component diagrams.

UNIT - IV

Testing Strategies: A strategic approach to software testing, test strategies for conventional software, black-box and white-box testing, validation testing, system testing, the art of debugging. **Metrics for Process and Products:** Software measurement, metrics for software quality.

UNIT - V

Risk management: Reactive Vs proactive risk strategies, software risks, risk identification, risk projection, risk refinement, RMMM. **Quality Management:** Quality concepts, software quality assurance, software reviews, formal technical reviews, statistical software quality assurance, software reliability, the ISO 9000 quality standards.

TEXT BOOKS:

1. Software Engineering, A practitioner's Approach- Roger S. Pressman, 6th edition, McGraw Hill International Edition.
2. Software Engineering- Sommerville, 7th edition, Pearson Education.

REFERENCE BOOKS:

1. The unified modeling language user guide Grady Booch, James Rumbaugh, Ivar Jacobson, Pearson Education.

2. Software Engineering, an Engineering approach- James F. Peters, Witold Pedrycz, John Wiley.
3. Software Engineering principles and practice- Waman S Jawadekar, The McGraw-Hill Companies.
4. Fundamentals of object-oriented design using UML Meiler page-Jones: Pearson Education.

OPERATING SYSTEMS LAB**0 0 2 1**

Prerequisites: A course on “Programming for Problem Solving”, A course on “Computer Organization and Architecture”.

Co-requisite: A course on “Operating Systems”.

Course Objectives:

- To provide an understanding of the design aspects of operating system concepts through simulation
- Introduce basic Unix commands, system call interface for process management, interprocess communication and I/O in Unix

Course Outcomes:

- Simulate and implement operating system concepts such as scheduling, deadlock management, file management and memory management.
- Able to implement C programs using Unix system calls

List of Experiments:

1. Write C programs to simulate the following CPU Scheduling algorithms a) FCFS b) SJF c) Round Robin d) priority
2. Write programs using the I/O system calls of UNIX/LINUX operating system (open, read, write, close, fcntl, seek, stat, opendir, readdir)
3. Write a C program to simulate Bankers Algorithm for Deadlock Avoidance and Prevention.
4. Write a C program to implement the Producer – Consumer problem using semaphores using UNIX/LINUX system calls.
5. Write C programs to illustrate the following IPC mechanisms a) Pipes b) FIFOs c) Message Queues d) Shared Memory
6. Write C programs to simulate the following memory management techniques a) Paging b) Segmentation
7. Write C programs to simulate Page replacement policies a) FCFS b) LRU c) Optimal

TEXT BOOKS:

1. Operating System Principles- Abraham Silberchatz, Peter B. Galvin, Greg Gagne 7th Edition, John Wiley
2. Advanced programming in the Unix environment, W.R.Stevens, Pearson education.

REFERENCE BOOKS:

1. Operating Systems – Internals and Design Principles, William Stallings, Fifth Edition–2005, Pearson Education/PHI
2. Operating System - A Design Approach-Crowley, TMH.
3. Modern Operating Systems, Andrew S Tanenbaum, 2nd edition, Pearson/PHI
4. UNIX Programming Environment, Kernighan and Pike, PHI/Pearson Education
5. UNIX Internals: The New Frontiers, U. Vahalia, Pearson Education

DATABASE MANAGEMENT SYSTEMS LAB

B.Tech. II Year II Sem.

L	T	P	C
0	0	2	1

Co-requisites: "Database Management Systems"

Course Objectives:

- Introduce ER data model, database design and normalization
- Learn SQL basics for data definition and data manipulation

Course Outcomes:

- Design database schema for a given application and apply normalization
- Acquire skills in using SQL commands for data definition and data manipulation.
- Develop solutions for database applications using procedures, cursors and triggers

List of Experiments:

1. Concept design with E-R Model
2. Relational Model
3. Normalization
4. Practicing DDL commands
5. Practicing DML commands
6. A. Querying (using ANY, ALL, UNION, INTERSECT, JOIN, Constraints etc.)
B. Nested, Correlated subqueries
7. Queries using Aggregate functions, GROUP BY, HAVING and Creation and dropping of Views.
8. Triggers (Creation of insert trigger, delete trigger, update trigger)
9. Procedures
10. Usage of Cursors

TEXT BOOKS:

1. Database Management Systems, Raghurama Krishnan, Johannes Gehrke, Tata Mc Graw Hill, 3rd Edition
2. Database System Concepts, Silberschatz, Korth, McGraw Hill, V edition.

REFERENCE BOOKS:

1. Database Systems design, Implementation, and Management, Peter Rob & Carlos Coronel 7th Edition.
2. Fundamentals of Database Systems, Elmasri Navrate, Pearson Education
3. Introduction to Database Systems, C.J. Date, Pearson Education
4. Oracle for Professionals, The X Team, S. Shah and V. Shah, SPD.
5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI.
6. Fundamentals of Database Management Systems, M. L. Gillenson, Wiley Student Edition.

CONSTITUTION OF INDIA

B.Tech. II Year II Sem.

L	T	P	C
3	0	0	0

Course Objectives: Students will be able to:

- Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
- To address the growth of Indian opinion regarding modern Indian intellectuals' constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.
- To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.

Course Outcomes: Students will be able to:

- Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics.
- Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.
- Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution
- Discuss the passage of the Hindu Code Bill of 1956.

Unit - 1 History of Making of the Indian Constitution- History of Drafting Committee.

Unit - 2 Philosophy of the Indian Constitution- Preamble Salient Features **Unit**

- 3 Contours of Constitutional Rights & Duties - Fundamental Rights

- Right to Equality
- Right to Freedom
- Right against Exploitation
- Right to Freedom of Religion
- Cultural and Educational Rights
- Right to Constitutional Remedies Directive Principles of State Policy
- Fundamental Duties.

Unit - 4 Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions

Unit - 5 Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation. Panchayat raj: Introduction, PRI: Zila Panchayat. Elected officials and their roles, CEO ZilaPanchayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy

Unit - 6 Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

Suggested Reading:

1. The Constitution of India, 1950 (Bare Act), Government Publication.
2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

SKILL DEVELOPMENT COURSE (NODE JS/ REACT JS/ DJANGO)

B.Tech. II Year II Sem.

L	T	P	C
0	0	2	1

Prerequisites: Object Oriented Programming through Java, HTML Basics **Course**

Objectives:

- To implement the static web pages using HTML and do client side validation using JavaScript.
- To design and work with databases using Java
- To develop an end to end application using java full stack.
- To introduce Node JS implementation for server side programming.
- To experiment with single page application development using React.

Course Outcomes: At the end of the course, the student will be able to,

- Build a custom website with HTML, CSS, and Bootstrap and little JavaScript.
- Demonstrate Advanced features of JavaScript and learn about JDBC ● Develop Server – side implementation using Java technologies like ● Develop the server – side implementation using Node JS.
- Design a Single Page Application using React.

Exercises:

1. Build a responsive web application for shopping cart with registration, login, catalog and cart pages using CSS3 features, flex and grid.
2. Make the above web application responsive web application using Bootstrap framework.
3. Use JavaScript for doing client – side validation of the pages implemented in experiment 1 and experiment 2.
4. Explore the features of ES6 like arrow functions, callbacks, promises, async/await. Implement an application for reading the weather information from openweathermap.org and display the information in the form of a graph on the web page.
5. Develop a java stand alone application that connects with the database (Oracle / mySql) and perform the CRUD operation on the database tables.
6. Create an xml for the bookstore. Validate the same using both DTD and XSD.
7. Design a controller with servlet that provides the interaction with application developed in experiment 1 and the database created in experiment 5.
8. Maintaining the transactional history of any user is very important. Explore the various session tracking mechanism (Cookies, HTTP Session)
9. Create a custom server using http module and explore the other modules of Node JS like OS, path, event.
10. Develop an express web application that can interact with REST API to perform CRUD operations on student data. (Use Postman)
11. For the above application create authorized end points using JWT (JSON Web Token).
12. Create a react application for the student management system having registration, login, contact, about pages and implement routing to navigate through these pages.
13. Create a service in react that fetches the weather information from openweathermap.org and the display the current and historical weather information using graphical representation using chart.js
14. Create a TODO application in react with necessary components and deploy it into github.

REFERENCE BOOKS:

1. Jon Duckett, Beginning HTML, XHTML, CSS, and JavaScript, Wrox Publications, 2010
2. Bryan Basham, Kathy Sierra and Bert Bates, Head First Servlets and JSP, O'Reilly Media, 2nd Edition, 2008.
3. Vasan Subramanian, Pro MERN Stack, Full Stack Web App Development with Mongo, Express, React, and Node, 2nd Edition, A Press.

MC410: CONSTITUTION OF INDIA*B.Tech. II Year II Sem.**

L	T	P	C
3	0	0	0

Course Objectives: Students will be able to:

- Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
- To address the growth of Indian opinion regarding modern Indian intellectuals' constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.
- To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.

Course Outcomes: Students will be able to:

- Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics.
- Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.
- Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution
- Discuss the passage of the Hindu Code Bill of 1956.

Unit - 1 History of Making of the Indian Constitution- History of Drafting Committee.**Unit - 2** Philosophy of the Indian Constitution- Preamble Salient Features**Unit - 3** Contours of Constitutional Rights & Duties - Fundamental Rights

- Right to Equality
- Right to Freedom
- Right against Exploitation
- Right to Freedom of Religion
- Cultural and Educational Rights
- Right to Constitutional Remedies
- Directive Principles of State Policy
- Fundamental Duties.

Unit - 4 Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions**Unit - 5** Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation. Panchayat raj: Introduction, PRI: Zila Panchayat. Elected officials and their roles, CEO Zila Panchayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy**Unit - 6** Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.**Suggested Reading:**

1. The Constitution of India, 1950 (Bare Act), Government Publication.
2. Dr. S. N. Basu, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

CS501PC: DESIGN AND ANALYSIS OF ALGORITHMS**B.Tech. III Year I Sem.**

L T P C
3 1 0 4

Prerequisites:

1. A course on “Computer Programming and Data Structures”.
2. A course on “Advanced Data Structures”.

Course Objectives:

- Introduces the notations for analysis of the performance of algorithms and the data structure of disjoint sets.
- Describes major algorithmic techniques (divide-and-conquer, backtracking, dynamic programming, greedy, branch and bound methods) and mention problems for which each technique is appropriate
- Describes how to evaluate and compare different algorithms using worst-, average-, and bestcase analysis.
- Explains the difference between tractable and intractable problems, and introduces the problems that are P, NP and NP complete.

Course Outcomes:

- Analyze the performance of algorithms
- Choose appropriate data structures and algorithm design methods for a specified application
- Understand the choice of data structures and the algorithm design methods

UNIT - I

Introduction: Algorithm, Performance Analysis-Space complexity, Time complexity, AsymptoticNotations- Big oh notation, Omega notation, Theta notation and Little oh notation.

Divide and conquer: General method, applications-Binary search, Quick sort, Merge sort, Strassen'smatrix multiplication.

UNIT - II

Disjoint Sets: Disjoint set operations, union and find algorithms, Priority Queue- Heaps,

Heapsort Backtracking: General method, applications, n-queen's problem, sum of subsets problem, graphColoring, hamitonian cycles.

UNIT - III

Dynamic Programming: General method, applications- Optimal binary search tree, 0/1 knapsackproblem, All pairs shortest path problem, Traveling salesperson problem, Reliability design.

UNIT - IV

Greedy method: General method, applications-Job sequencing with deadlines, knapsack problem,Minimum cost spanning trees, Single source shortest path problem.

Basic Traversal and Search Techniques: Techniques for Binary Trees, Techniques for Graphs, Connected components, Biconnected components.

UNIT - V

Branch and Bound: General method, applications - Traveling salesperson problem, 0/1 knapsackproblem - LC Branch and Bound solution, FIFO Branch and Bound solution.

NP-Hard and NP-Complete problems: Basic concepts, non-deterministic algorithms, NP-Hard andNP-Complete classes, Cook's theorem.

TEXT BOOK:

1. Fundamentals of Computer Algorithms, Ellis Horowitz, Satraj Sahni and Rajasekharan, University press, 1998.

REFERENCE BOOKS:

1. Design and Analysis of algorithms, Aho, Ullman and Hopcroft, Pearson education.
2. Introduction to Algorithms, second edition, T. H. Cormen, C.E. Leiserson, R. L. Rivest, and C. Stein, PHI Pvt. Ltd./ Pearson Education.
3. Algorithm Design: Foundations, Analysis and Internet Examples, M.T. Goodrich and R. Tamassia, John Wiley and sons.

CS502PC: COMPUTER NETWORKS**B.Tech. III Year I Sem.****L T P C**
3 0 0 3**Prerequisites**

1. A course on “Programming for problem solving”
2. A course on “Data Structures”

Course Objectives

- The objective of the course is to equip the students with a general overview of the concepts and fundamentals of computer networks.
- Familiarize the students with the standard models for the layered approach to communication between machines in a network and the protocols of the various layers.

Course Outcomes

- Gain the knowledge of the basic computer network technology.
- Gain the knowledge of the functions of each layer in the OSI and TCP/IP reference model.
- Obtain the skills of subnetting and routing mechanisms.
- Familiarity with the essential protocols of computer networks, and how they can be applied in network design and implementation.

UNIT - I

Network hardware, Network software, OSI, TCP/IP Reference models, Example Networks: ARPANET, Internet.

Physical Layer: Guided Transmission media: twisted pairs, coaxial cable, fiber optics, Wireless Transmission.

Data link layer: Design issues, framing, Error detection and correction.

UNIT - II

Elementary data link protocols: simplex protocol, A simplex stop and wait protocol for an error-free channel, A simplex stop and wait protocol for noisy channel.

Sliding Window protocols: A one-bit sliding window protocol, A protocol using Go-Back-N, A protocol using Selective Repeat, Example data link protocols.

Medium Access sublayer: The channel allocation problem, Multiple access protocols: ALOHA, Carrier sense multiple access protocols, collision free protocols. Wireless LANs, Data link layer switching.

UNIT - III

Network Layer: Design issues, Routing algorithms: shortest path routing, Flooding, Hierarchical routing, Broadcast, Multicast, distance vector routing, Congestion Control Algorithms, Quality of Service, Internetworking, The Network layer in the internet.

UNIT - IV

Transport Layer: Transport Services, Elements of Transport protocols, Connection management, TCP and UDP protocols.

UNIT - V

Application Layer - Domain name system, SNMP, Electronic Mail; the World WEB, HTTP, Streaming audio and video.

TEXT BOOK:

1. Computer Networks -- Andrew S Tanenbaum, David. J. Wetherall, 5th Edition. Pearson Education/PHI

REFERENCE BOOKS:

1. An Engineering Approach to Computer Networks - S. Keshav, 2nd Edition, Pearson Education
2. Data Communications and Networking – Behrouz A. Forouzan. Third Edition TMH.

CS503PC: DEVOPS**B.Tech. III Year I Sem.**

L	T	P	C
3	0	0	3

Pre-Requisites:

1. Software Engineering
2. Software Project Management

Course Objectives:

- Understand the skill sets and high-functioning teams involved in Agile, DevOps and related methods to reach a continuous delivery capability.
- Implement automated system update and DevOps lifecycle.

Course Outcomes:

- Understand the various components of DevOps environment.
- Identify Software development models and architectures of DevOps
- Use different project management and integration tools.
- Select an appropriate testing tool and deployment model for project.

UNIT-I**Introduction to DevOps:**

Introduction, Agile development model, DevOps and ITIL. DevOps process and Continuous Delivery, Release management, Scrum, Kanban, delivery pipeline, identifying bottlenecks.

UNIT-II**Software development models and DevOps:**

DevOps Lifecycle for Business Agility, DevOps, and Continuous Testing. DevOps influence on Architecture: Introducing software architecture, The monolithic scenario, Architecture rules of thumb, The separation of concerns, Handling database migrations, Micro services and the data tier, DevOps, architecture, and resilience.

UNIT-III**Introduction to project management:**

The need for source code control, the history of source code management, Roles and code, source code management system and migrations, shared authentication, Hosted Git servers, Different Git server implementations, Docker intermission, Gerrit, The pull request model, GitLab.

UNIT-IV**Integrating the system:**

Build systems, Jenkins build server, Managing build dependencies, Jenkins plugins, and file system layout, The host server, Build slaves, Software on the host, Triggers, Job chaining and build pipelines, Build servers and infrastructure as code, Building by dependency order, Build phases, Alternative buildservers, Collating quality measures.

UNIT-V**Testing Tools and Deployment:**

Various types of testing, Automation of testing Pros and cons, Selenium - Introduction, Selenium features, JavaScript testing, Testing backend integration points, Test-driven development, REPL-driven development. Deployment of the system: Deployment systems, Virtualization stacks, code execution at the client, Puppet master and agents, Ansible, Deployment tools: Chef, Salt Stack and Docker.

TEXT BOOKS:

1. Joakim Verona., Practical DevOps, Packt Publishing, 2016.

REFERENCE BOOKS:

1. Deepak Gaikwad, Viral Thakkar. DevOps Tools from Practitioner's Viewpoint. Wiley publications.
2. Len Bass, Ingo Weber, Liming Zhu. DevOps: A Software Architect's Perspective. AddisonWesley

CS511PE: QUANTUM COMPUTING (Professional Elective – I)**B.Tech. III Year I Sem.**

L	T	P	C
3	0	0	3

Course Objectives

- To introduce the fundamentals of quantum computing
- The problem-solving approach using finite dimensional mathematics

Course Outcomes

- Understand basics of quantum computing
- Understand physical implementation of Qubit
- Understand Quantum algorithms and their implementation
- Understand The Impact of Quantum Computing on Cryptography

UNIT - I

History of Quantum Computing: Importance of Mathematics, Physics and Biology. Introduction to Quantum Computing: Bits Vs Qubits, Classical Vs Quantum logical operations

UNIT - II

Background Mathematics: Basics of Linear Algebra, Hilbert space, Probabilities and measurements. **Background Physics:** Pauli's exclusion Principle, Superposition, Entanglement and super-symmetry, density operators and correlation, basics of quantum mechanics, Measurements in bases other than computational basis. **Background Biology:** Basic concepts of Genomics and Proteomics (Central Dogma)

UNIT - III

Qubit: Physical implementations of Qubit. Qubit as a quantum unit of information. The Bloch sphere. **Quantum Circuits:** single qubit gates, multiple qubit gates, designing the quantum circuits. Bell states.

UNIT - IV

Quantum Algorithms: Classical computation on quantum computers. Relationship between quantum and classical complexity classes. Deutsch's algorithm, Deutsch-Jozsa algorithm, Shor's factorization algorithm, Grover's search algorithm.

UNIT - V

Noise and error correction: Graph states and codes, Quantum error correction, fault-tolerant computation. **Quantum Information and Cryptography:** Comparison between classical and quantum information theory. Quantum Cryptography, Quantum teleportation

TEXT BOOKS:

1. Nielsen M. A., Quantum Computation and Quantum Information, Cambridge

REFERENCE BOOKS:

1. Quantum Computing for Computer Scientists by Nisong S. Yanofsky and Mirco A. Mannucci
2. Benenti G., Casati G. and Strini G., Principles of Quantum Computation and Information, Vol.I: Basic Concepts, Vol II
3. Basic Tools and Special Topics, World Scientific. Pittenger A. O., An Introduction to Quantum Computing Algorithms

CS512PE: ADVANCED COMPUTER ARCHITECTURE (Professional Elective – I)**B.Tech. III Year I Sem.**

L	T	P	C
3	0	0	3

Prerequisites: Computer Organization**Course Objectives:**

- To impart the concepts and principles of parallel and advanced computer architectures.
- To develop the design techniques of Scalable and multithreaded Architectures.
- To Apply the concepts and techniques of parallel and advanced computer architectures to design modern computer systems

Course Outcomes:

- Computational models and Computer Architectures.
- Concepts of parallel computer models.
- Scalable Architectures, Pipelining, Superscalar processors

UNIT - I

Theory of Parallelism, Parallel computer models, The State of Computing, Multiprocessors and Multicomputers, Multivector and SIMD Computers, PRAM and VLSI models, Architectural development tracks, Program and network properties, Conditions of parallelism, Program partitioning and Scheduling, Program flow Mechanisms, System interconnect Architectures.

UNIT - II

Principles of Scalable performance, Performance metrics and measures, Parallel Processing applications, Speed up performance laws, Scalability Analysis and Approaches, Hardware Technologies, Processes and Memory Hierarchy, Advanced Processor Technology, Superscalar and Vector Processors

UNIT - III

Shared-Memory Organizations, Sequential and weak consistency models, Pipelining and superscalartechniques, Linear Pipeline Processors, Non-Linear Pipeline Processors, Instruction Pipeline design, Arithmetic pipeline design, superscalar pipeline design.

UNIT - IV

Parallel and Scalable Architectures, Multiprocessors and Multicomputers, Multiprocessor system interconnects, cache coherence and synchronization mechanism, Three Generations of Multicomputers, Message-passing Mechanisms, Multivector and SIMD computers.

UNIT - V

Vector Processing Principles, Multivector Multiprocessors, Compound Vector processing, SIMD computer Organizations, The connection machine CM-5.

TEXT BOOK

1. Advanced Computer Architecture, Kai Hwang, 2nd Edition, Tata McGraw Hill Publishers.

REFERENCE BOOKS:

1. Computer Architecture, J.L. Hennessy and D.A. Patterson, 4th Edition, ELSEVIER.
2. Advanced Computer Architectures, S.G.Shiva, Special Indian edition, CRC, Taylor & Francis.
3. Introduction to High Performance Computing for Scientists and Engineers, G. Hager and G. Wellein, CRC Press, Taylor & Francis Group.
4. Advanced Computer Architecture, D. Sima, T. Fountain, P. Kacsuk, Pearson education.
5. Computer Architecture, B. Parhami, Oxford Univ. Press.

CS513PE: DATA ANALYTICS (Professional Elective – I)**B.Tech. III Year I Sem.**

L T P C
3 0 0 3

Prerequisites

1. A course on “Database Management Systems”.
2. Knowledge of probability and statistics.

Course Objectives:

- To explore the fundamental concepts of data analytics.
- To learn the principles and methods of statistical analysis
- Discover interesting patterns, analyze supervised and unsupervised models and estimate the accuracy of the algorithms.
- To understand the various search methods and visualization techniques.

Course Outcomes: After completion of this course students will be able to

- Understand the impact of data analytics for business decisions and strategy
- Carry out data analysis/statistical analysis
- To carry out standard data visualization and formal inference procedures
- Design Data Architecture
- Understand various Data Sources

UNIT - I

Data Management: Design Data Architecture and manage the data for analysis, understand various sources of Data like Sensors/Signals/GPS etc. Data Management, Data Quality(noise, outliers, missing values, duplicate data) and Data Processing & Processing.

UNIT - II

Data Analytics: Introduction to Analytics, Introduction to Tools and Environment, Application of Modeling in Business, Databases & Types of Data and Variables, Data Modeling Techniques, MissingImputations etc. Need for Business Modeling.

UNIT - III

Regression – Concepts, Blue property assumptions, Least Square Estimation, Variable Rationalization, and Model Building etc.

Logistic Regression: Model Theory, Model fit Statistics, Model Construction, Analytics applications to various Business Domains etc.

UNIT - IV

Object Segmentation: Regression Vs Segmentation - Supervised and Unsupervised Learning, Tree Building - Regression, Classification, Overfitting, Pruning and Complexity, Multiple Decision Trees etc. **Time Series Methods:** Arima, Measures of Forecast Accuracy, STL approach, Extract features from generated model as Height, Average Energy etc and Analyze for prediction

UNIT - V

Data Visualization: Pixel-Oriented Visualization Techniques, Geometric Projection Visualization Techniques, Icon-Based Visualization Techniques, Hierarchical Visualization Techniques, VisualizingComplex Data and Relations.

TEXT BOOKS:

1. Student's Handbook for Associate Analytics – II, III.
2. Data Mining Concepts and Techniques, Han, Kamber, 3rd Edition, Morgan Kaufmann Publishers.

REFERENCE BOOKS:

1. Introduction to Data Mining, Tan, Steinbach and Kumar, Addison Wesley, 2006.
2. Data Mining Analysis and Concepts, M. Zaki and W. Meira
3. Mining of Massive Datasets, Jure Leskovec Stanford Univ. Anand Rajaraman Milliway LabsJeffrey D Ullman Stanford Univ.

CS514PE: IMAGE PROCESSING (Professional Elective – I)

B.Tech. III Year I Sem.	L T P C
	3 0 0 3

Prerequisites

1. Students are expected to have knowledge in linear signals and systems, Fourier Transform, basic linear algebra, basic probability theory and basic programming techniques; knowledge of digital signal processing is desirable.
2. A course on “Computational Mathematics”
3. A course on “Computer Oriented Statistical Methods”

Course Objectives

- Provide a theoretical and mathematical foundation of fundamental Digital Image Processing concepts.
- The topics include image acquisition; sampling and quantization; preprocessing; enhancement; restoration; segmentation; and compression.

Course Outcomes

- Demonstrate the knowledge of the basic concepts of two-dimensional signal acquisition, sampling, and quantization.
- Demonstrate the knowledge of filtering techniques.
- Demonstrate the knowledge of 2D transformation techniques.
- Demonstrate the knowledge of image enhancement, segmentation, restoration and compression techniques.

UNIT - I

Digital Image Fundamentals: Digital Image through Scanner, Digital Camera. Concept of Gray Levels. Gray Level to Binary Image Conversion. Sampling and Quantization. Relationship between Pixels. Imaging Geometry. 2D Transformations-DFT, DCT, KLT and SVD.

UNIT - II

Image Enhancement in Spatial Domain Point Processing, Histogram Processing, Spatial Filtering, Enhancement in Frequency Domain, Image Smoothing, Image Sharpening.

UNIT - III

Image Restoration Degradation Model, Algebraic Approach to Restoration, Inverse Filtering, Least Mean Square Filters, Constrained Least Squares Restoration, Interactive Restoration.

UNIT - IV

Image Segmentation Detection of Discontinuities, Edge Linking and Boundary Detection, Thresholding, Region Oriented Segmentation.

UNIT - V

Image Compression Redundancies and their Removal Methods, Fidelity Criteria, Image Compression Models, Source Encoder and Decoder, Error Free Compression, Lossy Compression.

TEXT BOOK:

1. Digital Image Processing: R.C. Gonzalez & R. E. Woods, Addison Wesley/ Pearson Education, 2nd Ed, 2004.

REFERENCE BOOKS:

1. Fundamentals of Digital Image Processing: A. K. Jain, PHI.
2. Digital Image Processing using MATLAB: Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins: Pearson Education India, 2004.
3. Digital Image Processing: William K. Pratt, John Wiley, 3rd Edition, 2004.

CS515PE: PRINCIPLES OF PROGRAMMING LANGUAGES (Professional Elective – I)

B.Tech. III Year I Sem.

L T P C
3 0 0 3

Prerequisites

- 1. A course on “Mathematical Foundations of Computer Science”.
- 2. A course on “Computer Programming and Data Structures”.

Course Objectives

- Introduce important paradigms of programming languages
- To provide conceptual understanding of high-level language design and implementation
- Topics include programming paradigms; syntax and semantics; data types, expressions and statements; subprograms and blocks; abstract data types; concurrency; functional and logic programming languages; and scripting languages

Course Outcomes

- Acquire the skills for expressing syntax and semantics in formal notation
- Identify and apply a suitable programming paradigm for a given computing application
- Gain knowledge of the features of various programming languages and their comparison

UNIT - I

Preliminary Concepts: Reasons for Studying Concepts of Programming Languages, Programming Domains, Language Evaluation Criteria, Influences on Language Design, Language Categories, Language Design Trade-Offs, Implementation Methods, Programming Environments
Syntax and Semantics: General Problem of Describing Syntax and Semantics, Formal Methods of Describing Syntax, Attribute Grammars, Describing the Meanings of Programs

UNIT - II

Names, Bindings, and Scopes: Introduction, Names, Variables, Concept of Binding, Scope, Scope and Lifetime, Referencing Environments, Named Constants

Data Types: Introduction, Primitive Data Types, Character String Types, User Defined Ordinal Types, Array, Associative Arrays, Record, Union, Tuple Types, List Types, Pointer and Reference Types, Type Checking, Strong Typing, Type Equivalence Expressions and Statements, Arithmetic Expressions, Overloaded Operators, Type Conversions, Relational and Boolean Expressions, Short Circuit Evaluation, Assignment Statements, Mixed-Mode

Assignment Control Structures – Introduction, Selection Statements, Iterative Statements, Unconditional Branching, Guarded Commands.

UNIT - III

Subprograms and Blocks: Fundamentals of Sub-Programs, Design Issues for Subprograms, Local Referencing Environments, Parameter Passing Methods, Parameters that Are Subprograms, Calling Subprograms Indirectly, Overloaded Subprograms, Generic Subprograms, Design Issues for Functions, User Defined Overloaded Operators, Closures, **Coroutines**

Implementing Subprograms: General Semantics of Calls and Returns, Implementing Simple Subprograms, Implementing Subprograms with Stack-Dynamic Local Variables, Nested Subprograms, Blocks, Implementing Dynamic Scoping

Abstract Data Types: The Concept of Abstraction, Introductions to Data Abstraction, Design Issues, Language Examples, Parameterized ADT, Encapsulation Constructs, Naming Encapsulations

UNIT - IV

Concurrency: Introduction, Introduction to Subprogram Level Concurrency, Semaphores, Monitors, Message Passing, Java Threads, Concurrency in Function Languages, Statement Level Concurrency.

R22 IDP (B.Tech + M.Tech) CSE SyllabusException Handling and Event Handling:

Introduction, Exception Handling in Ada, C++, Java, Introduction to Event Handling, Event Handling with Java and C#.

UNIT - V

Functional Programming Languages: Introduction, Mathematical Functions, Fundamentals of Functional Programming Language, LISP, Support for Functional Programming in Primarily Imperative Languages, Comparison of Functional and Imperative Languages

Logic Programming Language: Introduction, an Overview of Logic Programming, Basic Elements of Prolog, Applications of Logic Programming.

Scripting Language: Pragmatics, Key Concepts, Case Study: Python - Values and Types, Variables, Storage and Control, Bindings and Scope, Procedural Abstraction, Data Abstraction, Separate Compilation, Module Library. (Text Book 2)

TEXT BOOKS:

1. Concepts of Programming Languages Robert. W. Sebesta 10/E, Pearson Education.
2. Programming Language Design Concepts, D. A. Watt, Wiley Dreamtech, 2007.

REFERENCE BOOKS:

1. Programming Languages, 2nd Edition, A.B. Tucker, R. E. Noonan, TMH.
2. Programming Languages, K. C. Louden, 2nd Edition, Thomson, 2003.

CS521PE: COMPUTER GRAPHICS (Professional Elective – II)**B.Tech. III Year I Sem.**

L	T	P	C
3	0	0	3

Prerequisites

1. Programming for problem solving and Data Structures

Course Objectives

- Provide the basics of graphics systems including Points and lines, line drawing algorithms, 2D,3D objective transformations

Course Outcomes

- Explore applications of computer graphics
- Understand 2D, 3D geometric transformations and clipping algorithms
- Understand 3D object representations, curves, surfaces, polygon rendering methods, colormodels
- Analyze animation sequence and visible surface detection methods

UNIT - I

Introduction: Application areas of Computer Graphics, overview of graphics systems, video-display devices, raster-scan systems, random-scan systems, graphics monitors and work stations and input devices

Output primitives: Points and lines, line drawing algorithms (DDA and Bresenham's Algorithm) circle-generating algorithms and ellipse - generating algorithms

Polygon Filling: Scan-line algorithm, boundary-fill and flood-fill algorithms

UNIT - II

2-D geometric transformations: Translation, scaling, rotation, reflection and shear transformations, matrix representations and homogeneous coordinates, composite transforms, transformations between coordinate systems

2-D viewing: The viewing pipeline, viewing coordinate reference frame, window to view-port coordinate transformation, viewing functions, clipping operations, point clipping, Line clipping-Cohen Sutherland algorithms, Polygon clipping-Sutherland Hodgeman polygon clipping algorithm.

UNIT - III

3-D object representation: Polygon surfaces, quadric surfaces, spline representation, Hermite curve, Bezier curve and B-Spline curves, Bezier and B-Spline surfaces, Polygon rendering methods, color models and color applications.

UNIT - IV

3-D Geometric transformations: Translation, rotation, scaling, reflection and shear transformations, composite transformations.

3-D viewing: Viewing pipeline, viewing coordinates, projections, view volume and general projection transforms and clipping.

UNIT - V

Computer animation: Design of animation sequence, general computer animation functions, raster animations, computer animation languages, key frame systems, motion specifications.

Visible surface detection methods: Classification, back-face detection, depth-buffer method, BSP- tree method, area sub-division method and octree method.

TEXT BOOKS:

1. "Computer Graphics C version", Donald Hearn and M. Pauline Baker, Pearson Education

REFERENCE BOOKS:

1. Procedural elements for Computer Graphics, David F Rogers, Tata Mc Graw hill, 2nd edition.
2. Principles of Interactive Computer Graphics", Neuman and Sproul, TMH.
3. Principles of Computer Graphics, Shalini Govil, Pai, 2005, Springer.
4. "Computer Graphics Principles & practice", second edition in C, Foley, Van Dam, Feiner and Hughes, Pearson Education.
5. Computer Graphics, Steven Harrington, TMH.

CS522PE: EMBEDDED SYSTEMS (Professional Elective – II)**B.Tech. III Year I Sem.**

L	T	P	C
3	0	0	3

Pre-requisites:

1. A course on “Digital Logic Design and Microprocessors”
2. A course on “Computer Organization and Architecture”

Course Objectives:

- To provide an overview of principles of Embedded System
- To provide a clear understanding of role of firmware, operating systems in correlation with hardware systems.

Course Outcomes:

- Expected to understand the selection procedure of processors in the embedded domain.
- Design procedure of embedded firm ware.
- Expected to visualize the role of realtime operating systems in embedded systems.
- Expected to evaluate the correlation between task synchronization and latency issues

UNIT - I

Introduction to Embedded Systems: Processor embedded into a system, Embedded Hardware units and devices in a system, Embedded software in a system, Design process of an embedded system, classification of embedded systems, characteristics and quality attributes of an embedded systems

UNIT - II

Introduction to processor/microcontroller architecture, Real world interfacing, processor and memory organization, memory types, memory maps and addresses, interrupt sources and interrupt service mechanism.

UNIT - III

On board Communication Basics: serial; communication devices, Parallel devices, Wireless devices, Real time clock, Serial bus communication Protocols - I2C, SPI; Parallel buss communication - ISA, PCI.

UNIT - IV

Embedded Firmware Development: Overview of programming concepts - in assembly language and in high level language ‘C’, C Program elements- Heads, Source files, Processor Directives, Macros, Functions, Data types and Data Structures

UNIT - V

OS Based Embedded Systems: OS services - Process/Task Management, Memory Management, I/O subsystem manager, Inter Process/Task communications - Tasks, Task states, Shared data, Signals, Message Queues, Mailbox, Pipes and concepts of Semaphores.

TEXT BOOK:

1. Embedded Systems, Raj Kamal, 2nd edition, Tata Mc Graw Hill
2. Shibu K V, “Introduction to Embedded Systems”, Second Edition, Mc Graw Hill

REFERENCE BOOKS:

1. Rajkamal, Embedded Systems Architecture, Programming and Design, Tata McGraw-Hill
2. Frank Vahid and Tony Givargis, “Embedded Systems Design” - A Unified Hardware/Software Introduction, John Wiley
3. Lyla, “Embedded Systems” – Pearson
4. David E. Simon, An Embedded Software Primer, Pearson Education Asia, First Indian Reprint2000.

**CS523PE: INFORMATION RETRIEVAL SYSTEMS (Professional Elective
– II)**

B.Tech. III Year I Sem.

L	T	P	C
3	0	0	3

Prerequisites:

- 1. Data Structures

Course Objectives:

- To learn the concepts and algorithms in Information Retrieval Systems
- To understand the data/file structures that are necessary to design, and implement information retrieval (IR) systems.

Course Outcomes:

- Ability to apply IR principles to locate relevant information large collections of data
- Ability to design different document clustering algorithms
- Implement retrieval systems for web search tasks.
- Design an Information Retrieval System for web search tasks.

UNIT - I

Introduction to Information Retrieval Systems: Definition of Information Retrieval System, Objectives of Information Retrieval Systems, Functional Overview, Relationship to Database Management Systems, Digital Libraries and Data Warehouses Information Retrieval System Capabilities: Search Capabilities, Browse Capabilities, Miscellaneous Capabilities

UNIT - II

Cataloging and Indexing: History and Objectives of Indexing, Indexing Process, Automatic Indexing, Information Extraction Data Structure: Introduction to Data Structure, Stemming Algorithms, Inverted File Structure, N-Gram Data Structures, PAT Data Structure, Signature File Structure, Hypertext and XML Data Structures, Hidden Markov Models.

UNIT - III

Automatic Indexing: Classes of Automatic Indexing, Statistical Indexing, Natural Language, Concept Indexing, Hypertext Linkages

Document and Term Clustering: Introduction to Clustering, Thesaurus Generation, Item Clustering, Hierarchy of Clusters

UNIT - IV

User Search Techniques: Search Statements and Binding, Similarity Measures and Ranking, Relevance Feedback, Selective Dissemination of Information Search, Weighted Searches of Boolean Systems, Searching the INTERNET and Hypertext

Information Visualization: Introduction to Information Visualization, Cognition and Perception, Information Visualization Technologies

UNIT - V

Text Search Algorithms: Introduction to Text Search Techniques, Software Text Search Algorithms, Hardware Text Search Systems

Multimedia Information Retrieval: Spoken Language Audio Retrieval, Non-Speech Audio Retrieval, Graph Retrieval, Imagery Retrieval, Video Retrieval

TEXT BOOK:

1. Information Storage and Retrieval Systems – Theory and Implementation, Second Edition, Gerald J. Kowalski, Mark T. Maybury, Springer

REFERENCE BOOKS:

1. Frakes, W.B., Ricardo Baeza-Yates: Information Retrieval Data Structures and Algorithms, Prentice Hall, 1992.
2. Information Storage & Retrieval by Robert Korfhage – John Wiley & Sons.
3. Modern Information Retrieval by Yates and Neto Pearson Education.

CS524PE: DISTRIBUTED DATABASES (Professional Elective – II)**B.Tech. III Year I Sem.**

L	T	P	C
3	0	0	3

Prerequisites:

1. A course on “Database Management Systems”

Course Objectives:

- The purpose of the course is to enrich the previous knowledge of database systems and expose the need for distributed database technology to confront the deficiencies of the centralized database systems.
- Introduce basic principles and implementation techniques of distributed database systems.
- Equip students with principles and knowledge of parallel and object-oriented databases.
- Topics include distributed DBMS architecture and design; query processing and optimization; distributed transaction management and reliability; parallel and object database managementsystems.

Course Outcomes:

- Understand theoretical and practical aspects of distributed database systems.
- Study and identify various issues related to the development of distributed database systems.
- Understand the design aspects of object-oriented database systems and related developments.

UNIT - I

Introduction; Distributed Data Processing, Distributed Database System, Promises of DDBSs, Problemareas.

Distributed DBMS Architecture: Architectural Models for Distributed DBMS, DDMBS Architecture. **Distributed Database Design:** Alternative Design Strategies, Distribution Design issues,Fragmentation, Allocation.

UNIT - II

Query processing and decomposition: Query processing objectives, characterization of query processors, layers of query processing, query decomposition, localization of distributed data.

Distributed query Optimization: Query optimization, centralized query optimization, distributed queryoptimization algorithms.

UNIT - III

Transaction Management: Definition, properties of transaction, types of transactions, distributed concurrency control: serializability, concurrency control mechanisms & algorithms, time - stamped & optimistic concurrency control Algorithms, deadlock Management.

UNIT - IV

Distributed DBMS Reliability: Reliability concepts and measures, fault-tolerance in distributed systems, failures in Distributed DBMS, local & distributed reliability protocols, site failures and networkpartitioning.

Parallel Database Systems: Parallel database system architectures, parallel data placement, parallelquery processing, load balancing, database clusters.

UNIT - V

Distributed object Database Management Systems: Fundamental object concepts and models, object distributed design, architectural issues, object management, distributed object storage, object query Processing.

Object Oriented Data Model: Inheritance, object identity, persistent programming languages, persistence of objects, comparison OODBMS and ORDBMS

TEXT BOOKS:

1. M. Tamer OZSU and Patuck Valduriez: Principles of Distributed Database Systems, PearsonEdn. Asia, 2001.
2. Stefano Ceri and Giuseppe Pelagatti: Distributed Databases, McGraw Hill.

REFERENCE BOOK:

1. Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer Widom: "Database Systems: The CompleteBook", Second Edition, Pearson International Edition.

CS525PE: NATURAL LANGUAGE PROCESSING (Professional Elective – II)**B.Tech. III Year I Sem.**

L	T	P	C
3	0	0	3

Prerequisites:

1. Data structures and compiler design

Course Objectives:

- Introduction to some of the problems and solutions of NLP and their relation to linguistics and statistics.

Course Outcomes:

- Show sensitivity to linguistic phenomena and an ability to model them with formal grammars.
- Understand and carry out proper experimental methodology for training and evaluating empirical NLP systems
- Manipulate probabilities, construct statistical models over strings and trees, and estimate parameters using supervised and unsupervised training methods.
- Design, implement, and analyze NLP algorithms; and design different language modeling Techniques.

UNIT - I

Finding the Structure of Words: Words and Their Components, Issues and Challenges, Morphological Models

Finding the Structure of Documents: Introduction, Methods, Complexity of the Approaches, Performances of the Approaches, Features

UNIT - II

Syntax I: Parsing Natural Language, Treebanks: A Data-Driven Approach to Syntax, Representation of Syntactic Structure, Parsing Algorithms

UNIT – III

Syntax II: Models for Ambiguity Resolution in Parsing, Multilingual Issues

Semantic Parsing I: Introduction, Semantic Interpretation, System Paradigms, Word Sense

UNIT - IV

Semantic Parsing II: Predicate-Argument Structure, Meaning Representation Systems

UNIT - V

Language Modeling: Introduction, N-Gram Models, Language Model Evaluation, Bayesian parameter estimation, Language Model Adaptation, Language Models- class based, variable length, Bayesian topic based, Multilingual and Cross Lingual Language Modeling

TEXT BOOKS:

1. Multilingual natural Language Processing Applications: From Theory to Practice - Daniel M.Bikel and Imed Zitouni, Pearson Publication.

REFERENCE BOOK:

1. Speech and Natural Language Processing - Daniel Jurafsky & James H Martin, Pearson Publications.
2. Natural Language Processing and Information Retrieval: Tanvier Siddiqui, U.S. Tiwary.

CS504PC: COMPUTER NETWORKS LAB**B.Tech. III Year I Sem.**

L	T	P	C
0	0	2	1

Course Objectives

- To understand the working principle of various communication protocols.
- To understand the network simulator environment and visualize a network topology and observe its performance
- To analyze the traffic flow and the contents of protocol frames

Course Outcomes

- Implement data link layer framing methods
- Analyze error detection and error correction codes.
- Implement and analyze routing and congestion issues in network design.
- Implement Encoding and Decoding techniques used in presentation layer
- To be able to work with different network tools

List of Experiments

1. Implement the data link layer framing methods such as character, character-stuffing and bitstuffing.
2. Write a program to compute CRC code for the polynomials CRC-12, CRC-16 and CRC CCIP
3. Develop a simple data link layer that performs the flow control using the sliding window protocol, and loss recovery using the Go-Back-N mechanism.
4. Implement Dijkstra's algorithm to compute the shortest path through a network
5. Take an example subnet of hosts and obtain a broadcast tree for the subnet.
6. Implement distance vector routing algorithm for obtaining routing tables at each node.
7. Implement data encryption and data decryption
8. Write a program for congestion control using Leaky bucket algorithm.
9. Write a program for frame sorting techniques used in buffers.

10. Wireshark

- i. Packet Capture Using Wireshark
- ii. Starting Wireshark
- iii. Viewing Captured Traffic
- iv. Analysis and Statistics & Filters. How to run Nmap scan
- Operating System Detection using Nmap
- Do the following using NS2 Simulator
 - i. NS2 Simulator-Introduction
 - ii. Simulate to Find the Number of Packets Dropped
 - iii. Simulate to Find the Number of Packets Dropped by TCP/UDP
 - iv. Simulate to Find the Number of Packets Dropped due to Congestion
 - v. Simulate to Compare Data Rate & Throughput.
 - vi. Simulate to Plot Congestion for Different Source/Destination
 - vii. Simulate to Determine the Performance with respect to Transmission of Packets

TEXT BOOK:

1. Computer Networks, Andrew S Tanenbaum, David. J. Wetherall, 5th Edition. Pearson Education/PHI.

REFERENCE BOOKS:

1. An Engineering Approach to Computer Networks, S. Keshav, 2nd Edition, Pearson Education.
2. Data Communications and Networking – Behrouz A. Forouzan. 3rd Edition, TMH.

R22 IDP (B.Tech + M.Tech) CSE SyllabusCS505PC: DEVOPS LAB**B.Tech. III Year I Sem.**

L	T	P	C
----------	----------	----------	----------

0 0 2 1**Course Objectives:**

- Develop a sustainable infrastructure for applications and ensure high scalability. DevOps aims to shorten the software development lifecycle to provide continuous delivery with high-quality.

Course Outcomes:

1. Understand the need of DevOps tools
2. Understand the environment for a software application development
3. Apply different project management, integration and development tools
4. Use Selenium tool for automated testing of application

List of Experiments:

1. Write code for a simple user registration form for an event.
2. Explore Git and GitHub commands.
3. Practice Source code management on GitHub. Experiment with the source code in exercise 1.
4. Jenkins installation and setup, explore the environment.
5. Demonstrate continuous integration and development using Jenkins.
6. Explore Docker commands for content management.
7. Develop a simple containerized application using Docker.
8. Integrate Kubernetes and Docker
9. Automate the process of running containerized application for exercise 7 using Kubernetes.
10. Install and Explore Selenium for automated testing.
11. Write a simple program in JavaScript and perform testing using Selenium.
12. Develop test cases for the above containerized application using selenium.

TEXT BOOKS:

1. Joakim Verona., Practical DevOps, Packt Publishing, 2016.

REFERENCE BOOKS:

1. Deepak Gaikwad, Viral Thakkar. DevOps Tools from Practitioner's Viewpoint. Wiley publications.
2. Len Bass, Ingo Weber, Liming Zhu. DevOps: A Software Architect's Perspective. AddisonWesley.

EN508HS: ADVANCED ENGLISH COMMUNICATION SKILLS LAB**B.Tech. III Year I Sem.****C****L T P****0 0 2 1****1. Introduction**

The introduction of the Advanced English Communication Skills Lab is considered essential at the B.Tech 3rd year level. At this stage, the students need to prepare themselves for their career which may require them to listen to, read, speak and write in English both for their professional and interpersonal communication in the globalised context.

The proposed course should be a laboratory course to enable students to use appropriate English and perform the following:

1. Gathering ideas and information to organise ideas relevantly and coherently.
2. Making oral presentations.
3. Writing formal letters.
4. Transferring information from non-verbal to verbal texts and vice-versa.
5. Writing project/research reports/technical reports.
6. Participating in group discussions.
7. Engaging in debates.
8. Facing interviews.
9. Taking part in social and professional communication.

2. Objectives:

This Lab focuses on using multi-media instruction for language development to meet the following targets:

- To improve the students' fluency in English, with a focus on vocabulary
- To enable them to listen to English spoken at normal conversational speed by educated English speakers
- To respond appropriately in different socio-cultural and professional contexts
- To communicate their ideas relevantly and coherently in writing
- To prepare the students for placements.

3. Syllabus:

The following course content to conduct the activities is prescribed for the Advanced English Communication Skills (AECS) Lab:

1. **Activities on Listening and Reading Comprehension:** Active Listening — Development of Listening Skills Through Audio clips - Benefits of Reading – Methods and Techniques of Reading
 – Basic Steps to Effective Reading – Common Obstacles – Discourse Markers or Linkers
 - Sub-skills of reading - Reading for facts, negative facts and Specific Details- Guessing Meanings from Context, Inferring Meaning - Critical Reading — Reading Comprehension – Exercises for Practice.
2. **Activities on Writing Skills:** Vocabulary for Competitive Examinations - Planning for Writing
 – Improving Writing Skills - Structure and presentation of different types of writing – Free Writing and Structured Writing - Letter Writing – Writing a Letter of Application – Resume vs. Curriculum Vitae
 - Writing a Résumé – Styles of Résumé - e-Correspondence - Emails - Blog Writing - (N)etiquette
 - Report Writing - Importance of Reports - Types and Formats of Reports- Technical Report Writing- Exercises for Practice.
3. **Activities on Presentation Skills** - Starting a conversation – responding appropriately and relevantly – using the right language and body language – Role Play in different situations including Seeking Clarification, Making a Request, Asking for and Refusing Permission, Participating in a Small Talk – Oral presentations (individual and group) through JAM sessions- PPTs – Importance of Presentation Skills – Planning, Preparing, Rehearsing and Making a Presentation – Dealing with Glossophobia or Stage Fear – Understanding Nuances of Delivery - Presentations through Posters/Projects/Reports – Checklist for Making a Presentation and Rubrics of Evaluation

4. R22 IDP (B.Tech + M.Tech) CSE Syllabus **Activities on Group Discussion (GD):** Types of GD and GD as a part of a Selection Procedure -Dynamics of Group Discussion- Myths of GD - Intervention, Summarizing - Modulation of Voice, Body Language, Relevance, Fluency and Organization of Ideas – Do's and Don'ts - GD Strategies – Exercises for Practice.
5. **Interview Skills:** Concept and Process - Interview Preparation Techniques - Types of Interview Questions – Pre-interview Planning, Opening Strategies, Answering Strategies - Interview Through Tele-conference & Video-conference - Mock Interviews.

4. Minimum Requirement:

The Advanced English Communication Skills (AECS) Laboratory shall have the following infrastructural facilities to accommodate at least 35 students in the lab:

- Spacious room with appropriate acoustics
- Round Tables with movable chairs
- Audio-visual aids
- LCD Projector
- Public Address system
- One PC with latest configuration for the teacher
- T. V, a digital stereo & Camcorder
- Headphones of High quality

5. **Suggested Software:** The software consisting of the prescribed topics elaborated above should be procured and used.

- **TOEFL & GRE** (KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS)
- **Oxford Advanced Learner's Dictionary**, 10th Edition
 - **Cambridge Advanced Learner's Dictionary**
- **DELTA's key to the Next Generation TOEFL Test: Advanced Skill Practice.**
- **Lingua TOEFL CBT Insider**, by Dreamtech

6. Books Recommended:

1. Rizvi, M. Ashraf (2018). *Effective Technical Communication*. (2nd ed.). McGraw Hill Education (India) Pvt. Ltd.
2. Suresh Kumar, E. (2015). *Engineering English*. Orient BlackSwan Pvt. Ltd.
3. Bailey, Stephen. (2018). *Academic Writing: A Handbook for International Students*. (5th Edition). Routledge.
4. Koneru, Aruna. (2016). *Professional Communication*. McGraw Hill Education (India) Pvt. Ltd.
5. Raman, Meenakshi & Sharma, Sangeeta. (2022). *Technical Communication, Principles and Practice*. (4TH Edition) Oxford University Press.
6. Anderson, Paul V. (2007). *Technical Communication*. Cengage Learning Pvt. Ltd. New Delhi.
7. McCarthy, Michael; O'Dell, Felicity & Redman, Stuart. (2017). *English Vocabulary in Use Series*. Cambridge University Press
8. Sen, Leela. (2009). *Communication Skills*. PHI Learning Pvt Ltd., New Delhi.
9. Elbow, Peter. (1998). *Writing with Power*. Oxford University Press.
10. Goleman, Daniel. (2013). *Emotional Intelligence: Why it can matter more than IQ*. Bloomsbury Publishing.

CS506PC: UI DESIGN-FLUTTER**B.Tech. III Year I Sem.**

L	T	P	C
0	0	2	1

Course Objectives:

- Learns to Implement Flutter Widgets and Layouts
- Understands Responsive UI Design and with Navigation in Flutter
- Knowledge on Widgets and customize widgets for specific UI elements, Themes
- Understand to include animation apart from fetching data

Course Outcomes:

- Implements Flutter Widgets and Layouts
- Responsive UI Design and with Navigation in Flutter
- Create custom widgets for specific UI elements and also Apply styling using themes and customstyles.
- Design a form with various input fields, along with validation and error handling
- Fetches data and write code for unit Test for UI components and also animation

List of Experiments: Students need to implement the following experiments

1. a) Install Flutter and Dart SDK.
b) Write a simple Dart program to understand the language basics.
2. a) Explore various Flutter widgets (Text, Image, Container, etc.).
b) Implement different layout structures using Row, Column, and Stack widgets.
3. a) Design a responsive UI that adapts to different screen sizes.
b) Implement media queries and breakpoints for responsiveness.
4. a) Set up navigation between different screens using Navigator.
b) Implement navigation with named routes.
5. a) Learn about stateful and stateless widgets.
b) Implement state management using set State and Provider.
6. a) Create custom widgets for specific UI elements.
b) Apply styling using themes and custom styles.
7. a) Design a form with various input fields.
b) Implement form validation and error handling.
8. a) Add animations to UI elements using Flutter's animation framework.
b) Experiment with different types of animations (fade, slide, etc.).
9. a) Fetch data from a REST API.
b) Display the fetched data in a meaningful way in the UI.
10. a) Write unit tests for UI components.
b) Use Flutter's debugging tools to identify and fix issues.

TEXT BOOK:

1. Marco L. Napoli, Beginning Flutter: A Hands-on Guide to App Development.

MC510: INTELLECTUAL PROPERTY RIGHTS*B.Tech. III Year I Sem.**

L	T	P	C
3	0	0	0

Course Objectives:

- Significance of intellectual property and its protection
- Introduce various forms of intellectual property

Course Outcomes:

- Distinguish and Explain various forms of IPRs.
- Identify criteria to fit one's own intellectual work in particular form of IPRs.
- Apply statutory provisions to protect particular form of IPRs.
- Appraise new developments in IPR laws at national and international level

UNIT – I

Introduction to Intellectual property: Introduction, types of intellectual property, international organizations, agencies and treaties, importance of intellectual property rights.

UNIT – II

Trade Marks: Purpose and function of trademarks, acquisition of trade mark rights, protectable matter, selecting, and evaluating trade mark, trade mark registration processes.

UNIT – III

Law of copyrights: Fundamental of copyright law, originality of material, rights of reproduction, rights to perform the work publicly, copyright ownership issues, copyright registration, notice of copyright, International copyright law.

Law of patents: Foundation of patent law, patent searching process, ownership rights and transfer

UNIT – IV

Trade Secrets: Trade secret law, determination of trade secret status, liability for misappropriations of trade secrets, protection for submission, trade secret litigation.

Unfair competition: Misappropriation right of publicity, false advertising.

UNIT – V

New development of intellectual property: new developments in trade mark law; copyright law, patent law, intellectual property audits.

International overview on intellectual property, international – trade mark law, copyright law, international patent law, and international development in trade secrets law.

TEXT BOOK:

1. Intellectual property right, Deborah. E. Bouchoux, Cengage learning.

REFERENCE BOOK:

1. Intellectual property right – Unleashing the knowledge economy, prabuddha ganguli, TataMcGraw Hill Publishing company Ltd.

CS601PC: MACHINE LEARNING**B.Tech. III Year II Sem.**

L	T	P	C
3	0	0	3

Course Objectives:

- To introduce students to the basic concepts and techniques of Machine Learning.
- To have a thorough understanding of the Supervised and Unsupervised learning techniques
- To study the various probability-based learning techniques

Course Outcomes:

- Distinguish between, supervised, unsupervised and semi-supervised learning
- Understand algorithms for building classifiers applied on datasets of non-linearly separable classes
- Understand the principles of evolutionary computing algorithms
- Design an ensemble to increase the classification accuracy

UNIT - I

Learning - Types of Machine Learning - Supervised Learning - The Brain and the Neuron - Design a Learning System - Perspectives and Issues in Machine Learning - Concept Learning Task - Concept Learning as Search - Finding a Maximally Specific Hypothesis - Version Spaces and the Candidate Elimination Algorithm - Linear Discriminants: - Perceptron - Linear Separability - Linear Regression.

UNIT - II

Multi-layer Perceptron- Going Forwards - Going Backwards: Back Propagation Error - Multi-layer Perceptron in Practice - Examples of using the MLP - Overview - Deriving Back-Propagation - Radial Basis Functions and Splines - Concepts - RBF Network - Curse of Dimensionality - Interpolations and Basis Functions - Support Vector Machines

UNIT - III

Learning with Trees - Decision Trees - Constructing Decision Trees - Classification and Regression Trees - Ensemble Learning - Boosting - Bagging - Different ways to Combine Classifiers - Basic Statistics - Gaussian Mixture Models - Nearest Neighbor Methods - Unsupervised Learning - K-means Algorithms

UNIT - IV

Dimensionality Reduction - Linear Discriminant Analysis - Principal Component Analysis - Factor Analysis - Independent Component Analysis - Locally Linear Embedding - Isomap - Least Squares Optimization
Evolutionary Learning - Genetic algorithms - Genetic Offspring: - Genetic Operators - Using Genetic Algorithms

UNIT - V

Reinforcement Learning - Overview - Getting Lost Example
Markov Chain Monte Carlo Methods - Sampling - Proposal Distribution - Markov Chain Monte Carlo - Graphical Models - Bayesian Networks - Markov Random Fields - Hidden Markov Models - Tracking Methods

TEXT BOOKS:

1. Stephen Marsland, "Machine Learning – An Algorithmic Perspective, Second Edition, Chapman and Hall/CRC Machine Learning and Pattern Recognition Series, 2014.

REFERENCE BOOKS:

1. Tom M Mitchell, —Machine Learning, First Edition, McGraw Hill Education, 2013.
2. Peter Flach, —Machine Learning: The Art and Science of Algorithms that Make Sense of

Data1, First Edition, Cambridge University Press, 2012.

3. Jason Bell, —Machine learning – Hands on for Developers and Technical Professionals1, FirstEdition, Wiley, 2014
4. Ethem Alpaydin, —Introduction to Machine Learning 3e (Adaptive Computation and MachineLearning Series), Third Edition, MIT Press, 2014

CS602PC: FORMAL LANGUAGES AND AUTOMATA THEORY

B.Tech. III Year II Sem.	C	L T P
		3 0 0 3

Course Objectives

- To provide introduction to some of the central ideas of theoretical computer science from the perspective of formal languages.
- To introduce the fundamental concepts of formal languages, grammars and automata theory.
- Classify machines by their power to recognize languages.
- Employ finite state machines to solve problems in computing.
- To understand deterministic and non-deterministic machines.
- To understand the differences between decidability and undecidability.

Course Outcomes

- Understand the concept of abstract machines and their power to recognize the languages.
- Employ finite state machines for modeling and solving computing problems.
- Design context free grammars for formal languages.
- Distinguish between decidability and undecidability.

UNIT - I

Introduction to Finite Automata: Structural Representations, Automata and Complexity, the Central Concepts of Automata Theory - Alphabets, Strings, Languages, Problems.

Nondeterministic Finite Automata: Formal Definition, an application, Text Search, Finite Automata with Epsilon-Transitions.

Deterministic Finite Automata: Definition of DFA, How A DFA Process Strings, The language of DFA, Conversion of NFA with ϵ -transitions to NFA without ϵ -transitions. Conversion of NFA to DFA, Moore and Melay machines

UNIT - II

Regular Expressions: Finite Automata and Regular Expressions, Applications of Regular Expressions, Algebraic Laws for Regular Expressions, Conversion of Finite Automata to Regular Expressions.

Pumping Lemma for Regular Languages: Statement of the pumping lemma, Applications of the Pumping Lemma.

Closure Properties of Regular Languages: Closure properties of Regular languages, Decision Properties of Regular Languages, Equivalence and Minimization of Automata.

UNIT - III

Context-Free Grammars: Definition of Context-Free Grammars, Derivations Using a Grammar, Leftmost and Rightmost Derivations, the Language of a Grammar, Sentential Forms, Parse Trees, Applications of Context-Free Grammars, Ambiguity in Grammars and Languages.

Push Down Automata: Definition of the Pushdown Automaton, the Languages of a PDA, Equivalence of PDA's and CFG's, Acceptance by final state, Acceptance by empty stack, Deterministic Pushdown Automata. From CFG to PDA, From PDA to CFG.

UNIT - IV

Normal Forms for Context-Free Grammars: Eliminating useless symbols, Eliminating ϵ -Productions. Chomsky Normal form Greibach Normal form.

Pumping Lemma for Context-Free Languages: Statement of pumping lemma, Applications

Closure Properties of Context-Free Languages: Closure properties of CFL's, Decision Properties of CFL's Turing Machines: Introduction to Turing Machine, Formal Description, Instantaneous description, The language of a Turing machine

R22 IDP (B.Tech + M.Tech) CSE Syllabus UNIT - V

Types of Turing machine: Turing machines and halting

Undecidability: Undecidability, A Language that is Not Recursively Enumerable, An Undecidable Problem That is RE, Undecidable Problems about Turing Machines, Recursive languages, Properties of recursive languages, Post's Correspondence Problem, Modified Post Correspondence problem, Other Undecidable Problems, Counter machines.

TEXT BOOKS:

1. Introduction to Automata Theory, Languages, and Computation, 3rd Edition, John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Pearson Education.
2. Theory of Computer Science — Automata languages and computation, Mishra and Chandrashekaran, 2nd edition, PHI.

REFERENCE BOOKS:

1. Introduction to Languages and The Theory of Computation, John C Martin, TMH.
2. Introduction to Computer Theory, Daniel I.A. Cohen, John Wiley.
3. A Textbook on Automata Theory, P. K. Srimani, Nasir S. F. B, Cambridge University Press.
4. Introduction to the Theory of Computation, Michael Sipser, 3rd edition, Cengage Learning.
5. Introduction to Formal languages Automata Theory and Computation Kamala Krithivasan, Rama R, Pearson.

CS603PC: ARTIFICIAL INTELLIGENCE**B.Tech. III Year II Sem.****C****L T P****3 0 0 3****Prerequisites:**

1. Programming for problem solving, Data Structures.

Course Objectives:

- To learn the distinction between optimal reasoning Vs. human like reasoning
- To understand the concepts of state space representation, exhaustive search, heuristic search together with the time and space complexities.
- To learn different knowledge representation techniques.
- To understand the applications of AI, namely game playing, theorem proving, and machine learning.

Course Outcomes:

- Understand search strategies and intelligent agents
- Understand different adversarial search techniques
- Apply propositional logic, predicate logic for knowledge representation
- Apply AI techniques to solve problems of game playing, and machine learning.

UNIT - I

Introduction to AI, Intelligent Agents, problem-Solving Agents, Searching for Solutions, Uninformed Search Strategies: Breadth-first search, Uniform cost search, Depth-first search, Iterative deepening Depth-first search, Bidirectional search, Informed (Heuristic) Search Strategies: Greedy best-first search, A* search, Heuristic Functions, Beyond Classical Search: Hill-climbing search, Simulated annealing search, Local Search in Continuous Spaces

UNIT - II**Problem Solving by Search-II and Propositional Logic**

Adversarial Search: Games, Optimal Decisions in Games, Alpha-Beta Pruning, Imperfect Real-Time Decisions. **Constraint Satisfaction Problems:** Defining Constraint Satisfaction Problems, Constraint Propagation, Backtracking Search for CSPs, Local Search for CSPs, The Structure of Problems. **Propositional Logic:** Knowledge-Based Agents, The Wumpus World, Logic, Propositional Logic, Propositional Theorem Proving: Inference and proofs, Proof by resolution, Horn clauses and definite clauses, Forward and backward chaining, Effective Propositional Model Checking, Agents Based on Propositional Logic.

UNIT - III**Logic and Knowledge Representation**

First-Order Logic: Representation, Syntax and Semantics of First-Order Logic, Using First-Order Logic, Knowledge Engineering in First-Order Logic.

Inference in First-Order Logic: Propositional vs. First-Order Inference, Unification and Lifting, Forward Chaining, Backward Chaining, Resolution.

UNIT - IV

Knowledge Representation: Ontological Engineering, Categories and Objects, Events. Mental Events and Mental Objects, Reasoning Systems for Categories, Reasoning with Default Information.

Classical Planning: Definition of Classical Planning, Algorithms for Planning with State-Space Search, Planning Graphs, other Classical Planning Approaches, Analysis of Planning approaches.

R22 IDP (B.Tech + M.Tech) CSE Syllabus UNIT - V

Uncertain knowledge and Learning Uncertainty: Acting under Uncertainty, Basic Probability Notation, Inference Using Full Joint Distributions, Independence, Bayes' Rule and Its Use

Probabilistic Reasoning: Representing Knowledge in an Uncertain Domain, The Semantics of Bayesian Networks, Efficient Representation of Conditional Distributions, Approximate

Inference in Bayesian Networks, Relational and First-Order Probability, Other Approaches to Uncertain Reasoning; Dempster-Shafer theory.

TEXT BOOK:

1. Artificial Intelligence: A Modern Approach, Third Edition, Stuart Russell and Peter Norvig, Pearson Education.

REFERENCE BOOKS:

1. Artificial Intelligence, 3rd Edn, E. Rich and K. Knight (TMH)
2. Artificial Intelligence, 3rd Edn., Patrick Henry Winston, Pearson Education.
3. Artificial Intelligence, Shivani Goel, Pearson Education.
4. Artificial Intelligence and Expert systems – Patterson, Pearson Education

CS631PE: FULL STACK DEVELOPMENT (Professional Elective – III)**B.Tech. III Year II Sem.**

L	T	P	C
3	0	0	3

Pre-Requisites:

1. Object Oriented Programming
2. Web Technologies

Course Objectives:

- Students will become familiar to implement fast, efficient, interactive and scalable web applications using run time environment provided by the full stack components.

Course Outcomes:

- Understand Full stack components for developing web application.
- Apply packages of NodeJS to work with Data, Files, Http Requests and Responses.
- Use MongoDB data base for storing and processing huge data and connects with NodeJSapplication.
- Design faster and effective single page applications using Express and Angular.
- Create interactive user interfaces with react components.

UNIT-I**Introduction to Full Stack Development:**

Understanding the Basic Web Development Framework- User, Browser, Webserver, Backend Services, Full Stack Components - Node.js, MongoDB, Express, React, Angular. Java Script Fundamentals, NodeJS- Understanding Node.js, Installing Node.js, Working with Node Packages, creating a Node.js Application, Understanding the Node.js Event Model, Adding Work to the Event Queue, Implementing Callbacks

UNIT-II**Node.js:**

Working with JSON, Using the Buffer Module to Buffer Data, Using the Stream Module to Stream Data, Accessing the File System from Node.js- Opening, Closing, Writing, Reading Files and other File System Tasks. Implementing HTTP Services in Node.js- Processing URLs, Processing Query Strings and Form Parameters, Understanding Request, Response, and Server Objects, Implementing HTTP Clients and Servers in Node.js, Implementing HTTPS Servers and Clients. Using Additional Node.js Modules-Using the os Module, Using the util Module, Using the dns Module, Using the crypto Module.

UNIT-III**MongoDB:**

Need of NoSQL, Understanding MongoDB, MongoDB Data Types, Planning Your Data Model, Building the MongoDB Environment, Administering User Accounts, Configuring Access Control, Administering Databases, Managing Collections, Adding the MongoDB Driver to Node.js, Connecting to MongoDB from Node.js, Understanding the Objects Used in the MongoDB Node.js Driver, Accessing and Manipulating Databases, Accessing and Manipulating Collections

UNIT-IV**Express and Angular:**

Getting Started with Express, Configuring Routes, Using Requests Objects, Using Response Objects. Angular: importance of Angular, Understanding Angular, creating a Basic Angular Application, Angular Components, Expressions, Data Binding, Built-in Directives, Custom Directives, Implementing AngularServices in Web Applications.

R22 IDP (B.Tech + M.Tech) CSE Syllabus UNIT-V**React:**

Need of React, Simple React Structure, The Virtual DOM, React Components, Introducing React

Components, Creating Components in React, Data and Data Flow in React, Rendering and Life CycleMethods in React, Working with forms in React, integrating third party libraries, Routing in React.

TEXT BOOKS:

1. Brad Dayley, Brendan Dayley, Caleb Dayley., Node.js, MongoDB and Angular Web Development, 2nd Edition, Addison-Wesley, 2019.
2. Mark Tielens Thomas, React in Action, 1st Edition, Manning Publications.

REFERENCE BOOKS:

1. Vasan Subramanian, Pro MERN Stack, Full Stack Web App Development with Mongo, Express, React, and Node, 2nd Edition, Apress, 2019.
2. Chris Northwood, The Full Stack Developer: Your Essential Guide to the Everyday SkillsExpected of a Modern Full Stack Web Developer', 1st edition, Apress, 2018.
3. Kirupa Chinnathambi, Learning React: A Hands-On Guide to Building Web Applications UsingReact and Redux, 2nd edition, Addison-Wesley Professional, 2018.

CS632PE: INTERNET OF THINGS (Professional Elective – III)**B.Tech. III Year II Sem.**

L	T	P	C
3	0	0	3

Pre-Requisites: Computer organization, Computer Networks**Course Objectives:**

- To introduce the terminology, technology and its applications
- To introduce the concept of M2M (machine to machine) with necessary protocols
- To introduce the Python Scripting Language which is used in many IoT devices
- To introduce the Raspberry PI platform, that is widely used in IoT applications
- To introduce the implementation of web-based services on IoT devices

Course Outcomes:

- Interpret the impact and challenges posed by IoT networks leading to new architectural models.
- Compare and contrast the deployment of smart objects and the technologies to connect them to network.
- Appraise the role of IoT protocols for efficient network communication.
- Identify the applications of IoT in Industry.

UNIT - I

Introduction to Internet of Things -Definition and Characteristics of IoT, Physical Design of IoT, Logical Design of IoT, IoT Enabling Technologies, IoT Levels and Deployment Templates

Domain Specific IoTs – Home automation, Environment, Agriculture, Health and Lifestyle

UNIT - II

IoT and M2M - M2M, Difference between IoT and M2M, SDN and NFV for IoT,

IoT System Management with NETCOZF, YANG- Need for IoT system Management, Simple Network management protocol, Network operator requirements, NETCONF, YANG, IoT Systems Management with NETCONF-YANG

UNIT - III

IoT Systems – Logical design using Python-Introduction to Python – Python Data types & Data structures, Control flow, Functions, Modules, Packaging, File handling, Data/Time operations, Classes, Exception, Python packages of interest for IoT

UNIT - IV

IoT Physical Devices and Endpoints - Raspberry Pi, Linux on Raspberry Pi, Raspberry Pi Interfaces, Programming Raspberry Pi with Python, Other IoT devices.

IoT Physical Servers and Cloud Offerings – Introduction to Cloud Storage models and communication APIs, WAMP-AutoBahn for IoT, Xively Cloud for IoT, Python web application framework

-Django, Designing a RESTful web API

UNIT V

Case studies- Home Automation, Environment-weather monitoring-weather reporting- air pollution monitoring, Agriculture.

TEXT BOOK:

1. Internet of Things - A Hands-on Approach, Arshdeep Bahga and Vijay Madisetti, Universities Press, 2015, ISBN: 9788173719547.

REFERENCE BOOK:

1. Getting Started with Raspberry Pi, Matt Richardson & Shawn Wallace, O'Reilly (SPD), 2014, ISBN: 9789350239759.

CS633PE: SCRIPTING LANGUAGES (Professional Elective – III)**B.Tech. III Year II Sem.**

L	T	P	C
3	0	0	3

Prerequisites:

1. A course on “Computer Programming and Data Structures”.
2. A course on “Object Oriented Programming Concepts”.

Course Objectives:

- This course introduces the script programming paradigm
- Introduces scripting languages such as Perl, Ruby and TCL.
- Learning TCL

Course Outcomes:

- Comprehend the differences between typical scripting languages and typical system and application programming languages.
- Gain knowledge of the strengths and weakness of Perl, TCL and Ruby; and select an appropriate language for solving a given problem.
- Acquire programming skills in scripting language

UNIT - I

Introduction: Ruby, Rails, The structure and Execution of Ruby Programs, Package Management with RUBYGEMS, Ruby and web: Writing CGI scripts, cookies, Choice of Webservers, SOAP and web services

RubyTk - Simple Tk Application, widgets, Binding events, Canvas, scrolling

UNIT - II

Extending Ruby: Ruby Objects in C, the Jukebox extension, Memory allocation, Ruby Type System, Embedding Ruby to Other Languages, Embedding a Ruby Interpreter

UNIT - III**Introduction to PERL and Scripting**

Scripts and Programs, Origin of Scripting, Scripting Today, Characteristics of Scripting Languages, Uses for Scripting Languages, Web Scripting, and the universe of Scripting Languages. PERL- Names and Values, Variables, Scalar Expressions, Control Structures, arrays, list, hashes, strings, pattern and regular expressions, subroutines.

UNIT - IV**Advanced perl**

Finer points of looping, pack and unpack, filesystem, eval, data structures, packages, modules, objects, interfacing to the operating system, Creating Internet ware applications, Dirty Hands Internet Programming, security Issues.

UNIT**- V****TCL**

TCL Structure, syntax, Variables and Data in TCL, Control Flow, Data Structures, input/output, procedures, strings, patterns, files, Advance TCL- eval, source, exec and uplevel commands, Name spaces, trapping errors, event driven programs, making applications internet aware, Nuts and Bolts Internet Programming, Security Issues, C Interface.

Tk

Tk-Visual Tool Kits, Fundamental Concepts of Tk, Tk by example, Events and Binding, Perl-Tk.

TEXT BOOKS:

1. The World of Scripting Languages, David Barron, Wiley Publications.
2. Ruby Programming language by David Flanagan and Yukihiro Matsumoto O'Reilly
3. "Programming Ruby" The Pramatic Progammers guide by Dabve Thomas Second edition

REFERENCE BOOKS:

1. Open Source Web Development with LAMP using Linux Apache, MySQL, Perl and PHP, J.Leeand B. Ware (Addison Wesley) Pearson Education.
2. Perl by Example, E. Quigley, Pearson Education.
3. Programming Perl, Larry Wall, T. Christiansen and J. Orwant, O'Reilly, SPD.
4. Tcl and the Tk Tool kit, Ousterhout, Pearson Education.
5. Perl Power, J. P. Flynt, Cengage Learning.

CS634PE: MOBILE APPLICATION DEVELOPMENT (Professional Elective – III)**B.Tech. III Year II Sem.**

L	T	P	C
3	0	0	3

Prerequisites

1. Acquaintance with JAVA programming
2. A Course on DBMS

Course Objectives

- To demonstrate their understanding of the fundamentals of Android operating systems
- To improves their skills of using Android software development tools
- To demonstrate their ability to develop software with reasonable complexity on mobileplatform
- To demonstrate their ability to deploy software to mobile devices
- To demonstrate their ability to debug programs running on mobile devices

Course Outcomes

- Understand the working of Android OS Practically.
- Develop Android user interfaces
- Develop, deploy and maintain the Android Applications.

UNIT - I

Introduction to Android Operating System: Android OS design and Features - Android development framework, SDK features, Installing and running applications on Android Studio, Creating AVDs, Typesof Android applications, Best practices in Android programming, Android tools Android application components - Android Manifest file, Externalizing resources like values, themes, layouts, Menus etc, Resources for different devices and languages, Runtime Configuration Changes

Android Application Lifecycle - Activities, Activity lifecycle, activity states, monitoring state changes

UNIT - II

Android User Interface: Measurements - Device and pixel density independent measuring unit - sLayouts - Linear, Relative, Grid and Table Layouts

User Interface (UI) Components -Editable and non-editable TextViews, Buttons, Radio and Toggle Buttons, Checkboxes, Spinners, Dialog and pickers

Event Handling - Handling clicks or changes of various UI components

Fragments - Creating fragments, Lifecycle of fragments, Fragment states, Adding fragments to Activity,adding, removing and replacing fragments with fragment transactions, interfacing between fragments and Activities, Multi-screen Activities

UNIT - III

Intents and Broadcasts: Intent - Using intents to launch Activities, Explicitly starting new Activity, Implicit Intents, Passing data to Intents, Getting results from Activities, Native Actions, using Intent to dial a number or to send SMS

Broadcast Receivers - Using Intent filters to service implicit Intents, Resolving Intent filters, finding andusing Intents received within an Activity

Notifications - Creating and Displaying notifications, Displaying Toasts

UNIT - IV

Persistent Storage: Files - Using application specific folders and files, creating files, reading data fromfiles, listing contents of a directory Shared Preferences - Creating shared preferences, saving andretrieving data using Shared Preference

UNIT - V

Database - Introduction to SQLite database, creating and opening a database, creating tables, insertingretrieving and etindelg data, Registering Content Providers, Using content Providers (insert, delete, retrieve and update)

TEXT BOOK:

1. Professional Android 4 Application Development, Reto Meier, Wiley India, (Wrox), 2012

REFERENCE BOOKS:

1. Android Application Development for Java Programmers, James C Sheusi, Cengage Learning, 2013
2. Beginning Android 4 Application Development, Wei-Meng Lee, Wiley India (Wrox), 2013

CS635PE: SOFTWARE TESTING METHODOLOGIES (Professional Elective – III)**B.Tech. III Year II Sem.**

L	T	P	C
3	0	0	3

Prerequisites

1. Software Engineering

Course Objectives

- To provide knowledge of the concepts in software testing such as testing process, criteria, strategies, and methodologies.
- To develop skills in software test automation and management using the latest tools.

Course Outcomes:

- Understand purpose of testing and path testing
- Understand strategies in data flow testing and domain testing
- Develop logic-based test strategies
- Understand graph matrices and its applications
- Implement test cases using any testing automation tool

UNIT - I

Introduction: Purpose of testing, Dichotomies, model for testing, consequences of bugs, taxonomy of bugs Flow graphs and Path testing: Basics concepts of path testing, predicates, path predicates and achievable paths, path sensitizing, path instrumentation, application of path testing.

UNIT - II

Transaction Flow Testing: transaction flows, transaction flow testing techniques.

Data Flow testing: Basics of data flow testing, strategies in data flow testing, application of data flow testing.

Domain Testing: domains and paths, Nice & ugly domains, domain testing, domains and interface testing, domain and interface testing, domains and testability.

UNIT - III

Paths, Path products and Regular expressions: path products & path expression, reduction procedure, applications, regular expressions & flow anomaly detection.

Logic Based Testing: overview, decision tables, path expressions, kv charts, specifications.

UNIT - IV

State, State Graphs and Transition testing: state graphs, good & bad state graphs, state testing, Testability tips.

UNIT - V

Graph Matrices and Application: Motivational overview, matrix of graph, relations, power of a matrix, node reduction algorithm, building tools. (Student should be given an exposure to a tool like Jmeter/selenium/soapUI/Catalon).

TEXT BOOKS:

1. Software Testing techniques - Baris Beizer, Dreamtech, second edition.
2. Software Testing Tools – Dr. K. V. K. K. Prasad, Dreamtech.

REFERENCE BOOKS:

1. The craft of software testing - Brian Marick, Pearson Education.
2. Software Testing Techniques – SPD(Oreille)
3. Software Testing in the Real World – Edward Kit, Pearson.
4. Effective methods of Software Testing, Perry, John Wiley.
5. Art of Software Testing – Meyers, John Wiley.

CS611OE: DATA STRUCTURES (Open Elective – I)**B.Tech. III Year II Sem.**

L	T	P	C
3	0	0	3

Prerequisites

1. A course on “Programming for Problem Solving

Course Objectives

- Exploring basic data structures such as stacks and queues.
- Introduces a variety of data structures such as hash tables, search trees, tries, heaps, graphs.
- Introduces sorting and pattern matching algorithms

Course Outcomes

1. Ability to select the data structures that efficiently model the information in a problem.
2. Ability to assess efficiency trade-offs among different data structure implementations or combinations.
3. Implement and know the application of algorithms for sorting and pattern matching.
4. Design programs using a variety of data structures, including hash tables, binary and general tree structures, search trees, tries, heaps, graphs, and AVL-trees.

UNIT - I

Introduction to Data Structures, abstract data types, Linear list – singly linked list implementation, insertion, deletion and searching operations on linear list, Stacks- Operations, array and linked representations of stacks, stack applications, Queues- operations, array and linked representations.

UNIT - II

Dictionaries: linear list representation, skip list representation, operations - insertion, deletion and searching.

Hash Table Representation: hash functions, collision resolution-separate chaining, open addressing- linear probing, quadratic probing, double hashing, rehashing, extendible hashing.

UNIT - III

Search Trees: Binary Search Trees, Definition, Implementation, Operations- Searching, Insertion and Deletion, B- Trees, B+ Trees, AVL Trees, Definition, Height of an AVL Tree, Operations - Insertion, Deletion and Searching, Red -Black, Splay Trees.

UNIT - IV

Graphs: Graph Implementation Methods. Graph Traversal Methods.

Sorting: Quick Sort, Heap Sort, External Sorting- Model for external sorting, Merge Sort.

UNIT - V

Pattern Matching and Tries: Pattern matching algorithms-Brute force, the Boyer -Moore algorithm, the Knuth-Morris-Pratt algorithm, Standard Tries, Compressed Tries, Suffix tries.

TEXT BOOKS:

1. Fundamentals of Data Structures in C, 2 nd Edition, E. Horowitz, S. Sahni and Susan Anderson Freed, Universities Press.
2. Data Structures using C – A. S.Tanenbaum, Y. Langsam, and M.J. Augenstein, PHI/Pearson Education.

REFERENCE BOOK:

1. Data Structures: A Pseudocode Approach with C, 2 nd Edition, R. F. Gilberg and B.A. Forouzan, Cengage Learning.

CS612OE: DATABASE MANAGEMENT SYSTEMS (Open Elective – I)**B.Tech. III Year II Sem.**

L	T	P	C
3	0	0	3

Prerequisites: A course on “Data Structures”.**Course Objectives:**

- To understand the basic concepts and the applications of database systems.
- To master the basics of SQL and construct queries using SQL.
- Topics include data models, database design, relational model, relational algebra, transaction control, concurrency control, storage structures and access techniques.

Course Outcomes:

- Gain knowledge of fundamentals of DBMS, database design and normal forms
- Master the basics of SQL for retrieval and management of data.
- Be acquainted with the basics of transaction processing and concurrency control.
- Familiarity with database storage structures and access techniques

UNIT - I**Database System Applications:** A Historical Perspective, File Systems versus a DBMS, the Data Model, Levels of Abstraction in a DBMS, Data Independence, Structure of a DBMS**Introduction to Database Design:** Database Design and ER Diagrams, Entities, Attributes, and EntitySets, Relationships and Relationship Sets, Additional Features of the ER Model, Conceptual Design With the ER Model**UNIT - II****Introduction to the Relational Model:** Integrity constraint over relations, enforcing integrity constraints, querying relational data, logical database design, introduction to views, destroying/altering tables and views.

Relational Algebra, Tuple relational Calculus, Domain relational calculus.

UNIT - III**SQL:** QUERIES, CONSTRAINTS, TRIGGERS: form of basic SQL query, UNION, INTERSECT, and EXCEPT, Nested Queries, aggregation operators, NULL values, complex integrity constraints in SQL, triggers and active databases.**Schema Refinement:** Problems caused by redundancy, decompositions, problems related to decomposition, reasoning about functional dependencies, FIRST, SECOND, THIRD normal forms, BCNF, lossless join decomposition, multivalued dependencies, FOURTH normal form, FIFTH normal form.**UNIT - IV**

Transaction Concept, Transaction State, Implementation of Atomicity and Durability, Concurrent Executions, Serializability, Recoverability, Implementation of Isolation, Testing for serializability, Lock Based Protocols, Timestamp Based Protocols, Validation- Based Protocols, Multiple Granularity, Recovery and Atomicity, Log-Based Recovery, Recovery with Concurrent Transactions.

UNIT - V

Data on External Storage, File Organization and Indexing, Cluster Indexes, Primary and Secondary Indexes, Index data Structures, Hash Based Indexing, Tree based Indexing, Comparison of File Organizations, Indexes- Intuitions for tree Indexes, Indexed Sequential Access Methods (ISAM),

B+ Trees: A Dynamic Index Structure.

TEXT BOOKS:

1. Database System Concepts, Silberschatz, Korth, McGraw hill, V edition. 3rd Edition
2. Database Management Systems, Raghurama Krishnan, Johannes Gehrke, Tata Mc Graw Hill

REFERENCE BOOKS:

1. Database Systems design, Implementation, and Management, Peter Rob & Carlos Coronel 7thEdition.
2. Fundamentals of Database Systems, Elmasri Navrate, Pearson Education
3. Introduction to Database Systems, C. J. Date, Pearson Education
4. Oracle for Professionals, The X Team, S.Shah and V. Shah, SPD.
5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI.
6. Fundamentals of Database Management Systems, M. L. Gillenson, Wiley Student Edition.

CS604PC: MACHINE LEARNING LAB

B.Tech. III Year II Sem.	C	L T P
		0 0 2 1

Course Objective:

- The objective of this lab is to get an overview of the various machine learning techniques and can demonstrate them using python.

Course Outcomes:

- Understand modern notions in predictive data analysis
- Select data, model selection, model complexity and identify the trends
- Understand a range of machine learning algorithms along with their strengths and weaknesses
- Build predictive models from data and analyze their performance

List of Experiments

1. Write a python program to compute Central Tendency Measures: Mean, Median, Mode Measure of Dispersion: Variance, Standard Deviation
2. Study of Python Basic Libraries such as Statistics, Math, Numpy and Scipy
3. Study of Python Libraries for ML application such as Pandas and Matplotlib
4. Write a Python program to implement Simple Linear Regression
5. Implementation of Multiple Linear Regression for House Price Prediction using sklearn
6. Implementation of Decision tree using sklearn and its parameter tuning
7. Implementation of KNN using sklearn
8. Implementation of Logistic Regression using sklearn
9. Implementation of K-Means Clustering
10. Performance analysis of Classification Algorithms on a specific dataset (Mini Project)

TEXT BOOK:

1. Machine Learning - Tom M. Mitchell, - MGH.

REFERENCE BOOK:

1. Machine Learning: An Algorithmic Perspective, Stephen Marshland, Taylor & Francis.

CS605PC: ARTIFICIAL INTELLIGENCE LAB**B.Tech. III Year II Sem.**

L	T	P	C
0	0	2	1

Course Objectives:

- Become familiar with basic principles of AI toward problem solving, knowledge representation, and learning.

Course Outcomes:

- Apply basic principles of AI in solutions that require problem solving, knowledge representation, and learning.

LIST OF EXPERIMENTS

Write a Program to Implement the following using Python.

1. Breadth First Search
2. Depth First Search
3. Tic-Tac-Toe game
4. 8-Puzzle problem
5. Water-Jug problem
6. Travelling Salesman Problem
7. Tower of Hanoi
8. Monkey Banana Problem
9. Alpha-Beta Pruning
10. 8-Queens Problem

TEXT BOOK:

1. Artificial Intelligence a Modern Approach, Third Edition, Stuart Russell and Peter Norvig, Pearson Education.

REFERENCE BOOKS:

1. Artificial Intelligence, 3rd Edn, E. Rich and K. Knight (TMH)
2. Artificial Intelligence, 3rd Edn., Patrick Henry Winston, Pearson Education.
3. Artificial Intelligence, Shivani Goel, Pearson Education.

CS611PE: FULL STACK DEVELOPMENT LAB (Professional Elective – III)

B.Tech. III Year II Sem.

L	T	P	C
0	0	2	1

Pre-Requisites:

1. Object Oriented Programming
2. Web Technologies

Course Objectives:

- Introduce fast, efficient, interactive and scalable web applications using run time environment provided by the full stack components.

Course Outcomes:

- Design flexible and responsive Web applications using Node JS, React, Express and Angular.
- Perform CRUD operations with MongoDB on huge amount of data.
- Develop real time applications using react components.
- Use various full stack modules to handle http requests and responses.

List of Experiments

1. Create an application to setup node JS environment and display “Hello World”.
2. Create a Node JS application for user login system.
3. Write a Node JS program to perform read, write and other operations on a file.
4. Write a Node JS program to read form data from query string and generate response using NodeJS
5. Create a food delivery website where users can order food from a particular restaurant listed in the website for handling http requests and responses using NodeJS.
6. Implement a program with basic commands on databases and collections using MongoDB.
7. Implement CRUD operations on the given dataset using MongoDB.
8. Perform Count, Limit, Sort, and Skip operations on the given collections using MongoDB.
9. Develop an angular JS form to apply CSS and Events.
10. Develop a Job Registration form and validate it using angular JS.
11. Write an angular JS application to access JSON file data of an employee from a server using \$http service.
12. Develop a web application to manage student information using Express and Angular JS.
13. Write a program to create a simple calculator Application using React JS.
14. Write a program to create a voting application using React JS
15. Develop a leave management system for an organization where users can apply different types of leaves such as casual leave and medical leave. They also can view the available number of days using react application.
16. Build a music store application using react components and provide routing among the web pages.
17. Create a react application for an online store which consist of registration, login, product information pages and implement routing to navigate through these pages.

TEXT BOOKS:

1. Brad Dayley, Brendan Dayley, Caleb Dayley., Node.js, MongoDB and Angular Web Development, 2nd Edition, Addison-Wesley, 2019.
2. Mark Tielens Thomas., React in Action, 1st Edition, Manning Publications.

REFERENCE BOOKS:

1. Vasan Subramanian, Pro MERN Stack, Full Stack Web App Development with Mongo, Express, React, and Node, 2nd Edition, Apress, 2019.
2. Chris Northwood, The Full Stack Developer: Your Essential Guide to the Everyday Skills Expected of a Modern Full Stack Web Developer', 1st edition, Apress, 2018.
3. Brad Green& Seshadri. Angular JS. 1st Edition. O'Reilly Media, 2013.
4. Kirupa Chinnathambi, Learning React: A Hands-On Guide to Building Web Applications Using React and Redux, 2nd edition, Addison-Wesley Professional, 2018.

CS612PE: INTERNET OF THINGS LAB (PROFESSIONAL ELECTIVE – III)

B.Tech. III Year II Sem.	C	L T P
		0 0 2 1

Course Objectives

- To introduce the raspberry PI platform, that is widely used in IoT applications
- To introduce the implementation of distance sensor on IoT devices

Course Outcomes

- Ability to introduce the concept of M2M (machine to machine) with necessary protocols and get awareness in implementation of distance sensor
- Get the skill to program using python scripting language which is used in many IoT devices

List of Experiments

1. Using Raspberry pi
 - a. Calculate the distance using a distance sensor.
 - b. Interface an LED and switch with Raspberry pi.
 - c. Interface an LDR with Raspberry Pi.
2. Using Arduino
 - a. Calculate the distance using a distance sensor.
 - b. Interface an LED and switch with Arduino.
 - c. Interface an LDR with Arduino
 - d. Calculate temperature using a temperature sensor.
3. Using Node MCU
 - a. Calculate the distance using a distance sensor.
 - b. Interface an LED and switch with Raspberry pi.
 - c. Interface an LDR with Node MCU
 - d. Calculate temperature using a temperature sensor.
4. Installing OS on Raspberry Pi
 - a) Installation using Pimager
 - b) Installation using image file
 - Downloading an Image
 - Writing the image to an SD card
 - using Linux
 - using Windows
 - Booting up Follow the instructions given in the URL
<https://www.raspberrypi.com/documentation/computers/getting-started.html>
5. Accessing GPIO pins using Python
 - a) Installing GPIO Zero

library. update your repositories list:
 install the package for Python 3:
 - b) Blinking an LED connected to one of the GPIO pin
 - c) Adjusting the brightness of an LED Adjust the brightness of an LED (0 to 100, where 100 means maximum brightness) using the in-built PWM wavelength.
6. Create a DJANGO project and an app.
7. Create a DJANGO view for weather station REST API
8. Create DJANGO template
9. R22 IDP (B.Tech + M.Tech) CSE Syllabus Configure MySQL with DJANGO framework

TEXT BOOKS:

1. Internet of Things - A Hands-on Approach, Arshdeep Bahga and Vijay Madisetti, UniversitiesPress, 2015, ISBN: 9788173719547.
2. Getting Started with Raspberry Pi, Matt Richardson & Shawn Wallace, O'Reilly (SPD), 2014, ISBN: 9789350239759.

REFERENCE BOOKS:

1. Bernd Scholz-Reiter, Florian Michahelles, "Architecting the Internet of Things", ISBN 978-3-642-19156-5 e-ISBN 978-3-642-19157-2, Springer, 2016
2. N. Ida, Sensors, Actuators and Their Interfaces, Scitech Publishers, 2014.

CS613PE: SCRIPTING LANGUAGES LAB (Professional Elective – III)

B.Tech. III Year II Sem.	C	L T P
		0 0 2 1

Prerequisites: Any High level programming language (C, C++)

Course Objectives

- To Understand the concepts of scripting languages for developing web based projects
- To understand the applications the of Ruby, TCL, Perl scripting languages

Course Outcomes

- Ability to understand the differences between Scripting languages and programming languages
- Gain some fluency programming in Ruby, Perl, TCL

LIST OF EXPERIMENTS

1. Write a Ruby script to create a new string which is n copies of a given string where n is a non-negative integer
2. Write a Ruby script which accept the radius of a circle from the user and compute the parameter and area.
3. Write a Ruby script which accept the users first and last name and print them in reverse order with a space between them
4. Write a Ruby script to accept a filename from the user print the extension of that
5. Write a Ruby script to find the greatest of three numbers
6. Write a Ruby script to print odd numbers from 10 to 1
7. Write a Ruby script to check two integers and return true if one of them is 20 otherwise return their sum
8. Write a Ruby script to check two temperatures and return true if one is less than 0 and the other is greater than 100
9. Write a Ruby script to print the elements of a given array
10. Write a Ruby program to retrieve the total marks where subject name and marks of a student stored in a hash
11. Write a TCL script to find the factorial of a number
12. Write a TCL script that multiplies the numbers from 1 to 10
13. Write a TCL script for sorting a list using a comparison function
14. Write a TCL script to (i) create a list (ii) append elements to the list (iii) Traverse the list (iv) Concatenate the list
15. Write a TCL script to compare the file modified times.
16. Write a TCL script to Copy a file and translate to native format.
17.
 - a) Write a Perl script to find the largest number among three numbers.
 - b) Write a Perl script to print the multiplication tables from 1-10 using subroutines.
18. Write a Perl program to implement the following list of manipulating functions
 - a) Shift
 - b) Unshift
 - c) Push
19.
 - a) Write a Perl script to substitute a word, with another word in a string.
 - b) Write a Perl script to validate IP address and email address.
20. Write a Perl script to print the file in reverse order using command line arguments

TEXT BOOKS:

1. The World of Scripting Languages, David Barron, Wiley Publications.
2. Ruby Programming language by David Flanagan and Yukihiro Matsumoto O'Reilly
3. "Programming Ruby" The Pragmatic Programmers guide by Dave Thomas Second edition

R22 IDP (B.Tech + M.Tech) CSE SyllabusREFERENCE BOOKS:

1. Open Source Web Development with LAMP using Linux Apache, MySQL, Perl and PHP, J. Lee and B. Ware (Addison Wesley) Pearson Education.

2. Perl by Example, E. Quigley, Pearson Education.
3. Programming Perl, Larry Wall, T. Christiansen and J. Orwant, O'Reilly, SPD.
4. Tcl and the Tk Tool kit, Ousterhout, Pearson Education.
5. Perl Power, J. P. Flynt, Cengage Learning.

CS614PE: MOBILE APPLICATION DEVELOPMENT LAB (Professional Elective – III)

B.Tech. III Year II Sem.	C	L T P
		0 0 2 1

Prerequisites: --- NIL---

Course Objectives:

- To learn how to develop Applications in an android environment.
- To learn how to develop user interface applications.
- To learn how to develop URL related applications.

Course Outcomes:

- Understand the working of Android OS Practically.
- Develop user interfaces.
- Develop, deploy and maintain the Android Applications.

LIST OF EXPERIMENTS:

1. Create an Android application that shows Hello + name of the user and run it on an emulator.
- (b) Create an application that takes the name from a text box and shows hello message along with the name entered in the text box, when the user clicks the OK button.
2. Create a screen that has input boxes for User Name, Password, Address, Gender (radio buttons for male and female), Age (numeric), Date of Birth (Datepicker), State (Spinner) and a Submit button. On clicking the submit button, print all the data below the Submit Button. Use (a) Linear Layout (b) Relative Layout and (c) Grid Layout or Table Layout.
3. Develop an application that shows names as a list and on selecting a name it should show the details of the candidate on the next screen with a "Back" button. If the screen is rotated to landscape mode (width greater than height), then the screen should show list on left fragment and details on the right fragment instead of the second screen with the back button. Use Fragment transactions and Rotation event listeners.
4. Develop an application that uses a menu with 3 options for dialing a number, opening a website and to send an SMS. On selecting an option, the appropriate action should be invoked using intents.
5. Develop an application that inserts some notifications into Notification area and whenever a notification is inserted, it should show a toast with details of the notification.
6. Create an application that uses a text file to store usernames and passwords (tab separated fields and one record per line). When the user submits a login name and password through a screen, the details should be verified with the text file data and if they match, show a dialog saying that login is successful. Otherwise, show the dialog with a Login Failed message.
7. Create a user registration application that stores the user details in a database table.
8. Create a database and a user table where the details of login names and passwords are stored. Insert some names and passwords initially. Now the login details entered by the user should be verified with the database and an appropriate dialog should be shown to the user.
9. Create an admin application for the user table, which shows all records as a list and the admin can select any record for edit or modify. The results should be reflected in the table.
10. Develop an application that shows all contacts of the phone along with details like name, phone number, mobile number etc.
11. Create an application that saves user information like name, age, gender etc. in shared preference and retrieves them when the program restarts.
12. Create an alarm that rings every Sunday at 8:00 AM. Modify it to use a time picker to set alarm time.

TEXT BOOKS:

1. Professional Android 4 Application Development, Reto Meier, Wiley India, (Wrox), 2012.
2. Android Application Development for Java Programmers, James C Sheusi, Cengage, 2013.

REFERENCE BOOK:

1. Beginning Android 4 Application Development, Wei-Meng Lee, Wiley India (Wrox), 2013.

**CS615PE: SOFTWARE TESTING METHODOLOGIES LAB (Professional
Elective – III)**

B.Tech. III Year II Sem.

L	T	P	C
0	0	2	1

Prerequisites

- A basic knowledge of programming.

Course Objectives

- To provide knowledge of software testing methods.
- To develop skills in automation of software testing and software test automation management using the latest tools.

Course Outcomes

- Design and develop the best test strategies in accordance with the development model.
- Design and develop GUI, Bitmap and database checkpoints
- Develop database checkpoints for different checks
- Perform batch testing with and without parameter passing

List of Experiments

1. Recording in context sensitive mode and analog mode
2. GUI checkpoint for single property
3. GUI checkpoint for single object/window
4. GUI checkpoint for multiple objects5.
 - a. Bitmap checkpoint for object/window
 - b. Bitmap checkpoint for screen area
6. Database checkpoint for Default check
6. Database checkpoint for custom check
6. Database checkpoint for runtime record check6.
 - a. Data driven test for dynamic test data submission
 - b. Data driven test through flat files
 - c. Data driven test through front grids
 - d. Data driven test through excel test
11. Batch testing without parameter passing
12. Batch testing with parameter passing
11. Data driven batch
11. Silent mode test execution without any interruption
12. Test case for calculator in windows application

TEXT BOOKS

1. Software Testing techniques, Baris Beizer, 2nd Edition, Dreamtech.
2. Software Testing Tools, Dr. K.V.K.K.Prasad, Dreamtech.

REFERENCE BOOKS

1. The craft of software testing, Brian Marick, Pearson Education.
2. Software Testing Techniques – SPD(Oreille)
3. Software Testing in the Real World, Edward Kit, Pearson.
4. Effective methods of Software Testing, Perry, John Wiley.
5. Art of Software Testing, Meyers, John Wiley.

CS606PC: BIG DATA-SPARK

B.Tech. III Year II Sem.

L T P C
0 0 4 2

Course Objectives:

- The main objective of the course is to process Big Data with advance architecture like spark and streaming data in Spark

Course Outcomes:

- Develop MapReduce Programs to analyze large dataset Using Hadoop and Spark
- Write Hive queries to analyze large dataset Outline the Spark Ecosystem and its components
- Perform the filter, count, distinct, map, flatMap RDD Operations in Spark.
- Build Queries using Spark SQL
- Apply Spark joins on Sample Data Sets
- Make use of sqoop to import and export data from hadoop to database and vice-versa

List of Experiments:

1. To Study of Big Data Analytics and Hadoop Architecture
 - (i) know the concept of big data architecture
 - (ii) know the concept of Hadoop architecture
2. Loading DataSet in to HDFS for Spark

Analysis

Installation of Hadoop and cluster management

 - (i) Installing Hadoop single node cluster in ubuntu environment
 - (ii) Knowing the differencing between single node clusters and multi-node clusters
 - (iii) Accessing WEB-UI and the port number
 - (iv) Installing and accessing the environments such as hive and sqoop
3. File management tasks & Basic linux commands
 - (i) Creating a directory in HDFS
 - (ii) Moving forth and back to directories
 - (iii) Listing directory contents
 - (iv) Uploading and downloading a file in HDFS
 - (v) Checking the contents of the file
 - (vi) Copying and moving files
 - (vii) Copying and moving files between local to HDFS environment
 - (viii) Removing files and paths
 - (ix) Displaying few lines of a file
 - (x) Display the aggregate length of a file
 - (xi) Checking the permissions of a file
 - (xii) Zipping and unzipping the files with & without permission pasting it to a location
 - (xiii) Copy, Paste commands
4. Map-reducing
 - (i) Definition of Map-reduce
 - (ii) Its stages and terminologies
 - (iii) Word-count program to understand map-reduce (Mapper phase, Reducer phase, Driver code)
5. Implementing Matrix-Multiplication with Hadoop Map-reduce
6. Compute Average Salary and Total Salary by Gender for an Enterprise.
7. R22 IDP (B.Tech + M.Tech) CSE Syllabus
 - (i) Creating hive tables (External and internal)
 - (ii) Loading data to external hive tables from sql tables (or) Structured c.s.v using scoop
 - (iii) Performing operations like filterations and updatations
 - (iv) Performing Join (inner, outer etc)

- (v) Writing User defined function on hive tables
- 8. Create a sql table of employees Employee table with id,designation Salary table (salary ,dept id) Create external table in hive with similar schema of above tables,Move data to hive using scoop and load the contents into tables,filter a new table and write a UDF to encrypt the table with AES-algorithm, Decrypt it with key to show contents
- 9. (i) Pyspark Definition(Apache Pyspark) and difference between Pyspark, Scala, pandas
 (ii) Pyspark files and class methods
 (iii) get(file name)
 (iv) get root directory()
- 10. Pyspark -RDD'S
 - (i) what is RDD's?
 - (ii) ways to Create RDD
 - (iii) parallelized collections
 - (iv) external dataset
 - (v) existing RDD's
 - (vi) Spark RDD's operations (Count, foreach(), Collect, join, Cache())
- 11. Perform pyspark transformations
 - (i) map and flatMap
 - (ii) to remove the words, which are not necessary to analyze this text.
 - (iii) groupBy
 - (iv) What if we want to calculate how many times each word is coming in corpus ?
 - (v) How do I perform a task (say count the words 'spark' and 'apache' in rdd3) separately oneach partition and get the output of the task performed in these partition ?
 - (vi) unions of RDD
 - (vii) join two pairs of RDD Based upon their key
- 12. Pyspark sparkconf-Attributes and applications
 - (i) What is Pyspark spark conf ()
 - (ii) Using spark conf create a spark session to write a dataframe to read details in a c.s.v andlater move that c.s.v to another location

TEXT BOOKS:

1. Spark in Action, Marko Bonaci and Petar Zecevic, Manning.
2. PySpark SQL Recipes: With HiveQL, Dataframe and Graphframes, Raju Kumar Mishra and Sundar Rajan Raman, Apress Media.

WEB LINKS:

1. https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_013301505844518912251_82_shared/overview
2. https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_012583881196388352425_shared/overview
3. https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_01260526842300825616922_shared/overview

MC609: ENVIRONMENTAL SCIENCE*B.Tech. III Year II Sem.****L T P C**
3 0 0 0**Course Objectives:**

- Understanding the importance of ecological balance for sustainable development.
- Understanding the impacts of developmental activities and mitigation measures.
- Understanding the environmental policies and regulations

Course Outcomes:

- Based on this course, the Engineering graduate will understand /evaluate / develop technologies on the basis of ecological principles and environmental regulations which in turn helps in sustainable development

UNIT - I

Ecosystems: Definition, Scope, and Importance of ecosystem. Classification, structure, and function of an ecosystem, Food chains, food webs, and ecological pyramids. Flow of energy, Biogeochemical cycles, Bioaccumulation, Biomagnification, ecosystem value, services and carrying capacity, Field visits.

UNIT - II

Natural Resources: Classification of Resources: Living and Non-Living resources, **water resources:** use and over utilization of surface and ground water, floods and droughts, Dams: benefits and problems. **Mineral resources:** use and exploitation, environmental effects of extracting and using mineral resources, **Land resources:** Forest resources, **Energy resources:** growing energy needs, renewable and non-renewable energy sources, use of alternate energy source, case studies.

UNIT - III

Biodiversity and Biotic Resources: Introduction, Definition, genetic, species and ecosystem diversity. Value of biodiversity; consumptive use, productive use, social, ethical, aesthetic and optional values. India as a mega diversity nation, Hot spots of biodiversity. Field visit. Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts; conservation of biodiversity: In-Situ and Ex-situ conservation. National Biodiversity act.

UNIT - IV

Environmental Pollution and Control Technologies: **Environmental Pollution:** Classification of pollution, **Air Pollution:** Primary and secondary pollutants, Automobile and Industrial pollution, Ambient air quality standards. **Water pollution:** Sources and types of pollution, drinking water quality standards. **Soil Pollution:** Sources and types, Impacts of modern agriculture, degradation of soil. **Noise Pollution:** Sources and Health hazards, standards, **Solid waste:** Municipal Solid Waste management, composition and characteristics of e-Waste and its management. **Pollution control technologies:** Wastewater Treatment methods: Primary, secondary and Tertiary. Overview of air pollution control technologies, Concepts of bioremediation. **Global Environmental Issues and Global Efforts:** Climate change and impacts on human environment. Ozone depletion and Ozone depleting substances (ODS). Deforestation and desertification. International conventions / Protocols: Earth summit, Kyoto protocol, and Montréal Protocol. NAPCC-GoI Initiatives.

UNIT - V

Environmental Policy, Legislation & EIA: Environmental Protection act, Legal aspects Air Act-1981, Water Act, Forest Act, Wild life Act, Municipal solid waste management and handling rules, biomedical waste management and handling rules, hazardous waste management and handling rules. **EIA:** EIA structure, methods of baseline data acquisition. Overview on Impacts of air, water, biological and Socio- economical aspects. Strategies for risk assessment, Concepts of Environmental Management Plan (EMP).

Towards Sustainable Future: Concept of Sustainable Development Goals, Population and its

explosion, Crazy Consumerism, Environmental Education, Urban Sprawl, Human health, Environmental Ethics, Concept of Green Building, Ecological Foot Print, Life Cycle assessment (LCA), Low carbon life style.

TEXT BOOKS:

- 1 Textbook of Environmental Studies for Undergraduate Courses by Erach Bharucha for University Grants Commission.
- 2 Environmental Studies by R. Rajagopalan, Oxford University Press.

REFERENCE BOOKS:

- 1 Environmental Science: towards a sustainable future by Richard T. Wright. 2008 PHL LearningPrivate Ltd. New Delhi.
- 2 Environmental Engineering and science by Gilbert M. Masters and Wendell P. Ela. 2008 PHI Learning Pvt. Ltd.
- 3 Environmental Science by Daniel B. Botkin & Edward A. Keller, Wiley INDIA edition.
- 4 Environmental Studies by Anubha Kaushik, 4th Edition, New age international publishers.
- 5 Text book of Environmental Science and Technology - Dr. M. Anji Reddy 2007, BS Publications.
- 6 Introduction to Environmental Science by Y. Anjaneyulu, BS. Publications.

IV Year B.Tech.(IDP) I Semester	CYBER SECURITY	L T
	P C	3 1 0 4

Prerequisites

1. A Course on “Network Security and Cryptography”

Objectives

1. The purpose of the course is to educate on cyber security and the legal perspectives of cyber crimes and cyber offenses.
2. Introduce tools and methods for enhancing cyber security.
3. Topics include- cyber crimes, cyber offenses, cyber crimes on mobile and wireless devices, tools and methods to prevent cyber crimes, legal perspectives of cyber crimes and cyber security, computer forensics, Intellectual Property Rights and cyber terrorism

Outcomes

1. Demonstrate the knowledge of cyber security and understand the Indian and Global Act concerning cyber crimes
2. Employ security and privacy methods in the development of modern applications such that personal data is protected; and provide safe Internet usage.

UNIT-I

Introduction to Cybercrime:

Introduction, Cybercrime and Information security, who are cyber criminals, Classification of Cyber crimes, Cybercrime: The legal Perspectives and Indian Perspective, Cybercrime and the Indian ITA 2000, A Global Perspective on Cyber crimes. Cyber offenses : How Criminals Plan Them. Introduction, How Criminals plan the Attacks, Social Engineering, Cyber stalking, Cyber cafe and Cybercrimes, Botnets: The Fuel for Cybercrime, Attack Vector, Cloud Computing.

UNIT-II

Cybercrime: Mobile and Wireless Devices

Introduction, Proliferation of Mobile and Wireless Devices, Trends in Mobility, Credit card Frauds in Mobile and Wireless Computing Era, Security Challenges Posed by Mobile Devices, Registry Settings for Mobile Devices, Authentication service Security, Attacks on Mobile/Cell Phones, Mobile Devices: Security Implications for Organizations, Organizational Measures for Handling Mobile, Organizational Security Policies and Measures in Mobile Computing Era, Laptops.

Tools and Methods Used in Cyber Crime: Introduction, Proxy services and Anonymizers, Phishing, Password Cracking, Keyloggers and Spywares, Virus and Worms, Trojan Horses and Backdoors, Steganography, DoS and DDoS Attacks, SQL Injection, Buffer Overflow, Attacks on Wireless Networks.

UNIT III

Cyber crimes and Cyber Security: the Legal Perspectives Introduction Cyber Crime and Legal Landscape around the world, Why Do We Need Cyber laws: The Indian Context, The Indian IT Act, Challenges to Indian Law and Cybercrime Scenario In India, Digital signatures and the Indian IT Act, Amendments to the Indian IT Act, Cybercrime

and Punishment Cyber law, Technology and Students: Indian Scenario. Understanding Computer Forensics Introduction, Historical background of Cyber forensics, Digital Forensics Science, The Need for Computer Forensics, Cyber Forensics and Digital evidence, Forensics Analysis of Email, Digital Forensics Lifecycle, Chain of Custody concept, Network Forensics, Approaching a computer, Forensics Investigation, Challenges in Computer Forensics, Special Tools and Techniques Forensics Auditing

UNIT IV

Cyber Security: Organizational Implications

Introduction, cost of cyber crimes and IPR issues, web threats for organizations, security and privacy implications, social media marketing: security risks and perils for organizations, social computing and the associated challenges for organizations.

Cybercrime and Cyber terrorism: Introduction, intellectual property in the cyberspace, the ethical dimension of cyber crimes the psychology, mindset and skills of hackers and other cyber criminals

UNIT V

Cybercrime: Illustrations, Examples and Mini-Cases

Examples: Official Website of Maharashtra Government Hacked, Indian Banks Lose Millions of Rupees, Parliament Attack, Pune City Police Bust Nigerian Racket, e-mail spoofing instances.

Mini-Cases: The Indian Case of online Gambling, An Indian Case of Intellectual Property Crime, Illustrations of Financial Frauds in Cyber Domain, Digital SignatureRelated Crime Scenarios.

Text book:

1. Cyber Security: Understanding Cyber Crimes, Computer Forensics and Legal Perspectives, Nina Godbole and Sunil Belapure, Wiley INDIA.

Reference book:

1. Cyber Security Essentials, James Graham, Richard Howard and Ryan Otson, CRC Press.

IV Year B.Tech.(IDP) I Semester

L	T	P	C
3	0	0	3

GRID AND CLOUD COMPUTING**Prerequisites**

- A course on Operating Systems,
- A Course on Computer Organization & Architecture
- A Course on Computer Networks

Objectives

1. The course will provide an insight for achieving cost efficient high performance system.
2. The course will deal with design and architecture of grid computing

Outcomes

1. To implement the techniques and tools for Grid Computing
2. To understand any kind of heterogeneous resources over a network using open standards
3. To implement management of several service models

UNIT-I:

Grid Computing Concept, History of Distributed Computing, Computational Grid Applications, Grid Computing Infrastructure Development Large-Scale U.S. Grids, National Grids ,Multi-National Grids, Campus Grids, Grid Computing Courses, Grid Computing Software Interface

UNIT –II: GRID SECURITY

Introduction, Grid Environment ,Authentication and Authorization Aspects for a Grid ,Grid Security Infrastructure (GSI) Component Parts ,GSI Communication Protocols, GSI Authentication ,GSI Authorization, Delegation ,The Need for Delegation ,Proxy Certificates My Proxy Grid Credential Repository, Higher-Level Authorization Tools, Security Assertion Markup Language (SAML), Using Certificates for Authorization

SCHEDULERS

Scheduler Features, Scheduling, Monitoring Job Progress, Additional Scheduler Features, Scheduler Examples, Sun Grid Engine, Condor, Grid Computing Meta-Schedulers, Condor-G, Grid Way ,Distributed Resource Management Application (DRMAA).

UNIT –III

Introduction to virtualization and virtual machine, Virtualization in cluster/grid context Virtual network, Information model & data model for virtual machine, Software as a Service (SaaS), SOA, On Demand Computing.
Cloud computing: Introduction, What it is and What it isn't, from Collaborations to Cloud, Cloud application architectures, Value of cloud computing, Cloud Infrastructure models, Scaling a Cloud Infrastructure, Capacity Planning, Cloud Scale.

UNIT – IV

Defining Clouds for the Enterprise- Storage-as-a-Service, Database-as-a-Service, Information-as-a-Service, Process-as-a-Service, Application-as-a-Service, Platform-as-a-Service, Integration-as-a- Service, Security-as-a-Service, Management/Governance-as-a-Service, Testing-as-a-Service Infrastructure-as-a-Service

UNIT – V

Data Center to Cloud: Move into the Cloud, Know Your Software Licenses, The Shift to a Cloud Cost Model, Service Levels for Cloud Applications
Security: Disaster Recovery, Web Application Design, Machine Image Design, Privacy Design, Database Management, Data Security, Network Security, Host Security, Compromise Response Disaster Recovery, Disaster Recovery, Planning, Cloud Disaster Management

Case study: Types of Clouds, Cloudcentres in detail, Comparing approaches, Xen Open Nebula, Eucalyptus, Amazon, Nimbus

Text Books:

1. Barry Wilkison "Grid Computing Techniques and Applications", CRC Press 2010
2. Cloud Computing – Web Based Applications That Change the way you Work and Collaborate Online – Michael Miller, Pearson Education.

Reference Book:

1. Cloud Computing and SOA Convergence in Your Enterprise: A Step-by-Step Guide David S. Linthicum Addison-Wesley Professional.
2. Enterprise Web 2.0 Fundamentals by Krishna Sankar; Susan A. Bouchard, Cisco Press

IV Year B.Tech.(IDP) I Semester

L	T	P	C
3	0	0	3

GRAPH THEORY
Professional Elective IV

UNIT I**INTRODUCTION**

Graphs – Introduction – Isomorphism – Sub graphs – Walks, Paths, Circuits – Connectedness – Components – Euler Graphs – Hamiltonian Paths and Circuits – Trees – Properties of trees – Distance and Centers in Tree – Rooted and Binary Trees.

UNIT II**TREES, CONNECTIVITY, PLANARITY**

Spanning trees – Fundamental Circuits – Spanning Trees in a Weighted Graph – Cut Sets – Properties of Cut Set – All Cut Sets – Fundamental Circuits and Cut Sets – Connectivity and Separability – Network flows – 1-Isomorphism – 2-Isomorphism – Combinational and Geometric Graphs – Planer Graphs – Different Representation of a Planer Graph.

UNIT III**MATRICES, COLOURING AND DIRECTED GRAPH**

Incidence matrix – Submatrices – Circuit Matrix – Path Matrix – Adjacency Matrix – Chromatic Number – Chromatic partitioning – Chromatic polynomial – Matching – Covering – Four Color Problem – Directed Graphs – Types of Directed Graphs – Digraphs and Binary Relations – Directed Paths and Connectedness – Euler Graphs – Adjacency Matrix of a Digraph.

UNIT IV

Algorithms: Connectedness and Components – Spanning tree – Finding all Spanning Trees of a Graph – Set of Fundamental Circuits – Cut Vertices and Separability – Directed Circuits.

UNIT V

Algorithms: Shortest Path Algorithm – DFS – Planarity Testing – Isomorphism.

TEXT BOOKS:

1. Narsingh Deo, “Graph Theory: With Application to Engineering and Computer Science”, Prentice Hall of India, 2003.

REFERENCES:

1. R.J. Wilson, “Introduction to Graph Theory”, Fourth Edition, Pearson Education, 2003.

IV Year B.Tech.(IDP) I Semester

L	T	P	C
3	0	0	3

ADVANCED OPERATING SYSTEMS
Professional Elective IV

Objectives

1. To study, learn, and understand the main concepts of advanced operating systems (parallel processing systems, distributed systems, real time systems, network operating systems, and open source operating systems)
2. Hardware and software features that support these systems.

Outcomes

1. Understand the design approaches of advanced operating systems
2. Analyze the design issues of distributed operating systems.
3. Evaluate design issues of multi processor operating systems.
4. Identify the requirements Distributed File System and Distributed Shared Memory.
5. Formulate the solutions to schedule the real time applications.

UNIT - I

Architectures of Distributed Systems: System Architecture Types, Distributed Operating Systems, Issues in Distributed Operating Systems, Communication Primitives. **Theoretical Foundations:** Inherent Limitations of a Distributed System, Lamport's Logical Clocks, Vector Clocks, Causal Ordering of Messages, Termination Detection.

UNIT - II

Distributed Mutual Exclusion: The Classification of Mutual Exclusion Algorithms, **NonToken –Based Algorithms:** Lamport's Algorithm, The Ricart-Agrawala Algorithm, Maekawa's Algorithm, **Token-Based Algorithms:** Suzuki-Kasami's Broadcast Algorithm, Singhal's Heurisric Algorithm, Raymond's Heuristic Algorithm.

UNIT - III

Distributed Deadlock Detection: Preliminaries, Deadlock Handling Strategies in Distributed Systems, Issues in Deadlock Detection and Resolution, Control Organizations for Distributed Deadlock Detection, Centralized- Deadlock – Detection Algorithms, Distributed Deadlock Detection Algorithms, Hierarchical Deadlock Detection Algorithms

UNIT - IV

Multiprocessor System Architectures: Introduction, Motivation for multiprocessor Systems, Basic Multiprocessor System Architectures **Multi Processor Operating Systems:** Introduction, Structures of Multiprocessor Operating Systems, Operating Design Issues , Threads , Process Synchronization , Processor Scheduling.

Distributed File Systems: Architecture, Mechanisms for Building Distributed File Systems, Design Issues

UNIT - V

Distributed Scheduling: Issues in Load Distributing, Components of a Load Distributed Algorithm, Stability, Load Distributing Algorithms, Requirements for Load Distributing, Task Migration, Issues in task Migration

Distributed Shared Memory: Architecture and Motivation, Algorithms for Implementing DSM, Memory Coherence, Coherence Protocols, Design Issues

Textbook:

1. Advanced Concepts in Operating Systems, Mukesh Singhal, Niranjan G. Shivaratri, Tata McGraw-Hill Edition 2001

References:

1. Distributed Systems: Andrew S. Tanenbaum, Maarten Van Steen, Pearson Prentice Hall, Edition 2, 2007

IV Year B.Tech.(IDP) I Semester

L	T	P	C
3	0	0	3

SOFT COMPUTING
Professional Elective IV

Objectives

1. Familiarize with soft computing concepts
2. Introduce and use the idea of fuzzy logic and use of heuristics based on human experience
3. Familiarize the Neuro-Fuzzy modeling using Classification and Clustering techniques
4. Learn the concepts of Genetic algorithm and its applications
5. Acquire the knowledge of Rough Sets.

Outcomes

On completion of this course, the students will be able to:

1. Identify the difference between Conventional Artificial Intelligence to Computational Intelligence.
2. Understand fuzzy logic and reasoning to handle and solve engineering problems
3. Apply the Classification and clustering techniques on various applications.
4. Understand the advanced neural networks and its applications
5. Perform various operations of genetic algorithms, Rough Sets.
6. Comprehend various techniques to build model for various applications

UNIT - I

Introduction to Soft Computing: Evolutionary Computing, "Soft" computing versus "Hard" computing, Soft Computing Methods, Recent Trends in Soft Computing, Characteristics of Soft computing, Applications of Soft Computing Techniques.

UNIT - II

Fuzzy Systems: Fuzzy Sets, Fuzzy Relations, Fuzzy Logic, Fuzzy Rule-Based Systems

UNIT - III

Fuzzy Decision Making, Particle Swarm Optimization,

UNIT - IV

Genetic Algorithms: Basic Concepts, Basic Operators for Genetic Algorithms, Crossover and Mutation Properties, Genetic Algorithm Cycle, Fitness Function, Applications of Genetic Algorithm.

UNIT - V

Rough Sets, Rough Sets, Rule Induction, and Discernibility Matrix, Integration of Soft Computing Techniques.

Textbooks:

1. Soft Computing – Advances and Applications, B.K. Tripathy and J. Anuradha – Cengage Learning, 2015

References:

1. Principles of Soft Computing, S. N. Sivanandam & S.N.Deepa, 2nd Edition, Wiley India, 2008.
2. Genetic Algorithms-In Search, optimization and Machine learning, David E. Goldberg, Pearson Education.
3. Neuro-Fuzzy and Soft Computing, J.S.R.Jang, C.T.Sun and E.Mizutani, Pearson Education 2004.
4. Fuzzy Sets & Fuzzy Logic, G.J. Klir & B. Yuan, PHI, 1995.
5. An Introduction to Genetic Algorithm, Melanie Mitchell, PHI, 1998.
6. Fuzzy Logic with Engineering Applications, Timothy J. Ross, McGraw- Hill International Editions, 1995

IV Year B.Tech.(IDP) I Semester

L	T	P	C
3	0	0	3

CLOUD COMPUTING
Professional Elective IV

Prerequisites

1. A course on "Computer Networks"
2. A course on "Operating Systems"
3. A course on "Distributed Systems"

Objectives

1. This course provides an insight into cloud computing
2. Topics covered include- distributed system models, different cloud service models, service oriented architectures, cloud programming and software environments, resource management.

Outcomes

1. Ability to understand various service delivery models of a cloud computing architecture.
2. Ability to understand the ways in which the cloud can be programmed and deployed.
3. Understanding cloud service providers.

UNIT - I

Computing Paradigms: High-Performance Computing, Parallel Computing, Distributed Computing, Cluster Computing, Grid Computing, Cloud Computing, Bio computing, Mobile Computing, Quantum Computing, Optical Computing, Nano computing.

UNIT - II

Cloud Computing Fundamentals: Motivation for Cloud Computing, The Need for Cloud Computing, Defining Cloud Computing, Definition of Cloud computing, Cloud Computing Is a Service, Cloud Computing Is a Platform, Principles of Cloud computing, Five Essential Characteristics, Four Cloud Deployment Models

UNIT - III

Cloud Computing Architecture and Management: Cloud architecture, Layer, Anatomy of the Cloud, Network Connectivity in Cloud Computing, Applications, on the Cloud, Managing the Cloud, Managing the Cloud Infrastructure Managing the Cloud application, Migrating Application to Cloud, Phases of Cloud Migration Approaches for Cloud Migration.

UNIT - IV

Cloud Service Models: Infrastructure as a Service, Characteristics of IaaS. Suitability of IaaS, Pros and Cons of IaaS, Summary of IaaS Providers, Platform as a Service, Characteristics of PaaS, Suitability of PaaS, Pros and Cons of PaaS, Summary of PaaS Providers, Software as a Service, Characteristics of SaaS, Suitability of SaaS, Pros and Cons of SaaS, Summary of SaaS Providers, Other Cloud Service Models.

UNIT - V

Cloud Service Providers: EMC, EMC IT, Captiva Cloud Toolkit, Google, Cloud Platform, Cloud Storage, Google Cloud Connect, Google Cloud Print, Google App Engine, Amazon Web Services, Amazon Elastic Compute Cloud, Amazon Simple Storage Service, Amazon Simple Queue ,service, Microsoft, Windows Azure, Microsoft Assessment and Planning Toolkit, SharePoint, IBM, Cloud Models, IBM Smart Cloud, SAP Labs, SAP HANA Cloud Platform, Virtualization Services Provided by SAP, Sales force, Sales Cloud, Service Cloud: Knowledge as a Service, Rack space, VMware, Manjira soft, Aneka Platform

Textbooks:

1. Essentials of cloud Computing : K.Chandrasekhran , CRC press, 2014

References:

1. Cloud Computing: Principles and Paradigms by Rajkumar Buyya, James Broberg and Andrzej M. Goscinski, Wiley, 2011.
2. Distributed and Cloud Computing , Kai Hwang, Geoffery C.Fox, Jack J.Dongarra, Elsevier, 2012.
3. Cloud Security and Privacy: An Enterprise Perspective on Risks and Compliance, Tim Mather, Subra Kumaraswamy, Shahed Latif, O'Reilly, SPD, rp2011.

IV Year B.Tech.(IDP) I Semester

L	T	P	C
3	0	0	3

AD HOC & SENSOR NETWORKS
Professional Elective IV

Prerequisites

1. A course on “Computer Networks”
2. A course on “Mobile Computing”

Objectives

1. To understand the concepts of sensor networks
2. To understand the MAC and transport protocols for ad hoc networks
3. To understand the security of sensor networks
4. To understand the applications of adhoc and sensor networks

Outcomes

1. Ability to understand the state of the art research in the emerging subject of Ad Hoc and Wireless Sensor Networks
2. Ability to solve the issues in real-time application development based on ASN.
3. Ability to conduct further research in the domain of ASN

UNIT - I

Introduction to Ad Hoc Networks - Characteristics of MANETs, Applications of MANETs and Challenges of MANETs.

Routing in MANETs - Criteria for classification, Taxonomy of MANET routing algorithms, Topology-based routing algorithms-**Proactive**: DSDV; **Reactive**: DSR, AODV; Hybrid: ZRP; Position-based routing algorithms-**Location Services**-DREAM, Quorum-based; **Forwarding Strategies**: Greedy Packet, Restricted Directional Flooding-DREAM, LAR.

UNIT - II

Data Transmission - Broadcast Storm Problem, **Rebroadcasting Schemes**-Simple-flooding, Probability-based Methods, Area-based Methods, Neighbor Knowledge-based: SBA, Multipoint Relaying, AHBP.

Multicasting: **Tree-based**: AMRIS, MAODV; **Mesh-based**: ODMRP, CAMP; **Hybrid**: AMRoute, MCEDAR.

UNIT - III

Geocasting: Data-transmission Oriented-LBM; Route Creation Oriented-GeoTORA, MGR.

TCP over Ad Hoc TCP protocol overview, TCP and MANETs, Solutions for TCP over Ad hoc

UNIT - IV**Basics of Wireless, Sensors and Lower Layer Issues**

Applications, Classification of sensor networks, Architecture of sensor network, Physical layer, MAC layer, Link layer, Routing Layer.

UNIT - V**Upper Layer Issues of WSN**

Transport layer, High-level application layer support, Adapting to the inherent dynamic nature of WSNs, Sensor Networks and mobile robots.

Textbooks:

1. Ad Hoc and Sensor Networks – Theory and Applications, Carlos Corderio Dharma P. Aggarwal, World Scientific Publications, March 2006, ISBN – 981-256-681-3.
2. Wireless Sensor Networks: An Information Processing Approach, Feng Zhao, Leonidas Guibas, Elsevier Science, ISBN – 978-1-55860-914-3 (Morgan Kauffman).

IV Year B.Tech.(IDP) I Semester

L	T	P	C
3	0	0	3

ADVANCED ALGORITHMS
Professional Elective -V

Prerequisites

1. A course on “Computer Programming & Data Structures”
2. A course on “Advanced Data Structures & Algorithms”

Objectives

1. Introduces the recurrence relations for analyzing the algorithms
2. Introduces the graphs and their traversals.
3. Describes major algorithmic techniques (divide-and-conquer, greedy, dynamic programming, Brute Force , Transform and Conquer approaches) and mention problems for which each technique is appropriate;
4. Describes how to evaluate and compare different algorithms using worst-case, average case and best-case analysis.
5. Introduces string matching algorithms
6. Introduces linear programming.

Outcomes

1. Ability to analyze the performance of algorithms
2. Ability to choose appropriate data structures and algorithm design methods for a specified application
3. Ability to understand how the choice of data structures and the algorithm design methods impact the performance of programs

UNIT - I

Introduction: Role of Algorithms in computing, Order Notation, Recurrences, Probabilistic Analysis and Randomized Algorithms. Sorting and Order Statistics: Heap sort, Quick sort and Sorting in Linear Time.

Advanced Design and Analysis Techniques: Dynamic Programming- Matrix chain Multiplication, Longest common Subsequence and optimal binary Search trees.

UNIT - II

Greedy Algorithms - Huffman Codes, Activity Selection Problem. Amortized Analysis.

Graph Algorithms: Topological Sorting, Minimum Spanning trees, Single Source Shortest Paths, Maximum Flow algorithms..

UNIT - III

Sorting Networks: Comparison Networks, Zero-one principle, bitonic Sorting Networks, Merging Network, Sorting Network.

Matrix Operations- Strassen's Matrix Multiplication, Inverting matrices, Solving system of linear Equations

UNIT - IV

String Matching: Naive String Matching, Rabin-Karp algorithm, matching with finite Automata, Knuth-Morris - Pratt algorithm.

UNIT - V

NP-Completeness and Approximation Algorithms: Polynomial time, polynomial time verification, NP-Completeness and reducibility, NP-Complete problems. Approximation Algorithms- Vertex cover Problem, Travelling Sales person problem

Textbooks:

1. Introduction to Algorithms," T.H. Cormen, C.E. Leiserson ,R.L. Rivest, and C. Stein, 3rd Edition, PHI.

References:

1. Fundamentals of Computer Algorithms, Ellis Horowitz,Satraj Sahni and Rajasekharam, Galgotia publications pvt. Ltd.
2. Design and Analysis Algorithms - Parag Himanshu Dave, Himanshu Bhalchandra Dave, Pearson
3. Algorithm Design: Foundations, Analysis and Internet examples, M.T.Goodrich and R.Tomassia, John wiley and sons.
4. Data structures and Algorithm Analysis in C++, Allen Weiss, Second edition, Pearson education.

IV Year B.Tech.(IDP) I Semester

L	T	P	C
3	0	0	3

AGILE METHODOLOGY**Professional Elective -V**

Course Objectives: Knowledge on concepts of Agile development, releasing, planning and developing

Course Outcomes:

- Understand basic concepts of agile methods and extreme programming.
- Analyze real customer involvement and ubiquitous language.
- Discuss risk management and iteration planning.
- Summarize incremental requirements, refactoring, incremental design and architecture.

UNIT - I

Introduction Extreme Programming (XP) - Agile Development: Why Agile - Understanding Success, Beyond Deadlines, Importance of Organizational Success, Introduction to Agility How to Be Agile - Agile methods, Don't make your own method, Road to mastery Understanding XP (Extreme Programming) - XP life cycle, XP team, XP Concepts Adopting XP - Knowing whether XP is suitable, Implementing XP, assessing Agility Practicing XP - Thinking - Pair Programming, Energized work, Informative Workspace, Root cause Analysis, Retrospectives.

UNIT - II

Collaborating: Trust, Sit together, Real customer involvement, Ubiquitous language, meetings, coding standards, Iteration demo, Reporting.

UNIT - III

Releasing: Bugfree Release, Version Control, fast build, continuous integration, Collective ownership, Documentation.

UNIT – IV

Planning: Version, Release Plan, Risk Management, Iteration Planning, Slack, Stories, Estimating

UNIT - V

Developing: Incremental requirements, Customer tests, Test driven development, Refactoring, Incremental design and architecture, spike solutions, Performance optimization, Exploratory testing

TEXT BOOK:

1. The art of Agile Development, James Shore and Shane Warden, 11th Indian Reprint, O'Reilly, 2018.

REFERENCE BOOKS:

1. Learning Agile, Andrew Stellman and Jennifer Greene, O'Reilly, 4th Indian Reprint, 2018.
2. Practices of an Agile Developer, Venkat Subramaniam and Andy Hunt, SPD, 5th Indian Reprint, 2015.
3. Agile Project Management - Jim Highsmith, Pearson Low price Edition 2004.

IV Year B.Tech.(IDP) I Semester

L	T	P	C
3	0	0	3

ROBOTIC PROCESS AUTOMATION**Professional Elective -V**

Course Objectives: Aim of the course is to make learners familiar with the concepts of Robotic Process Automation.

Course Outcomes:

- Describe RPA, where it can be applied and how it's implemented.
- Identify and understand Web Control Room and Client Introduction.
- Understand how to handle various devices and the workload.
- Understand Bot creators, Web recorders and task editors.

UNIT - I

Introduction to Robotic Process Automation & Bot Creation Introduction to RPA and Use cases – Automation Anywhere Enterprise Platform – Advanced features and capabilities – Ways to create Bots.

UNIT - II

Web Control Room and Client Introduction - Features Panel - Dashboard (Home, Bots, Devices, Audit, Workload, Insights) - Features Panel – Activity (View Tasks in Progress and Scheduled Tasks) - Bots (View Bots Uploaded and Credentials).

UNIT - III

Devices (View Development and Runtime Clients and Device Pools) - Workload (Queues and SLA Calculator) - Audit Log (View Activities Logged which are associated with Web CR) - Administration (Configure Settings, Users, Roles, License and Migration) - Demo of Exposed API's – Conclusion – Client introduction and Conclusion.

UNIT - IV

Bot Creator Introduction – Recorders – Smart Recorders – Web Recorders – Screen Recorders - Task Editor – Variables - Command Library – Loop Command – Excel Command – Database Command - String Operation Command - XML Command.

UNIT - V

Terminal Emulator Command - PDF Integration Command - FTP Command - PGP Command - Object Cloning Command - Error Handling Command - Manage Windows Control Command - Workflow Designer - Report Designer.

TEXT BOOK:

1. Learning Robotic Process Automation: Create Software robots and automate business processes with the leading RPA tool - UiPath: Create Software robots. with the leading RPA tool – UiPath Kindle Edition.

REFERENCE BOOK:

1. Robotic Process Automation A Complete Guide - 2020 Edition Kindle Edition.

IV Year B.Tech.(IDP) I Semester

L	T	P	C
3	0	0	3

BLOCKCHAIN TECHNOLOGY
Professional Elective -V

Prerequisites

1. Knowledge in information security and applied cryptography.
2. Knowledge in distributed databases.

Objectives

1. To learn the fundamentals of Block Chain and various types of block chain and consensus mechanism.
2. To understand public block chain system, Private block chain system and consortium block chain.
3. Able to know the security issues of blockchain technology.

Outcomes

1. Able to work in the field of block chain technologies.

UNIT-I

Fundamentals of Blockchain: Introduction, Origin of Blockchain, Blockchain Solution, Components of Blockchain, Block in a Blockchain, The Technology and the Future.

Blockchain Types and Consensus Mechanism: Introduction, Decentralization and Distribution, Types of Blockchain, Consensus Protocol.

Cryptocurrency – Bitcoin, Altcoin and Token: Introduction, Bitcoin and the Cryptocurrency, Cryptocurrency Basics, Types of Cryptocurrencies, Cryptocurrency Usage.

UNIT-II

Public Blockchain System: Introduction, Public Blockchain, Popular Public Blockchains, The Bitcoin Blockchain, Ethereum Blockchain.

Smart Contracts: Introduction, Smart Contract, Characteristics of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contracts in Ethereum, Smart Contracts in Industry.

UNIT-III

Private Blockchain System: Introduction, Key Characteristics of Private Blockchain, Why We Need Private Blockchain, Private Blockchain Examples, Private Blockchain and Open Source, E-commerce Site Example, Various Commands (Instructions) in E-commerce Blockchain, Smart Contract in Private Environment, State Machine, Different Algorithms of Permissioned Blockchain, Byzantine Fault, Multichain.

Consortium Blockchain: Introduction, Key Characteristics of Consortium Blockchain, Why We Need Consortium Blockchain, Hyperledger Platform, Overview of Ripple, Overview of Corda.

Initial Coin Offering: Introduction, Blockchain Fundraising Methods, Launching an ICO, Investing in an ICO, Pros and Cons of Initial Coin Offering, Successful Initial Coin Offerings, Evolution of ICO, ICO Platforms.

UNIT-IV

Security in Blockchain: Introduction, Security Aspects in Bitcoin, Security and Privacy Challenges of Blockchain in General, Performance and Scalability, Identity Management and Authentication, Regulatory Compliance and Assurance, Safeguarding Blockchain Smart Contract (DApp), Security Aspects in Hyperledger Fabric.

Applications of Blockchain: Introduction, Blockchain in Banking and Finance, Blockchain in Education, Blockchain in Energy, Blockchain in Healthcare, Blockchain in Real-estate, Blockchain in Supply Chain, The Blockchain and IoT. Limitations and Challenges of

Blockchain.

UNIT-V

Blockchain Case Studies: Case Study 1 – Retail, Case Study 2 – Banking and Financial Services,

Case Study 3 – Healthcare, Case Study 4 – Energy and Utilities.

Blockchain Platform using Python: Introduction, Learn How to Use Python Online Editor, Basic Programming Using Python, Python Packages for Blockchain.

Blockchain platform using Hyperledger Fabric: Introduction, Components of Hyperledger Fabric Network, Chain codes from Developer.ibm.com, Blockchain Application Using Fabric Java SDK.

Text book:

1. “Block chain Technology”, Chandramouli Subramanian, Asha A.George, Abhilash K A and Meena Karthikeyan , Universities Press.

References:

1. Blockchain Blue print for Economy, Melanie Swan, SPD O'reilly.
2. Blockchain for Business, Jai Singh Arun, Jerry Cuomo, Nitin Gaur, Pearson Addition Wesley.

IV Year B.Tech.(IDP) I Semester

L	T	P	C
3	0	0	3

SOFTWARE PROCESS & PROJECT MANAGEMENT
Professional Elective -V

Objectives

1. To acquire knowledge on software process management
2. To acquire managerial skills for software project development
3. To understand software economics

Outcomes

1. Gain knowledge of software economics, phases in the life cycle of software development, project organization, project control and process instrumentation
2. Analyze the major and minor milestones, artifacts and metrics from management and technical perspective
3. Design and develop software product using conventional and modern principles of software project management

UNIT - I

Software Process Maturity

Software maturity Framework, Principles of Software Process Change, Software Process Assessment, The Initial Process, The Repeatable Process, The Defined Process, The Managed Process, The Optimizing Process.

Process Reference Models

Capability Maturity Model (CMM), CMMI, PCMM, PSP, TSP).

UNIT - II

Software Project Management Renaissance

Conventional Software Management, Evolution of Software Economics, Improving Software Economics, The old way and the new way.

Life-Cycle Phases and Process artifacts

Engineering and Production stages, inception phase, elaboration phase, construction phase, transition phase, artifact sets, management artifacts, engineering artifacts and pragmatic artifacts, model based software architectures.

UNIT - III

Workflows and Checkpoints of process

Software process workflows, Iteration workflows, Major milestones, minor milestones, periodic status assessments.

Process Planning

Work breakdown structures, Planning guidelines, cost and schedule estimating process, iteration planning process, Pragmatic planning.

UNIT - IV

Project Organizations

Line-of- business organizations, project organizations, evolution of organizations, process automation.

Project Control and process instrumentation

The seven core metrics, management indicators, quality indicators, life-cycle expectations, Pragmatic software metrics, metrics automation.

UNIT - V

CCPDS-R Case Study and Future Software Project Management Practices

Modern Project Profiles, Next-Generation software Economics, Modern Process Transitions .

Textbooks:

1. Managing the Software Process, Watts S. Humphrey, Pearson Education
2. Software Project Management, Walker Royce, Pearson Education

References:

1. An Introduction to the Team Software Process, Watts S. Humphrey, Pearson Education, 2000
2. Process Improvement essentials, James R. Persse, O'Reilly,2006
3. Software Project Management, Bob Hughes & Mike Cotterell, fourth edition, TMH,2006
4. Applied Software Project Management, Andrew Stellman & Jennifer Greene, O'Reilly, 2006.
5. Head First PMP, Jennifer Greene & Andrew Stellman, O'Reilly,2007
6. Software Engineering Project Management, Richard H. Thayer & Edward Yourdon, 2nd Edition, Wiley India, 2004.
7. Agile Project Management, Jim Highsmith, Pearson education, 2004

IV Year B.Tech.(IDP) I Semester

L	T	P	C
3	0	0	3

OPERATING SYSTEMS (Open Elective -II)**Prerequisites:**

1. A course on "Computer Programming and Data Structures".
2. A course on "Computer Organization and Architecture".

Course Objectives:

- Introduce operating system concepts (i.e., processes, threads, scheduling, synchronization, deadlocks, memory management, file and I/O subsystems and protection)
- Introduce the issues to be considered in the design and development of operating system
- Introduce basic Unix commands, system call interface for process management, interprocess communication and I/O in Unix

Course Outcomes:

- Will be able to control access to a computer and the files that may be shared
- Demonstrate the knowledge of the components of computers and their respective roles in computing.
- Ability to recognize and resolve user problems with standard operating environments.
- Gain practical knowledge of how programming languages, operating systems, and architectures interact and how to use each effectively.

UNIT - I

Operating System - Introduction, Structures - Simple Batch, Multiprogrammed, Time-shared, Personal Computer, Parallel, Distributed Systems, Real-Time Systems, System components, Operating System services, System Calls

Process - Process concepts and scheduling, Operations on processes, Cooperating Processes, Threads

UNIT - II

CPU Scheduling - Scheduling Criteria, Scheduling Algorithms, Multiple -Processor Scheduling. System call interface for process management-fork, exit, wait, waitpid, exec

Deadlocks - System Model, Deadlocks Characterization, Methods for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, and Recovery from Deadlock

UNIT - III

Process Management and Synchronization - The Critical Section Problem, Synchronization Hardware, Semaphores, and Classical Problems of Synchronization, Critical Regions, Monitors

Interprocess Communication Mechanisms: IPC between processes on a single computer system, IPC between processes on different systems, using pipes, FIFOs, message queues, shared memory.

UNIT - IV

Memory Management and Virtual Memory - Logical versus Physical Address Space, Swapping, Contiguous Allocation, Paging, Segmentation, Segmentation with Paging, Demand Paging, Page Replacement, Page Replacement Algorithms.

UNIT - V

File System Interface and Operations - Access methods, Directory Structure, Protection, File System Structure, Allocation methods, Free-space Management. Usage of open, create, read, write, close, lseek, stat, ioctl system calls.

TEXT BOOKS:

1. Operating System Principles- Abraham Silberchatz, Peter B. Galvin, Greg Gagne 7th Edition, John Wiley.
2. Advanced programming in the UNIX environment, W.R. Stevens, Pearson education.

REFERENCE BOOKS:

1. Operating Systems- Internals and Design Principles, William Stallings, Fifth Edition– 2005, Pearson Education/PHI
2. Operating System A Design Approach- Crowley, TMH.
3. Modern Operating Systems, Andrew S. Tanenbaum 2nd edition, Pearson/PHI
4. UNIX programming environment, Kernighan and Pike, PHI/ Pearson Education
5. UNIX Internals -The New Frontiers, U. Vahalia, Pearson Education.

IV Year B.Tech.(IDP) I Semester

L	T	P	C
3	0	0	3

SOFTWARE ENGINEERING (Open Elective –II)**Course Objectives**

- The aim of the course is to provide an understanding of the working knowledge of the techniques for estimation, design, testing and quality management of large software development projects.
- Topics include process models, software requirements, software design, software testing, software process/product metrics, risk management, quality management and UML diagrams

Course Outcomes

- Ability to translate end-user requirements into system and software requirements, using e.g.
- UML, and structure the requirements in a Software Requirements Document (SRD).
- Identify and apply appropriate software architectures and patterns to carry out high level design of a system and be able to critically compare alternative choices.
- Will have experience and/or awareness of testing problems and will be able to develop a simple testing report

UNIT - I

Introduction to Software Engineering: The evolving role of software, changing nature of software, software myths.

A Generic view of process: Software engineering- a layered technology, a process framework, the capability maturity model integration (CMMI)

Process models: The waterfall model, Spiral model and Agile methodology

UNIT - II

Software Requirements: Functional and non-functional requirements, user requirements, system requirements, interface specification, the software requirements document.

Requirements engineering process: Feasibility studies, requirements elicitation and analysis, requirements validation, requirements management.

UNIT - III

Design Engineering: Design process and design quality, design concepts, the design model.

Creating an architectural design: software architecture, data design, architectural styles and patterns, architectural design, conceptual model of UML, basic structural modeling, class diagrams, sequenced diagrams, collaboration diagrams, use case diagrams, component diagrams.

UNIT - IV

Testing Strategies: A strategic approach to software testing, test strategies for conventional software, black-box and white-box testing, validation testing, system testing, the art of debugging.

Metrics for Process and Products: Software measurement, metrics for software quality.

UNIT - V

Risk management: Reactive Vs proactive risk strategies, software risks, risk identification, risk projection, risk refinement, RMMM

Quality Management: Quality concepts, software quality assurance, software reviews, formal technical reviews, statistical software quality assurance, software reliability, the ISO 9000 quality standards.

TEXT BOOKS:

1. Software Engineering, A practitioner's Approach- Roger S. Pressman, 6th edition, McGraw Hill International Edition.
2. Software Engineering- Sommerville, 7th edition, Pearson Education.

REFERENCE BOOKS:

1. The unified modeling language user guide Grady Booch, James Rumbaugh, Ivar Jacobson, Pearson Education.
2. Software Engineering, an Engineering approach- James F. Peters, Witold Pedrycz, John Wiley.
3. Software Engineering principles and practice- Waman S Jawadekar, The McGraw-Hill Companies.
4. Fundamentals of object-oriented design using UML Meiler page-Jones: Pearson Education.

ADVANCED DATA STRUCTURES

IV Year B.Tech.(IDP) I Semester

L	T	P	C
3	0	0	3

Prerequisites: A course on “Data Structures”

Course Objectives

1. Introduces the heap data structures such as leftist trees, binomial heaps, Fibonacci and minmax heaps
2. Introduces a variety of data structures such as disjoint sets, hash tables, search structures and digital search structures

Course Outcomes

1. Ability to select the data structures that efficiently model the information in a problem
2. Ability to understand how the choice of data structures impact the performance of programs
3. Design programs using a variety of data structures, including hash tables, search structures and digital search structures

UNIT - I

Heap Structures

Introduction, Min-Max Heaps, Leftist trees, Binomial Heaps, Fibonacci heaps.

UNIT - II

Hashing and Collisions

Introduction, Hash Tables, Hash Functions, different Hash Functions: Division Method, Multiplication Method, Mid-Square Method, Folding Method, Collisions

UNIT - III

Search Structures: OBST, AVL trees, Red-Black trees, Splay trees,

Multiway Search Trees: B-trees, 2-3 trees

UNIT - IV

Digital Search Structures

Digital Search trees, Binary tries and Patricia, Multiway Tries, Suffix trees, Standard Tries, Compressed Tries

UNIT - V

Pattern matching

Introduction, Brute force, the Boyer –Moore algorithm, Knuth-Morris-Pratt algorithm, Naïve String, Harspool, Rabin Karp

TEXT BOOKS:

1. Fundamentals of data structures in C++ Sahni, Horowitz, Mehatha, Universities Press. 2.
2. Introduction to Algorithms, TH Cormen, PHI

REFERENCES:

1. Design methods and analysis of Algorithms, SK Basu, PHI.
2. Data Structures & Algorithm Analysis in C++, Mark Allen Weiss, Pearson Education.
3. Fundamentals of Computer Algorithms, 2nd Edition, Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran, Universities Press.

ADVANCED DATA STRUCTURES LAB (Lab - I)**IV Year B.Tech.(IDP) I Semester**

L	T	P	C
0	0	4	2

Prerequisites:

1. A course on Computer Programming & Data Structures **Course**

Objectives:

1. Introduces the basic concepts of Abstract Data Types.
2. Reviews basic data structures such as stacks and queues.
3. Introduces a variety of data structures such as hash tables, search trees, tries, heaps, graphs, and B-trees.
4. Introduces sorting and pattern matching algorithms.

Course Outcomes:

1. Ability to select the data structures that efficiently model the information in a problem.
2. Ability to assess efficiency trade-offs among different data structure implementations or combinations.
3. Implement and know the application of algorithms for sorting and pattern matching.
4. Design programs using a variety of data structures, including hash tables, binary and general tree structures, search trees, tries, heaps, graphs, and B-trees.

List of Programs

1. Write a program to perform the following operations:
 - a) Insert an element into a binary search tree.
 - b) Delete an element from a binary search tree.
 - c) Search for a key element in a binary search tree.
2. Write a program for implementing the following sorting methods:
 - a) Merge sort
 - b) Heap sort
 - c) Quick sort
3. Write a program to perform the following operations:
 - a) Insert an element into a B- tree.
 - b) Delete an element from a B- tree.
 - c) Search for a key element in a B- tree.
4. Write a program to perform the following operations:
 - a) Insert an element into a Min-Max heap
 - b) Delete an element from a Min-Max heap
 - c) Search for a key element in a Min-Max heap
5. Write a program to perform the following operations:
 - a) Insert an element into a Lefiist tree
 - b) Delete an element from a Leftist tree
 - c) Search for a key element in a Leftist tree
6. Write a program to perform the following operations:
 - a) Insert an element into a binomial heap
 - b) Delete an element from a binomial heap.
 - c) Search for a key element in a binomial heap
7. Write a program to perform the following operations:
 - a) Insert an element into a AVL tree.
 - b) Delete an element from a AVL search tree.
 - c) Search for a key element in a AVL search tree.
8. Write a program to perform the following operations:
 - a) Insert an element into a Red-Black tree.
 - b) Delete an element from a Red-Black tree.

- c) Search for a key element in a Red-Black tree.
- 9. Write a program to implement all the functions of a dictionary using hashing.
- 10. Write a program for implementing Knuth-Morris-Pratt pattern matching algorithm.
- 11. Write a program for implementing Brute Force pattern matching algorithm.
- 12. Write a program for implementing Boyer pattern matching algorithm.

TEXT BOOKS:

- 1. Fundamentals of Data structures in C, E. Horowitz, S. Sahni and Susan Anderson Freed, 2nd Edition, Universities Press
- 2. Data Structures Using C – A.S. Tanenbaum, Y. Langsam, and M.J. Augenstein, PHI/Pearson education.
- 3. Introduction to Data Structures in C, Ashok Kamthane, 1st Edition, Pearson.

REFERENCES:

- 1. The C Programming Language, B.W. Kernighan, Dennis M. Ritchie, PHI/Pearson Education
- 2. C Programming with problem solving, J.A. Jones & K. Harrow, Dreamtech Press
- 3. Data structures: A Pseudocode Approach with C, R.F. Gilberg And B.A. Forouzan, 2nd Edition, Cengage Learning

ADVANCED ALGORITHMS (PC - III)**IV Year B.Tech.(IDP) II Semester**

L	T	P	C
3	0	0	3

Pre-Requisites: UG level course in Algorithm Design and Analysis**Course Objectives:**

1. R22 IDP (B.Tech + M.Tech) CSE Syllabus Introduce students to the advanced methods of designing and analyzing algorithms.
2. The student should be able to choose appropriate algorithms and use it for a specific problem.
3. To familiarize students with basic paradigms and data structures used to solve advanced algorithmic problems.
4. Students should be able to understand different classes of problems concerning their computation difficulties.
5. To introduce the students to recent developments in the area of algorithmic design.

Course Outcomes: After completion of course, students would be able to:

1. Analyze the complexity/performance of different algorithms.
2. Determine the appropriate data structure for solving a particular set of problems.
3. Categorize the different problems in various classes according to their complexity.

UNIT – I**Sorting:** Review of various sorting algorithms, topological sorting**Graph:** Definitions and Elementary Algorithms: Shortest path by BFS, shortest path in edge-weighted case (Dijkstra's), depth-first search and computation of strongly connected components, emphasis on correctness proof of the algorithm and time/space analysis, example of amortized analysis.**UNIT – II****Matroids:** Introduction to greedy paradigm, algorithm to compute a maximum weight maximal independent set. Application to MST.**Graph Matching:** Algorithm to compute maximum matching. Characterization of maximum matching by augmenting paths, Edmond's Blossom algorithm to compute augmenting path.**UNIT - III****Flow-Networks:** Maxflow-mincut theorem, Ford-Fulkerson Method to compute maximum flow, Edmond-Karp maximum-flow algorithm.**Matrix Computations:** Strassen's algorithm and introduction to divide and conquer paradigm, inverse of a triangular matrix, relation between the time complexities of basic matrix operations, LUPdecomposition.**UNIT - IV****Shortest Path in Graphs:** Floyd-Warshall algorithm and introduction to dynamic programming paradigm. More examples of dynamic programming.**Modulo Representation of integers/polynomials:** Chinese Remainder Theorem, Conversion between base-representation and modulo-representation. Extension to polynomials. Application: Interpolation problem.**Discrete Fourier Transform (DFT):** In complex field, DFT in modulo ring. Fast Fourier Transform algorithm. Schonhage-Strassen Integer Multiplication algorithm.**UNIT - V****Linear Programming:** Geometry of the feasibility region and Simplex algorithm **NP-completeness:** Examples, proof of NP-hardness and NP-completeness.

Recent Trends in problem solving paradigms using recent searching and sorting techniques by applying recently proposed data structures.

REFERENCES:

1. Cormen, Leiserson, Rivest, Stein, "Introduction to Algorithms".
2. Aho, Hopcroft, Ullman "The Design and Analysis of Computer Algorithms".
3. Kleinberg and Tardos."Algorithm Design"

MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE (PC-I)**IV Year B.Tech.(IDP) II Semester**

L	T	P	C
3	0	0	3

Pre-requisites: An understanding of Math in general is sufficient.

Course Objectives: To learn

1. Introduces the elementary discrete mathematics for computer science and engineering.
2. Topics include formal logic notation, methods of proof, induction, sets, relations, graph theory, permutations and combinations, counting principles; recurrence relations and generating functions.

Course Outcomes: After learning the contents of this paper the student must be able to

1. Ability to understand and construct precise mathematical proofs.
2. Ability to use logic and set theory to formulate precise statements.
3. Ability to analyze and solve counting problems on finite and discrete structures.
4. Ability to describe and manipulate sequences.
5. Ability to apply graph theory in solving computing problems.

UNIT-I:

The Foundations Logic and Proofs: Propositional Logic, Applications of Propositional Logic, Propositional Equivalence, Predicates and Quantifiers, Nested Quantifiers, Rules of Inference, Introduction to Proofs, Proof Methods and Strategy.

UNIT-II:

Basic Structures, Sets, Functions, Sequences, Sums, Matrices and Relations: Sets, Functions, Sequences & Summations, Cardinality of Sets and Matrices Relations, Relations and Their Properties, n-ary Relations and Their Applications, Representing Relations, Closures of Relations, Equivalence Relations, Partial Orderings.

UNIT-III:

Algorithms, Induction and Recursion: Algorithms, The Growth of Functions, Complexity of Algorithms. Induction and Recursion: Mathematical Induction, Strong Induction and Well-Ordering, Recursive Definitions and Structural Induction, Recursive Algorithms, Program Correctness.

UNIT-IV:

Discrete Probability and Advanced Counting Techniques:

An Introduction to Discrete Probability. Probability Theory, Bayes' Theorem, Expected Value and Variance. Advanced Counting Techniques:

Recurrence Relations, Solving Linear Recurrence Relations, Divide-and-Conquer Algorithms and Recurrence Relations, Generating Functions, Inclusion-Exclusion, Applications of Inclusion-Exclusion.

UNIT-V:

Graphs: Graphs and Graph Models, Graph Terminology and Special Types of Graphs, Representing Graphs and Graph Isomorphism, Connectivity, Euler and Hamilton Paths, Shortest-Path Problems, Planar Graphs, Graph Coloring.

Trees: Introduction to Trees, Applications of Trees, Tree Traversal, Spanning Trees, Minimum Spanning Trees.

TEXT BOOKS:

1. Discrete Mathematical Structures with Applications to Computer Science: J.P. Tremblay, R. Manohar, McGraw-Hill, 1st ed.
2. Discrete Mathematics for Computer Scientists & Mathematicians: Joe I. Mott, Abraham Kandel, Theodore P. Baker, Prentis Hall of India, 2nd ed.

REFERENCES:

1. Discrete and Combinatorial Mathematics - an applied introduction: Ralph P. Grimaldi, Pearson education, 5th edition.
2. Discrete Mathematical Structures: Thomas Koshy, Tata McGraw Hill publishing co.

DATABASE PROGRAMMING WITH PL/SQL (Professional Elective - I)
IV Year B.Tech.(IDP) II Semester

L	T	P	C
3	0	0	3

Course Objectives:

1. Knowledge on significance of SQL fundamentals.
2. Evaluate functions and triggers of PL/SQL
3. Knowledge on control structures, packages in PL/SQL and its applications

Course Outcomes:

1. Understand importance of PL/SQL basics
2. Implement functions and procedures using PL/SQL
3. Understand the importance of triggers in database

UNIT - I

PL/SQL Basics: Block Structure, Behavior of Variables in Blocks, Basic Scalar and Composite Data Types, Control Structures, Exceptions, Bulk Operations, Functions, Procedures, and Packages, Transaction Scope.

UNIT - II

Language Fundamentals & Control Structures: Lexical Units, Variables and Data Types, Conditional Statements, Iterative Statements, Cursor Structures, Bulk Statements, Introduction to Collections, Object Types: Varray and Table Collections, Associative Arrays, Oracle Collection API.

UNIT - III

Functions and Procedures: Function and Procedure Architecture, Transaction Scope, Calling Subroutines, Positional Notation, Named Notation, Mixed Notation, Exclusionary Notation, SQL Call Notation, Functions, Function Model Choices, Creation Options, Pass-by-Value Functions, Pass-by-Reference Functions, Procedures, Pass-by-Value Procedures, Pass-by-Reference Procedures, Supporting Scripts.

UNIT - IV

Packages: Package Architecture, Package Specification, Prototype Features, Serially Reusable Precompiler Directive, Variables, Types, Components: Functions and Procedures, Package Body, Prototype Features, Variables, Types, Components: Functions and Procedures, Definer vs. Invoker Rights Mechanics, Managing Packages in the Database Catalog, Finding, Validating, and Describing Packages, Checking Dependencies, Comparing Validation Methods: Timestamp vs. Signature.

UNIT - V

Triggers: Introduction to Triggers, Database Trigger Architecture, Data Definition Language Triggers, Event Attribute Functions, Building DDL Triggers, Data Manipulation Language Triggers, StatementLevel Triggers, Row-Level Triggers, Compound Triggers, INSTEAD OF Triggers, System and Database Event Triggers, Trigger Restrictions, Maximum Trigger Size, SQL Statements, LONG and LONG RAW Data Types.

TEXT BOOKS:

1. Oracle Database 12c PL/SQL Programming Michael McLaughlin, McGrawHill Education

REFERENCES:

1. Benjamin Rosenzweig, Elena Silvestrova Rakhimov, Oracle PL/SQL by example Fifth Edition
2. Dr. P. S. Deshpande, SQL & PL / SQL for Oracle 11g Black Book

DEEP LEARNING (Professional Elective - I)**IV Year B.Tech.(IDP) II Semester**

L	T	P	C
3	0	0	3

Course Objectives: students will be able

1. To understand complexity of Deep Learning algorithms and their limitations
2. To be capable of performing experiments in Deep Learning using real-world data. **Course Outcomes:**

1. Implement deep learning algorithms, understand neural networks and traverse the layers of data
2. Learn topics such as convolutional neural networks, recurrent neural networks, training deep networks and high-level interfaces
3. Understand applications of Deep Learning to Computer Vision
4. Understand and analyze Applications of Deep Learning to NLP

UNIT - I

Introduction: Feed forward Neural networks, Gradient descent and the back propagation algorithm, Unit saturation, the vanishing gradient problem, and ways to mitigate it. ReLU Heuristics for avoiding bad local minima, Heuristics for faster training, Nestors accelerated gradient descent, Regularization, Dropout

UNIT - II

Convolutional Neural Networks: Architectures, convolution/pooling layers, Recurrent Neural Networks: LSTM, GRU, Encoder Decoder architectures. Deep Unsupervised Learning: Auto encoders, Variational Auto-encoders, Adversarial Generative Networks, Auto-encoder and DBM Attention and memory models, Dynamic Memory Models

UNIT - III

Applications of Deep Learning to Computer Vision: Image segmentation, object detection, automatic image captioning, Image generation with Generative adversarial networks, video to text with LSTM models, Attention Models for computer vision tasks

UNIT - IV

Applications of Deep Learning to NLP: Introduction to NLP and Vector Space Model of Semantics, Word Vector Representations: Continuous Skip-Gram Model, Continuous Bag-of-Wordsmodel (CBOW), Glove, Evaluations and Applications in word similarity

UNIT - V

Analogy reasoning: Named Entity Recognition, Opinion Mining using Recurrent Neural Networks: Parsing and Sentiment Analysis using Recursive Neural Networks: Sentence Classification using Convolutional Neural Networks, Dialogue Generation with LSTMs

TEXT BOOKS:

1. Deep Learning by Ian Goodfellow, Yoshua Bengio and Aaron Courville, MIT Press.
2. The Elements of Statistical Learning by T. Hastie, R. Tibshirani, and J. Friedman, Springer.
3. Probabilistic Graphical Models. Koller, and N. Friedman, MIT Press.

REFERENCES:

1. Bishop, C. M., Pattern Recognition and Machine Learning, Springer, 2006.
2. Yegnanarayana, B., Artificial Neural Networks PHI Learning Pvt. Ltd, 2009.
3. Golub, G.,H., and Van Loan,C.,F., Matrix Computations, JHU Press,2013.
4. Satish Kumar, Neural Networks: A Classroom Approach, Tata McGraw-Hill Education, 2004.

IMAGE AND VIDEO PROCESSING (Professional Elective - I)
IV Year B.Tech.(IDP) II Semester

L	T	P	C
3	0	0	3

Course Objectives:

Upon completion of the course, the student will be able to

1. Comprehend the image processing fundamentals and enhancement techniques in spatial and frequency domain.
2. Describe the color image fundamentals, models and various restoration techniques.
3. Design and Analyze the image compression systems.
4. Outline the various image segmentation and morphology operations.
5. Comprehend the basics of video processing and video coding.

Course Outcomes:

1. After completion of this course, students will be able to –
2. Understand theory and models in Image and Video Processing.
3. Explain the need of spatial and frequency domain techniques for image compression.
4. Comprehend different methods, models for video processing and motion estimation.
5. Illustrate quantitative models of image and video segmentation.
6. Apply the process of image enhancement for optimal use of resources.

Unit I:

Digital image fundamentals: A simple image formation model, Image sampling and quantization, Some basic relationships between pixels, Basic intensity transformation functions, Sampling and fourier transform of sampled functions, The discrete fourier transform of one variable, Extensions to functions of two variables(2-D discrete fourier transform, Properties of 2-D DFT and IDFT, 2-D Discrete Convolution Theorem

Unit II:

Image Enhancement(spatial domain): Histogram processing, Fundamentals of spatial filtering, Smoothing spatial filters, Sharpening spatial filters, The Laplacian-use of second order derivative for image sharpening, The Gradient-use of first order derivative for image sharpening

Image Enhancement(frequency domain): Basics of filtering in frequency domain, Image smoothing using lowpass frequency domain filters, Image sharpening using highpass filters

Unit III:

Image restoration: Noise Models, Restoration in the presence of noise only – Spatial filters, Periodic noise reduction using Frequency domain filtering, Estimating the degradation function, inverse filtering, Minimum Least square error filtering, constrained least square filters

Wavelet and Multiresolution processing: Matrix-based transform, Walsh-Hadamard Transform, Slant transform, Haar transform

Unit IV:

Image compression: Lossy and lossless compression schemes: Huffman coding, Run-length coding, Arithmetic coding, Block transform coding, JPEG

Image Morphology: Fundamental operations, Morphological Algorithms

Image segmentation: Point, Line and Edge detection, Canny edge detection, Hough Transform, Edge linking, Thresholding, Region-based segmentation, Pixel-based segmentation.

Unit V:

Feature Extraction: Boundary preprocessing, Boundary feature descriptor, Region feature descriptor, Principal components as feature descriptor, Whole image feature

Video Processing: Video Formats, Video Enhancement and Restoration, Video Segmentation

Textbooks:

1. Digital Image Processing, R. C. Gonzalez and R. E. Woods, Pearson Education.
2. Handbook of Image and Video Processing, AL Bovik, Academic Press.

References:

1. Digital Image Processing and Analysis, B. Chanda and D. Dutta Mazumdar, PHI.
2. Digital Image Processing, W. K. Pratt, Wiley-Interscience.
3. Fundamentals of Digital Image Processing, A. K. Jain, Pearson India Education.
4. Pattern Classification and Scene Analysis, R. O. Duda and P. E. Hart, Wiley.

R22 IDP (B.Tech + M.Tech) CSE Syllabus APPLIED CRYPTOGRAPHY (Professional Elective - II)

IV Year B.Tech.(IDP) II Semester

L	T	P	C
3	0	0	3

Course Objectives: Knowledge on significance of cryptographic protocols and symmetric and public key algorithms

Course Outcomes:

1. Understand the various cryptographic protocols
2. Analyze key length and algorithm types and modes
3. Illustrate different public key algorithms in cryptosystems
4. Understand special algorithms for protocols and usage in the real world.

UNIT - I

Foundations: Terminology, Steganography, Substitution Ciphers and Transposition Ciphers, Simple XOR, One-Time Pads, Computer Algorithms, Large Numbers,

Cryptographic Protocols: Protocol Building Blocks: Introduction to Protocols, Communications Using Symmetric Cryptography, One-Way Functions, One-Way Hash Functions, Communications Using Public-Key Cryptography, Digital Signatures, Digital Signatures with Encryption, Random and Pseudo-Random-Sequence Generation

UNIT - II

Cryptographic Techniques: Key length: Symmetric Key length, Public key length, comparing symmetric and public key length.

Algorithm types and modes: Electronic Codebook Mode, Block Replay, Cipher Block Chaining Mode, Stream Cipher, Self-Synchronizing Stream Ciphers, Cipher-Feedback Mode, Synchronous Stream Ciphers, Output-Feedback Mod, Counter Mode, Other Block-Cipher Modes.

UNIT - III

Public-Key Algorithms: Background, Knapsack Algorithms, RSA, Pohlig-Hellman, Rabin, ElGamal, McEliece, Elliptic Curve Cryptosystems, LUC, Finite Automaton Public-Key Cryptosystems

Public-Key Digital Signature Algorithms: Digital Signature Algorithm (DSA), DSA Variants, Gost Digital Signature Algorithm, Discrete Logarithm Signature Schemes, Ong-Schnorr-Shamir, ESIGN

UNIT - IV

Special Algorithms for Protocols: Multiple-Key Public-Key Cryptography, Secret-Sharing Algorithms, Subliminal Channel, Undeniable Digital Signatures, Designated Confirmer Signatures, Computing with Encrypted Data, Fair Coin Flips, One-Way Accumulators, All-or-Nothing Disclosure of Secrets, Fair and Failsafe Cryptosystems, Zero-Knowledge Proofs of Knowledge, Blind Signatures, Oblivious Transfer, Secure Multiparty Computation, Probabilistic Encryption, Quantum Cryptography

UNIT - V

Real World Approaches: IBM Secret key management protocol, ISDN, Kerberos, KryptoKnight, Privacy enhanced mail (PEM), Message security protocol (MSP), PGP, Public-Key Cryptography Standards (PKCS), Universal Electronic Payment System (UEPS).

TEXT BOOKS:

1. Bruce Schneier, Applied Cryptography, Second Edition: Protocols, Algorithms, and Source Code in C (cloth)

SOFTWARE QUALITY ENGINEERING (Professional Elective - II)**IV Year B.Tech.(IDP) II Semester**

L	T	P	C
3	0	0	3

Course Objectives: Knowledge on significance of Quality, quality assurance, quality engineering.

Course Outcomes:

1. Understand software quality and its perspectives
2. Analyze defect prevention and defect reduction in software quality assurance
3. Illustrate software quality engineering activities and its process

UNIT - I

Software Quality: Quality: perspectives and expectations, Quality frameworks and ISO-9126, correctness and defects: Definitions, properties and Measurements, A historical perspective of quality, software quality.

UNIT - II

Quality Assurance: Classification: QA as dealing with defects, Defect prevention- Education and training, Formal method, Other defect prevention techniques, Defect Reduction - Inspection: Direct fault detection and removal, Testing: Failure observation and fault removal, other techniques and risk identification, Defect Containment- software fault tolerance, safety assurance and failure containment

UNIT - III

Quality Engineering: Activities and process, Quality planning: Goal setting and Strategy formation, Quality assessment and Improvement, Quality engineering in software process.

UNIT - IV

Test Activities, Management and Automation: Test planning and preparation, Test execution, Result checking and measurement, Analysis and follow- up, Activities People and Management, Test Automation.

UNIT - V

Coverage and usage testing based on checklist and partitions: Checklist based testing and its limitations, Testing for partition Coverage, Usage based Statistical testing with Musa's operational profiles, Constructing operational profiles

Case Study: OP for the cartridge Support Software

TEXT BOOKS:

1. Jeff Tia'n, Software Quality Engineering, Testing, Quality Assurance, and Quantifiable improvement
2. Richard N. Taylor, Software Architecture: Foundations, Theory, and Practice

MINING MASSIVE DATASETS (Professional Elective - II)**IV Year B.Tech.(IDP) II Semester**

L	T	P	C
3	0	0	3

Prerequisites:

1. Students should be familiar with Data mining, algorithms, basic probability theory and Discrete math.

Course Objectives:

1. This course will cover practical algorithms for solving key problems in mining of massive datasets.
2. This course focuses on parallel algorithmic techniques that are used for large datasets.
3. This course will cover stream processing algorithms for data streams that arrive constantly, page ranking algorithms for web search, and online advertisement systems that are studied in detail.

Course Outcomes:

1. Handle massive data using MapReduce.
2. Develop and implement algorithms for massive data sets and methodologies in the context of data mining.
3. Understand the algorithms for extracting models and information from large datasets
4. Develop recommendation systems.
5. Gain experience in matching various algorithms for particular classes of problems.

UNIT - I:**Data Mining**-Introduction-Definition of Data Mining-Statistical Limits on Data Mining,**MapReduce and the New Software Stack**-Distributed File Systems, MapReduce, Algorithms Using MapReduce.**UNIT - II:****Similarity Search**: Finding Similar Items-Applications of Near-Neighbor Search, Shingling of Documents, Similarity-Preserving Summaries of Sets, Distance Measures.**Streaming Data**: Mining Data Streams-The Stream Data Model , Sampling Data in a Stream, Filtering Streams.**UNIT - III:****Link Analysis**-PageRank, Efficient Computation of PageRank, Link Spam**Frequent Itemsets**-Handling Larger Datasets in Main Memory, Limited-Pass Algorithms, Counting Frequent Items in a Stream.**Clustering**-The CURE Algorithm, Clustering in Non-Euclidean Spaces, Clustering for Streams and Parallelism.**UNIT - IV:****Advertising on the Web**-Issues in On-Line Advertising, On-Line Algorithms, The Matching Problem, The Adwords Problem, Adwords Implementation.**Recommendation Systems**-A Model for Recommendation Systems, Content-Based Recommendations, Collaborative Filtering, Dimensionality Reduction, The NetFlix Challenge.**UNIT - V:****Mining Social-Network Graphs**-Social Networks as Graphs, Clustering of Social-Network Graphs, Partitioning of Graphs, Simrank, Counting Triangles.**TEXT BOOK:**

1. Jure Leskovec, Anand Rajaraman, Jeff Ullman, Mining of Massive Datasets, 3rd Edition.

REFERENCES:

1. Jiawei Han & Micheline Kamber , Data Mining – Concepts and Techniques 3rd Edition Elsevier.
2. Margaret H Dunham, Data Mining Introductory and Advanced topics, PEA.
3. Ian H. Witten and Eibe Frank, Data Mining: Practical Machine Learning Tools and Techniques, Morgan Kaufmann.

RESEARCH METHODOLOGY & IPR

IV Year B.Tech.(IDP) II Semester

L	T	P	C
2	0	0	2

Prerequisite: None

R22 IDP (B.Tech + M.Tech) CSE Syllabus

Course Objectives:

1. To understand the research problem
2. To know the literature studies, plagiarism and ethics
3. To get the knowledge about technical writing
4. To analyze the nature of intellectual property rights and new developments
5. To know the patent rights

Course Outcomes: At the end of this course, students will be able to

1. Understand research problem formulation.
2. Analyze research related information
3. Follow research ethics
4. Understand that today's world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity.
5. Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasize the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular.
6. Understand that IPR protection provides an incentive to inventors for further research work and investment in R& D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.

UNIT-I:

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem.

Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations.

UNIT-II:

Effective literature studies approaches, analysis, Plagiarism, Research ethics

UNIT-III:

Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee

UNIT-IV:

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

UNIT-V:

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications. New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

R22 IDP (B.Tech + M.Tech) CSE Syllabus TEXT BOOKS:

1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students"
2. C.R. Kothari, Research Methodology, methods & techniques, 2nd edition, New age International publishers

REFERENCES:

1. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners"
2. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
3. Mayall, "Industrial Design", McGraw Hill, 1992.
4. Niebel, "Product Design", McGraw Hill, 1974.
5. Asimov, "Introduction to Design", Prentice Hall, 1962.
6. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.
7. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

ADVANCED ALGORITHMS LAB (Lab - II)**IV Year B.Tech.(IDP) II Semester**

L	T	P	C
0	0	4	2

Course Objective: The student can able to attain knowledge in advanced algorithms.**Course Outcomes:** The student can able to analyze the performance of algorithms**List of Experiments**

1. Implement assignment problem using Brute Force method
2. Perform multiplication of long integers using divide and conquer method.
3. Implement a solution for the knapsack problem using the Greedy method.
4. Implement Gaussian elimination method.
5. Implement LU decomposition
6. Implement Warshall algorithm
7. Implement the Rabin Karp algorithm.
8. Implement the KMP algorithm. 9. Implement Harspool algorithm
10. Implement max-flow problem.

TEXT BOOK:

1. Design and Analysis of Algorithms, S.Sridhar, OXFORD University Press

REFERENCES:

1. Introduction to Algorithms, second edition, T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, PHI Pvt. Ltd./ Pearson Education.
2. Fundamentals of Computer Algorithms, Ellis Horowitz, Satraj Sahni and Rajasekharam, Universities Press.
3. Design and Analysis of algorithms, Aho, Ullman and Hopcroft, Pearson education

DATABASE PROGRAMMING WITH PL/SQL LAB (Lab - III)**IV Year B.Tech.(IDP) II Semester**

L	T	P	C
0	0	4	2

Course Objectives:

1. Knowledge on significance of SQL fundamentals.
2. Evaluate functions and triggers of PL/SQL
3. Knowledge on control structures, packages in PL/SQL and its applications

Course Outcomes:

1. Understand importance of PL/SQL basics
2. Implement functions and procedures using PL/SQL
3. Understand the importance of triggers in database

List of Experiments:

1. Write a PL/SQL program using FOR loop to insert ten rows into a database table.
2. Given the table EMPLOYEE (EmpNo, Name, Salary, Designation, DeptID), write a cursor to select the five highest paid employees from the table.
3. Illustrate how you can embed PL/SQL in a high-level host language such as C/Java And demonstrates how a banking debit transaction might be done.
4. Given an integer i, write a PL/SQL procedure to insert the tuple (i, 'xxx') into a given relation.
5. Write a PL/SQL program to demonstrate Exceptions.
6. Write a PL/SQL program to demonstrate Cursors.
7. Write a PL/SQL program to demonstrate Functions.
8. Write a PL/SQL program to demonstrate Packages.
9. Write PL/SQL queries to create Procedures.
10. Write PL/SQL queries to create Triggers.

R22 IDP (B.Tech + M.Tech) CSE Syllabus **DEEP LEARNING LAB (Lab - III)****IV Year B.Tech.(IDP) II Semester**

L	T	P	C
0	0	4	2

Course Objectives:

1. To Build The Foundation Of Deep Learning.
2. To Understand How To Build The Neural Network.
3. To enable students to develop successful machine learning concepts.

Course Outcomes:

1. Upon the Successful Completion of the Course, the Students would be able to:
2. Learn The Fundamental Principles Of Deep Learning.
3. Identify The Deep Learning Algorithms For Various Types of Learning Tasks in various domains.
4. Implement Deep Learning Algorithms And Solve Real-world problems.

LIST OF EXPERIMENTS:

1. Setting up the Spyder IDE Environment and Executing a Python Program
2. Installing Keras, Tensorflow and Pytorch libraries and making use of them
3. Applying the Convolution Neural Network on computer vision problems
4. Image classification on MNIST dataset (CNN model with Fully connected layer)
5. Applying the Deep Learning Models in the field of Natural Language Processing
6. Train a sentiment analysis model on IMDB dataset, use RNN layers with LSTM/GRU notes
7. Applying the Autoencoder algorithms for encoding the real-world data
8. Applying Generative Adversarial Networks for image generation and unsupervised tasks.

TEXT BOOKS:

1. Deep Learning by Ian Goodfellow, Yoshua Bengio and Aaron Courville, MIT Press.
2. The Elements of Statistical Learning by T. Hastie, R. Tibshirani, and J. Friedman, Springer.
3. Probabilistic Graphical Models. Koller, and N. Friedman, MIT Press.

REFERENCES:

1. Bishop, C, M., Pattern Recognition and Machine Learning, Springer, 2006.
2. Yegnanarayana, B., Artificial Neural Networks PHI Learning Pvt. Ltd, 2009.
3. Golub, G.H., and Van Loan C.F., Matrix Computations, JHU Press, 2013.
4. Satish Kumar, Neural Networks: A Classroom Approach, Tata McGraw-Hill Education, 2004.

Extensive Reading:

- <http://www.deeplearning.net>
- <https://www.deeplearningbook.org/>
- <https://developers.google.com/machine-learning/crash-course/ml-intro>
- www.cs.toronto.edu/~fritz/absps/imagenet.pdf
- <http://neuralnetworksanddeeplearning.com/>

R22 IDP (B.Tech + M.Tech) CSE Syllabus R22 IDP (B.Tech + M.Tech) CSE Syllabus **IMAGE AND
VIDEO PROCESSING LAB(Lab-III)**

(Using Python/matlab)

IV Year B.Tech.(IDP) II Semester

L	T	P	C
0	0	4	2

Course Objectives:

Upon completion of the course, the student will be able to

1. Comprehend the image processing fundamentals and enhancement techniques in spatial and frequency domain.
2. Describe the color image fundamentals, models and various restoration techniques.
3. Design and Analyze the image compression systems.
4. Outline the various image segmentation and morphology operations.
5. Comprehend the basics of video processing and video coding.

Course Outcomes:

1. After completion of this course, students will be able to –
2. Understand theory and models in Image and Video Processing.
3. Explain the need of spatial and frequency domain techniques for image compression.
4. Comprehend different methods, models for video processing and motion estimation.
5. Illustrate quantitative models of image and video segmentation.
6. Apply the process of image enhancement for optimal use of resources.

1. Perform basic operations on images like addition, subtraction etc.
2. Plot the histogram of an image and perform histogram equalization
3. Perform image restoration
4. Perform image compression using lossy technique
5. Perform image compression using lossless technique
6. Implement segmentation algorithm

7. Calculate boundary features of an image
8. Calculate regional features of an image
9. Perform video enhancement
10. Perform video segmentation

ADVANCED COMPUTER ARCHITECTURE**V Year B.Tech.(IDP) I Semester**

L	T	P	C
3	0	0	3

Prerequisites: Computer Organization Course**Objectives:**

1. To impart the concepts and principles of parallel and advanced computer architectures.
2. To develop the design techniques of Scalable and multithreaded Architectures.
3. To Apply the concepts and techniques of parallel and advanced computer architectures to design modern computer systems

Course Outcomes: Gain knowledge of

1. Computational models and Computer Architectures.
2. Concepts of parallel computer models.
3. Scalable Architectures, Pipelining, Superscalar processors

UNIT - I

Theory of Parallelism, Parallel computer models, The State of Computing, Multiprocessors and Multicomputers, Multivector and SIMD Computers, PRAM and VLSI models, Architectural development tracks, Program and network properties, Conditions of parallelism, Program partitioning and Scheduling, Program flow Mechanisms, System interconnect Architectures.

UNIT - II

Principles of Scalable performance, Performance metrics and measures, Parallel Processing applications, Speed up performance laws, Scalability Analysis and Approaches, Hardware Technologies, Processes and Memory Hierarchy, Advanced Processor Technology, Superscalar and Vector Processors

UNIT - III

Shared-Memory Organizations, Sequential and weak consistency models, Pipelining and superscalar techniques, Linear Pipeline Processors, Non-Linear Pipeline Processors, Instruction Pipeline design, Arithmetic pipeline design, superscalar pipeline design.

UNIT - IV

Parallel and Scalable Architectures, Multiprocessors and Multicomputers, Multiprocessor system interconnects, cache coherence and synchronization mechanism, Three Generations of Multicomputers, Message-passing Mechanisms, Multivector and SIMD computers.

UNIT - V

Vector Processing Principles, Multivector Multiprocessors, Compound Vector processing, SIMD computer Organizations, The connection machine CM-5.

TEXT BOOK:

1. Advanced Computer Architecture, Kai Hwang, 2nd Edition, Tata McGraw Hill Publishers.

REFERENCES:

1. Computer Architecture, J.L. Hennessy and D.A. Patterson, 4th Edition, ELSEVIER.
2. Advanced Computer Architectures, S.G.Shiva, Special Indian edition, CRC, Taylor &Francis.
3. Introduction to High Performance Computing for Scientists and Engineers, G. Hager and G. Wellein, CRC Press, Taylor & Francis Group.
4. Advanced Computer Architecture, D. Sima, T. Fountain, P. Kacsuk, Pearson education.
5. Computer Architecture, B. Parhami, Oxford Univ. Press.

ENTERPRISE CLOUD CONCEPTS (Professional Elective - III)**V Year B.Tech.(IDP) I Semester**

L	T	P	C
3	0	0	3

Course Objectives: Knowledge on significance of cloud computing and its fundamental concepts and models.

Course Outcomes:

1. Understand importance of cloud architecture
2. Illustrating the fundamental concepts of cloud security
3. Analyze various cloud computing mechanisms
4. Understanding the architecture and working of cloud computing.

UNIT - I

Understanding Cloud Computing: Origins and influences, Basic Concepts and Terminology, Goals and Benefits, Risks and Challenges.

Fundamental Concepts and Models: Roles and Boundaries, Cloud Characteristics, Cloud Delivery Models, Cloud Deployment Models.

UNIT - II

Cloud-Enabling Technology: Broadband Networks and Internet Architecture, Data Center Technology, Virtualization Technology.

Cloud Computing Mechanisms:

Cloud Infrastructure Mechanisms: Logical Network Perimeter, Virtual Server, Cloud Storage Device, Cloud Usage Monitor, Resource Replication.

UNIT - III

Cloud Management Mechanisms: Remote Administration System, Resource Management System, SLA Management System, Billing Management System, Case Study Example

Cloud Computing Architecture

Fundamental Cloud Architectures: Workload Distribution Architecture, Resource Pooling Architecture, Dynamic Scalability Architecture, Elastic Resource Capacity Architecture, Service Load Balancing Architecture, Cloud Bursting Architecture, Elastic Disk Provisioning Architecture, Redundant Storage Architecture, Case Study Example

UNIT - IV

Cloud-Enabled Smart Enterprises: Introduction, Revisiting the Enterprise Journey, Service-Oriented Enterprises, Cloud Enterprises, Smart Enterprises, The Enabling Mechanisms of Smart Enterprises

Cloud-Inspired Enterprise Transformations: Introduction, The Cloud Scheme for Enterprise Success, Elucidating the Evolving Cloud Idea, Implications of the Cloud on Enterprise Strategy, Establishing a Cloud-Incorporated Business Strategy

UNIT - V

Transitioning to Cloud-Centric Enterprises: The Tuning Methodology, Contract Management in the Cloud

Cloud-Instigated IT Transformations

Introduction, Explaining Cloud Infrastructures, A Briefing on Next-Generation Services, Service Infrastructures, Cloud Infrastructures, Cloud Infrastructure Solutions, Clouds for Business Continuity, The Relevance of Private Clouds, The Emergence of Enterprise Clouds

TEXT BOOKS:

1. Erl Thomas, Puttini Ricardo, Mahmood Zaigham, Cloud Computing: Concepts, Technology & Architecture 1st Edition,
2. Pethuru Raj, Cloud Enterprise Architecture, CRC Press

REFERENCES:

1. James Bond, The Enterprise Cloud, O'Reilly Media, Inc.

ADVANCED COMPUTER NETWORKS (Professional Elective - III)**V Year B.Tech.(IDP) I Semester**

L	T	P	C
3	0	0	3

Prerequisites: Data Communication, Basic Networking Principles, Computer Networks

Course Objective: This course aims to provide advanced background on relevant computer networking topics to have a comprehensive and deep knowledge in computer networks.

Course Outcomes:

1. Understanding of holistic approach to computer networking
2. Ability to understand the computer network protocols and their applications
3. Ability to design simulation concepts related to packet forwarding in networks.

UNIT - I

Data-link protocols: Ethernet, Token Ring and Wireless (802.11). Wireless Networks and Mobile IP: Infrastructure of Wireless Networks, Wireless LAN Technologies, IEEE 802.11 Wireless Standard, Cellular Networks, Mobile IP, Wireless Mesh Networks (WMNs), Multiple access schemes Routing and Internetworking: Network-Layer Routing, Least-Cost-Path algorithms, Non-Least-Cost-Path algorithms, Intra-domain Routing Protocols, Inter-domain Routing Protocols, Congestion Control at Network Layer.

UNIT - II

Transport and Application Layer Protocols: Client-Server and Peer-To-Peer Application Communication, Protocols on the transport layer, reliable communication. Routing packets through a LAN and WAN. Transport Layer, Transmission Control Protocol (TCP), User Datagram Protocol (UDP), Mobile Transport Protocols, TCP Congestion Control. Principles of Network Applications,

UNIT- III

The Web and HTTP, File Transfer: FTP, Electronic Mail in the Internet, Domain Name System (DNS), P2P File Sharing, Socket Programming with TCP and UDP, building a Simple Web Server Creating simulated networks and passing packets through them using different routing techniques. Installing and using network monitoring tools.

UNIT - IV

Wireless and Mobile Networks: Introduction, Wireless links and Network Characteristics - CDMA, WiFi: 802.11 Wireless LANS, Cellular internet access, Mobility management: Principles

UNIT - V

Multimedia networking: Multimedia networking applications, streaming stored video, Voice-over-IP, Protocols for real-time conversational applications.

TEXT BOOKS:

1. Computer Networking: A Top-Down Approach, James F. Kurose and Keith W. Ross, Pearson, 6th Edition, 2012.
2. Computer Networks and Internets, Duglas E. Comer, 6th Edition, Pearson.

REFERENCES:

1. A Practical Guide to Advanced Networking, Jeffrey S. Beasley and Piyasat Nilkaew, Pearson, 3rd Edition, 2012
2. Computer Networks, Andrew S. Tanenbaum, David J. Wetherall, Prentice Hall.

EDGE ANALYTICS (Professional Elective - III)**V Year B.Tech.(IDP) I Semester**

L	T	P	C
3	0	0	3

Prerequisites

- A basic knowledge of “Python Programming”

Course Objectives

1. The aim of the course is to introduce the fundamentals of Edge Analytics.
2. The course gives an overview of – Architectures, Components, Communication Protocols and tools used for Edge Analytics.

Course Outcomes

1. Understand the concepts of Edge Analytics, both in theory and in practical application.
2. Demonstrate a comprehensive understanding of different tools used at edge analytics.
3. Formulate, Design and Implement the solutions for real world edge analytics .

UNIT - I

Introduction to Edge Analytics

What is edge analytics, Applying and comparing architectures, Key benefits of edge analytics, Edge analytics architectures, Using edge analytics in the real world.

UNIT - II

Basic edge analytics components, Connecting a sensor to the ESP-12F microcontroller, KOM-MICS smart factory platform, Communications protocols used in edge analytics, Wi-Fi communication for edge analytics, Bluetooth for edge analytics communication, Cellular technologies for edge analytics communication, Long-distance communication using LoRa and Signfox for edge analytics.

UNIT - III

Working with Microsoft Azure IoT Hub, Cloud Service providers, Microsoft Azure, Exploring the Azure portal, Azure IoT Hub, Using the Raspberry Pi with Azure IoT edge, Connecting our Raspberry Pi edge device, adding a simulated temperature sensor to our edge device.

UNIT - IV

Using Micropython for Edge Analytics, Understanding Micropython, Exploring the hardware that runs MicroPython, Using MicroPython for an edge analytics application, Using edge intelligence with microcontrollers, Azure Machine Learning designer, Azure IoT edge custom vision.

UNIT - V

Designing a Smart Doorbell with Visual Recognition setting up the environment, Writing the edge code, creating the Node-RED dashboard, Types of attacks against our edge analytics applications, Protecting our edge analytics applications

TEXT BOOK:

1. Hands-On Edge Analytics with Azure IoT: Design and develop IoT applications with edge analytical solutions including Azure IoT Edge by Colin Dow

REFERENCES:

1. Learn Edge Analytics - Fundamentals of Edge Analytics: Automated analytics at source using Microsoft Azure by Ashish Mahajan

BIOINFORMATICS (Professional Elective - IV)**M V Year B.Tech.(IDP) I Semester**

L	T	P	C
3	0	0	3

Course Objectives:

Knowledge on concepts of bioinformatics and biological motivations of sequence analysis

Course Outcomes:

1. Understand the Central Dogma & XML (Bio XML) for Bioinformatics
2. Analyze Perl (Bioperl) for Bioinformatics
3. Illustrate Databases technology, architecture and its interfaces
4. Understand Sequence Alignment Algorithms, Phylogenetic Analysis

UNIT -I:

The Central Dogma & XML (Bio XML) for Bioinformatics: Watson's definition, information flow, from data to knowledge, Convergence, the organization of DNA, the organization of Proteins, Introduction, Differences between HTML and XML, fundamentals of XML, fundamentals of XML namespaces. Introduction to DTDs, Document type Declarations, Declaring elements, declaring attributes, working with entities XML Schemas, Essential Concepts, working with simple types, working with complex types, Basic namespaces issues.

UNIT -II:

Perl (Bioperl) for Bioinformatics: Representing sequence data, program to store a DNA sequence, concatenating DNA fragments, Transcription, Calculating the reverse complement in Perl, Proteins, files, reading proteins in files, Arrays, Flow control, finding motifs, counting Nucleotides, exploding strings into arrays, operating on strings, writing to files, subroutines and bugs.

UNIT -III:

Databases: Flat file, Relational, object-oriented databases, object Relational and Hypertext, Data life cycle, Database Technology, Database Architecture, Database Management Systems and Interfaces.

UNIT -IV:

Sequence Alignment Algorithms: Biological motivations of sequence analysis, the models for sequence analysis and their biological motivation, global alignment, local alignment, End free-space alignment and gap penalty, Sequence Analysis tools and techniques.

UNIT -V:

Phylogenetic Analysis: Introduction, methods of Phylogenetic analysis, distance methods, the neighbor- Joining (NJ) method, The Fitch/ Margoliash method, character-based methods, Other methods, Tree evaluation and problems in phylogenetic analysis, Clustering, Protein structure visualization and Protein structure prediction.

TEXT BOOKS:

1. S.C. Rastogi, N. Mendiratta, "Bioinformatics Methods and Applications", CBS publications, 2004
2. James D. Tisdall, "Beginning Perl for Bioinformatics" O'Reilly media, 1st Edition, 2001

REFERENCE BOOKS:

1. D.R. Westhead, J.H. Parish, "Bioinformatics" Viva books private limited, New Delhi (2003)
2. Att Wood, "Bioinformatics" Pearson Education, 2004
3. Bryan Bergeron, M.D, "Bioinformatics Computing" Pearson Education, 2003

NATURE INSPIRED COMPUTING (Professional Elective - IV)**V Year B.Tech.(IDP) I Semester**

L	T	P	C
3	0	0	3

Course Objectives:

Knowledge on significance of intelligence, genetic algorithms Ant Colony algorithms

Course Outcomes:

1. Familiar with Genetic algorithm and its applications.
2. Compare different Ant Colony Optimization algorithmic models.
3. Compare different Artificial Bee Colony Optimization algorithmic models.
4. Illustrate Particle swam optimization algorithm with an example.

UNIT - I:

Models of Life and Intelligence - Fundamentals of bio-inspired models and bio-inspired computing. Evolutionary models and techniques, Swarm models and its self-organization, swarm and evolutionary algorithms. Optimisation problems – single and multi-objective optimisation, heuristic, meta-heuristic and hyper heuristic functions.

UNIT - II:

Genetic algorithms - Mathematical foundation, Genetic problem solving, crossover and mutation. genetic algorithms and Markov process, applications of genetic algorithms

UNIT - III:

Ant Colony Algorithms - Ant colony basics, hybrid ant system, ACO in combinatorial optimisation, variations of ACO, case studies.

UNIT - IV:

Particle Swarm algorithms - particles moves, particle swarm optimisation, variable length PSO, applications of PSO, case studies. Artificial Bee Colony algorithms - ABC basics, ABC in optimisation, multi-dimensional bee colony algorithms, applications of bee algorithms, case studies.

UNIT - V:

Selected nature inspired techniques - Hill climbing, simulated annealing, Gaussian adaptation, Cuckoo search, Firey algorithm, SDA algorithm, bat algorithm, case studies. Other nature inspired techniques - Social spider algorithm, Cultural algorithms, Harmony search algorithm, Intelligent water drops algorithm, Artificial immune system, Flower pollination algorithm, case studies.

TEXT BOOKS:

1. Albert Y.Zomaya - "Handbook of Nature-Inspired and Innovative Computing", Springer, 2006
2. Floreano, D. and C. Mattiussi -"Bio-Inspired Artificial Intelligence: Theories, methods, and Technologies" IT Press, 2008

REFERENCES:

1. Leandro Nunes de Castro - " Fundamentals of Natural Computing, Basic Concepts, Algorithms and Applications", Chapman & Hall/ CRC, Taylor and Francis Group, 2007
2. Marco Dorigo, Thomas Stutzle - " Ant Colony Optimization", Prentice Hall of India, New Delhi, 2005
3. Vinod Chandra S S, Anand H S - "Machine Learning: A Practitioner's Approach", Prentice Hall of India, New Delhi, 2020

SOCIAL MEDIA MINING(Professional Elective - IV)**V Year B.Tech.(IDP) I Semester**

L	T	P	C
3	0	0	3

Prerequisites: Data Analytics**Objectives**

1. The purpose of this course is to provide the students with knowledge of social media mining principles and techniques.
2. This course is also designed to give an exposure of the frontiers of social media mining (Facebook, twitter)
3. To introduce new technology for data analytics
4. To introduce community Analysis
5. To introduce various Recommendation algorithms
6. To Introduce Behavior analysis

Outcomes

1. Ability to understand social media and its data.
2. Ability to apply mining technologies on twitter, facebook, LinkedIn and Google.
3. Ability to learn about community
4. Ability to apply various Recommendation Algorithms
5. Ability to analyze the Behavior of people

UNIT - I

Social media mining, Fundamentals, new challenges, key concepts, Good Data vs Bad Data, understanding sentiments, Sentiment Analysis, Classification, supervised social media mining, unsupervised social media mining, human sensors under honest signals.

UNIT - II

Recommendation in Social Media, Challenges, Classical Recommendation Algorithms, Recommendation Using Social Context, Evaluating Recommendations

UNIT - III

Mining Twitter: Exploring Trending Topics, Discovering What People Are Talking About, Mining Face book: Analyzing Fan Pages, Examining Friendships, Mining LinkedIn: Faceting Job Titles, Clustering Colleagues, Mining Google+: Computing Document Similarity, Extracting Collocations

UNIT - IV

Community Analysis: Community Detection, Community Evolution, Community Evaluation Recommendation in social media: Challenges, Classical Recommendation Algorithms, Recommendation Using Social Context, Evaluating Recommendations,

UNIT - V

Behavior Analytics: Individual Behavior, Collective Behavior

Textbooks

1. Mining the Social WebData Mining Face book, Twitter, LinkedIn, Google+, GitHub, and More By Matthew A. , 2nd Edition,Russell Publisher: O'Reilly Media.
2. Social Media Mining, An Introduction By Reza Zafarani, Mohammad Ali Abbasi, Huan Liu.

IPR (Open Elective)**V Year B.Tech.(IDP) I Semester**

L	T	P	C
3	0	0	3

Course Objectives:

1. To explain the art of interpretation and documentation of research work
2. To explain various forms of intellectual property rights
3. To discuss leading International regulations regarding Intellectual Property Rights

Course Outcomes: Upon the Successful Completion of the Course, the Students would be able to:

1. Understand types of Intellectual Property
2. Analyze trademarks and its functionality
3. Illustrate law of copy rights and law of patents

UNIT- I

Introduction to Intellectual property: Introduction, types of intellectual property, international organizations, agencies and treaties, importance of intellectual property rights.

UNIT - II

Trade Marks: Purpose and function of trademarks, acquisition of trade mark rights, protectable matter, selecting, and evaluating trade mark, trade mark registration processes.

UNIT - III

Law of copy rights: Fundamental of copy right law, originality of material, rights of reproduction, rights to perform the work publicly, copy right ownership issues, copy right registration, notice of copy right, international copy right law.

Law of patents: Foundation of patent law, patent searching process, ownership rights and transfer

UNIT - IV

Trade Secrets: Trade secret law, determination of trade secrete status, liability for misappropriations of trade secrets, protection for submission, trade secrete litigation.

Unfair competition: Misappropriation right of publicity, false advertising.

UNIT - V

New development of intellectual property: new developments in trade mark law; copy right law, patent law, intellectual property audits.

International overview on intellectual property, international – trade mark law, copy right law, international patent law, and international development in trade secrets law.

TEXT BOOKS & REFERENCES:

1. Intellectual property right, Deborah. E. Bouchoux, Cengage learning.
2. Intellectual property right – Unleashing the knowledge economy, prabuddha ganguli, Tata McGraw Hill Publishing company ltd.

FAULT TOLERANCE SYSTEMS (Open Elective)

V Year B.Tech.(IDP) I Semester

L	T	P	C
3	0	0	3

Course Objectives:

1. To know the different advantages and limits of fault avoidance and fault tolerance techniques.
2. To impart the knowledge about different types of redundancy and its application for the design of computer system being able to function correctly even under presence of faults and data errors.
3. To understand the relevant factors in evaluating alternative system designs for a specific set of requirements.
4. To understand the subtle failure modes of "fault-tolerant" distributed systems.

Course Outcomes: Upon the Successful Completion of the Course, the Students would be able to:

1. Become familiar with general and state of the art techniques used in design and analysis of fault tolerant digital systems.
2. Be familiar with making system fault tolerant, modeling and testing, and benchmarking to evaluate and compare systems.

UNIT - I

Introduction to Fault Tolerant Computing: Basic concepts and overview of the course; Faults and their manifestations, Fault/error modeling, Reliability, availability and maintainability analysis, System evaluation, performance reliability tradeoffs.

UNIT - II

System level fault diagnosis: Hardware and software redundancy techniques. Fault tolerant system design methods, Mobile computing and Mobile communication environment, Fault injection methods.

UNIT - III

Software fault tolerance: Design and test of defect free integrated circuits, fault modeling, built in selftest, data compression, error correcting codes, simulation software/hardware, fault tolerant system design, CAD tools for design for testability.

UNIT - IV

Information Redundancy and Error Correcting Codes: Software Problem. Software Reliability Models and Robust Coding Techniques, Reliability in Computer Networks Time redundancy. Re execution in SMT, CMP Architectures, Fault Tolerant Distributed Systems, Data replication.

UNIT - V

Case Studies in FTC: ROC, HP Non-Stop Server. Case studies of fault tolerant systems and current research issues.

TEXT BOOK:

1. Fault Tolerant Computer System Design by D. K. Pradhan, Prentice Hall.

REFERENCES:

1. Fault Tolerant Systems by I. Koren, Morgan Kauffman.
2. Software Fault Tolerance Techniques and Implementation by L. L. Pullum, Artech House Computer Security Series.
3. Reliability of Computer Systems and Networks: Fault Tolerance Analysis and Design by M. L. Shooman, Wiley.

INTRUSION DETECTION SYSTEMS (Open Elective)

V Year B.Tech.(IDP) I Semester

L	T	P	C
3	0	0	3

Prerequisites: Computer Networks, Computer Programming

Course Objectives:

1. Compare alternative tools and approaches for Intrusion Detection through quantitative analysis to determine the best tool or approach to reduce risk from intrusion.
2. Identify and describe the parts of all intrusion detection systems and characterize new and emerging IDS technologies according to the basic capabilities all intrusion detection systems share.

Course Outcomes: After completion of the course, students will be able to:

1. Possess a fundamental knowledge of Cyber Security.
2. Understand what vulnerability is and how to address most common vulnerabilities.
3. Know basic and fundamental risk management principles as it relates to Cyber Security and Mobile Computing.
4. Have the knowledge needed to practice safer computing and safeguard your information using Digital Forensics.
5. Understand basic technical controls in use today, such as firewalls and Intrusion Detection systems.
6. Understand legal perspectives of Cyber Crimes and Cyber Security.

UNIT - I

The state of threats against computers, and networked systems-Overview of computer security solutions and why they fail-Vulnerability assessment, firewalls, VPN's -Overview of Intrusion Detection and Intrusion Prevention, Network and Host-based IDS

UNIT - II

Classes of attacks - Network layer: scans, denial of service, penetration Application layer: software exploits, code injection-Human layer: identity theft, root access-Classes of attackers-Kids/hackers/sop Hesitated groups-Automated: Drones, Worms, Viruses

UNIT - III

A General IDS model and taxonomy, Signature-based Solutions, Snort, Snort rules, Evaluation of IDS, Cost sensitive IDS

UNIT - IV

Anomaly Detection Systems and Algorithms-Network Behavior Based Anomaly Detectors (rate based)Host-based Anomaly Detectors-Software Vulnerabilities-State transition, Immunology, Payload Anomaly Detection

UNIT - V

Attack trees and Correlation of alerts- Autopsy of Worms and Botnets-Malware detection -Obfuscation, polymorphism- Document vectors.

Email/IM security issues-Viruses/Spam-From signatures to thumbprints to zero-day detection-Insider Threat issues-Taxonomy-Masquerade and Impersonation Traitors, Decoys and Deception-Future: Collaborative Security

TEXT BOOKS:

1. Peter Szor, The Art of Computer Virus Research and Defense, Symantec Press ISBN 0-321-30545-3.
2. Markus Jakobsson and Zulfikar Ramzan, Crimeware, Understanding New Attacks and Defenses.

REFERENCE BOOKS:

1. Saiful Hasan, Intrusion Detection System, Kindle Edition.
2. Ankit Fadia, Intrusion Alert: An Ethical Hacking Guide to Intrusion Detection.

Online Websites/Materials:

1. <https://www.intechopen.com/books/intrusion-detection-systems/>

Online Courses:

1. <https://www.sans.org/course/intrusion-detection-in-depth>
2. <https://www.cybrary.it/skill-certification-course/ids-ips-certification-training-course>

DIGITAL FORENSICS (Open Elective)**V Year B.Tech.(IDP) I Semester**

L	T	P	C
3	0	0	3

Objectives

1. Know the history and evaluation of digital forensics
2. Describe various types of cyber crime
3. Understand benefits of forensics
4. Implement forensics readiness plan

Outcomes

1. Interpret and appropriately apply the laws and procedures associated with identifying, acquiring, examining and presenting digital evidence.
2. Create a method for gathering, assessing and applying new and existing legislation and industry trends specific to the practice of digital forensics

UNIT - I**Computer Forensics Fundamentals**

Introduction to Computer Forensics, Use of Computer Forensics in Law Enforcement, Computer Forensics Assistance to Human Resources/Employment Proceedings, Computer Forensics Services, Benefits of Professional Forensics Methodology, Steps taken by Computer Forensics Specialists, Types of Computer Forensics Technology: Types of Military Computer Forensic Technology, Types of Law Enforcement — Computer Forensic Technology — Types of Business Computer Forensic Technology Computer Forensics Evidence and Capture: Data Recovery Defined — Data Back-up and Recovery — The Role of Back-up in Data Recovery — The Data-Recovery Solution.

UNIT - II**Evidence Collection and Data Seizure**

Why Collect Evidence? Collection Options — Obstacles — Types of Evidence — The Rules of Evidence — Volatile Evidence — General Procedure — Collection and Archiving — Methods of Collection — Artifacts — Collection Steps — Controlling Contamination: The Chain of Custody Duplication and Preservation of Digital Evidence: Preserving the Digital Crime Scene — Computer Evidence Processing Steps — Legal Aspects of Collecting and Preserving Computer Forensic Evidence Computer Image Verification and Authentication: Special Needs of Evidential Authentication — Practical Consideration —Practical Implementation.

UNIT - III**Computer Forensics analysis and validation**

Determining what data to collect and analyze, validating forensic data, addressing data-hiding techniques, performing remote acquisitions

Network Forensics

Network forensics overview, performing live acquisitions, developing standard procedures for network forensics, using network tools, examining the honeynet project.

Processing Crime and Incident Scenes

Identifying digital evidence, collecting evidence in private-sector incident scenes, processing law enforcement crime scenes, preparing for a search, securing a computer incident or crime scene, seizing digital evidence at the scene, storing digital evidence, obtaining a digital hash, reviewing a case

UNIT - IV**Current Computer Forensic tools**

Evaluating computer forensic tool needs, computer forensics software tools, computer forensics hardware tools, validating and testing forensics software E-Mail Investigations: Exploring the role of e-mail in investigation, exploring the roles of the client and server in email, investigating e-mail crimes and violations, understanding e-mail servers, using specialized e-mail forensic tools.

Cell phone and mobile device forensics

Understanding mobile device forensics, understanding acquisition procedures for cell phones and mobile devices.

UNIT - V**Working with Windows and DOS Systems**

Understanding file systems, exploring Microsoft File Structures, Examining NTFS disks, Understanding whole disk encryption, windows registry, Microsoft startup tasks, MS-DOS startup tasks, virtual machines.

Textbooks:

1. Computer Forensics, Computer Crime Investigation by John R. Vacca, Firewall Media, New Delhi.
2. Computer Forensics and Investigations by Nelson, Phillips Enfinger, Steuart, CENGAGE Learning

References:

1. Real Digital Forensics by Keith J. Jones, Richard Bejtlich, Curtis W. Rose, AddisonWesley Pearson Education
2. Forensic Compiling, A Practitioner's Guide by Tony Sammes and Brian Jenkinson, Springer International edition.
3. Computer Evidence Collection & Presentation by Christopher L.T. Brown, Firewall Media.
4. Homeland Security, Techniques & Technologies by Jesus Mena, Firewall Media.
5. Software Forensics Collecting Evidence from the Scene of a Digital Crime by Robert M. Slade, TMH 2005
6. Windows Forensics by Chad Steel, Wiley India Edition.

OPTIMIZATION TECHNIQUES (Open Elective)**V Year B.Tech.(IDP) I Semester**

L	T	P	C
3	0	0	3

Prerequisite: Mathematics –I, Mathematics –II **Course****Objectives:**

1. To introduce various optimization techniques i.e classical, linear programming, transportation problem, simplex algorithm, dynamic programming
2. Constrained and unconstrained optimization techniques for solving and optimizing electrical and electronic engineering circuits design problems in real world situations.
3. To explain the concept of Dynamic programming and its applications to project implementation.

Course Outcomes: After completion of this course, the student will be able to:

1. explain the need of optimization of engineering systems.
2. understand optimization of electrical and electronics engineering problems.
3. apply classical optimization techniques, linear programming, simplex algorithm, transportation problem.
4. apply unconstrained optimization and constrained non-linear programming and dynamic programming.
5. Formulate optimization problems.

UNIT - I

Introduction and Classical Optimization Techniques: Statement of an Optimization problem – design vector – design constraints – constraint surface – objective function – objective function surface - classification of Optimization problems.

Linear Programming: Standard form of a linear programming problem – geometry of linear programming problems – definitions and theorems – solution of a system of linear simultaneous equations – pivotal reduction of a general system of equations – motivation to the simplex method – simplex algorithm.

UNIT - II

Transportation Problem: Finding initial basic feasible solution by north – west corner rule, least cost method and Vogel's approximation method – testing for optimality of balanced transportation problems. Degeneracy.

Assignment problem – Formulation – Optimal solution - Variants of Assignment Problem; Traveling Salesman problem.

UNIT - III

Classical Optimization Techniques: Single variable Optimization – multi variable Optimization without constraints – necessary and sufficient conditions for minimum/maximum – multivariable Optimization with equality constraints: Solution by method of Lagrange multipliers – Multivariable Optimization with inequality constraints: Kuhn – Tucker conditions.

Single Variable Nonlinear Unconstrained Optimization: Elimination methods: Uni Model function-its importance, Fibonacci method & Golden section method.

UNIT - IV

Multi variable nonlinear unconstrained optimization: Direct search methods – Univariate method, Pattern search methods – Powell's, Hooke - Jeeves, Rosenbrock's search methods. Gradient methods: Gradient of function & its importance, Steepest descent method, Conjugate direction methods: FletcherReeves method & variable metric method.

UNIT - V

Dynamic Programming: Dynamic programming multistage decision processes – types – concept of sub optimization and the principle of optimality – computational procedure in dynamic programming – examples illustrating the calculus method of solution - examples illustrating the tabular method of solution.

TEXT BOOKS:

1. Optimization Techniques & Applications by S.S.Rao, New Age International.
2. Optimization for Engineering Design by Kalyanmoy Deb, PHI

REFERENCES:

1. George Bernard Dantzig, Mukund Narain Thapa, "Linear programming", Springer series in Operations Research 3rd edition, 2003.
2. H. A. Taha, "Operations Research: An Introduction", 8th Edition, Pearson/Prentice Hall, 2007.
3. Optimization Techniques by Belegundu & Chandrupatla, Pearson Asia.
4. Optimization Techniques Theory and Practice by M.C. Joshi, K.M. Moudgalya, Narosa Publications

CYBER PHYSICAL SYSTEMS (Open Elective)**V Year B.Tech.(IDP) I Semester**

L	T	P	C
3	0	0	3

Course Objective: To learn about design of cyber-physical systems**Course Outcomes:** Upon the Successful Completion of the Course, the Students would be able to:

1. Understand the core principles behind CPS
2. Identify Security mechanisms of Cyber physical systems
3. Understand Synchronization in Distributed Cyber-Physical Systems

UNIT - I**Symbolic Synthesis for Cyber-Physical Systems**

Introduction and Motivation, Basic Techniques - Preliminaries, Problem Definition, Solving the Synthesis Problem, Construction of Symbolic Models, Advanced Techniques: Construction of Symbolic Models, Continuous-Time Controllers, Software Tools

UNIT - II**Security of Cyber-Physical Systems**

Introduction and Motivation, Basic Techniques - Cyber Security Requirements, Attack Model, Countermeasures, Advanced Techniques: System Theoretic Approaches

UNIT - III

Synchronization in Distributed Cyber-Physical Systems: Challenges in Cyber-Physical Systems, A Complexity-Reducing Technique for Synchronization, Formal Software Engineering, Distributed Consensus Algorithms, Synchronous Lockstep Executions, Time-Triggered Architecture, Related Technology, Advanced Techniques

UNIT - IV**Real-Time Scheduling for Cyber-Physical Systems**

Introduction and Motivation, Basic Techniques - Scheduling with Fixed Timing Parameters, Memory Effects, Multiprocessor/Multicore Scheduling, Accommodating Variability and Uncertainty

UNIT - V**Model Integration in Cyber-Physical Systems**

Introduction and Motivation, Causality, Semantic Domains for Time, Interaction Models for Computational Processes, Semantics of CPS DSMLs, Advanced Techniques, ForSpec, The Syntax of CyPhyML, Formalization of Semantics, Formalization of Language Integration.

TEXT BOOKS:

1. Raj Rajkumar, Dionisio De Niz, and Mark Klein, Cyber-Physical Systems, Addison-Wesley Professional.
2. Rajeev Alur, Principles of Cyber-Physical Systems, MIT Press, 2015

GRAPH ANALYTICS (Open Elective)**V Year B.Tech.(IDP) I Semester**

L	T	P	C
3	0	0	3

Course Objectives:

1. To explore the concept of Graphs and related algorithms.
2. To learn new ways to model, store, retrieve and analyze graph-structured data.
3. To be aware of advanced concepts in graph analytic techniques and its applications.

Course Outcomes: Upon the Successful Completion of the Course, the Students would be able to:

1. Understand Large-scale Graph and its Characteristics
2. Analyze Breadth-First Search Algorithm
3. Illustrate Recent Advances in Scalable Network Generation

UNIT - I

Introduction and Application of Large-scale Graph: Characteristics, Complex Data Sources - Social Networks, Simulations, Bioinformatics; Categories- Social, Endorsement, Location, Co-occurrence graphs; Graph Data structures, Parallel, Multicore and Graph Algorithms

UNIT - II Algorithms: Search and Paths

A Work-Efficient Parallel Breadth-First Search Algorithm (or How To Cope With the Nondeterminism of Reducers), Multi-Objective Shortest Paths

UNIT - III Algorithms: Structure

Multicore Algorithms for Graph Connectivity Problems, Distributed Memory Parallel Algorithms for Massive Graphs, Massive-Scale Distributed Triangle Computation and Applications

UNIT - IV Models

Recent Advances in Scalable Network Generation, Computational Models for Cascades in Massive Graphs, Executing Dynamic Data-Graph Computations Deterministically Using Chromatic Scheduling.

UNIT - V Frameworks and Software

Graph Data Science Using Neo4j, A Cloud-Based Approach to Big Graphs, Interactive Graph Analytics at Scale in Arkouda

TEXT BOOKS:

1. David A. Bader, Massive Graph Analytics, CRC Press

REFERENCES:

1. Stanley Wasserman, Katherine Faust, "Social Network Analysis: Methods and Applications", (Structural Analysis in the Social Sciences), Cambridge University Press, 1995.
2. Matthew O. Jackson, "Social and Economic Networks", Princeton University Press, 2010.
3. Tanja Falkowski, "Community Analysis in Dynamic Social Networks", (Dissertation), University Magdeburg, 2009.

ENTERPRISE CLOUD CONCEPTS LAB (Professional Elective - III Lab)**V Year B.Tech.(IDP) I Semester**

L	T	P	C
0	0	4	2

Course Objectives: Knowledge on significance of cloud computing and its fundamental concepts and models.

Course Outcomes:

1. Understand importance of cloud architecture
2. Illustrating the fundamental concepts of cloud security
3. Analyze various cloud computing mechanisms
4. Understanding the architecture and working of cloud computing.

List of Experiments:

1. Install Virtualbox/VMware Workstation with different flavors of linux or windows OS on top of windows7 or 8.
2. Install a C compiler in the virtual machine created using virtual box and execute Simple Programs
3. Install Google App Engine. Create a hello world app and other simple web applications using python/java..
4. Find a procedure to transfer the files from one virtual machine to another virtual machine.
5. Find a procedure to launch virtual machine using trystack (Online Openstack Demo Version)
6. Install Hadoop single node cluster and run simple applications like word count.

E-Resources:

1. <https://www.iitk.ac.in/nt/faq/vbox.htm>
2. <https://www.google.com/urls?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjqNG0za73AhXZt1YBHZ21DWEQFnoECAMQAQ&url=http%3A%2F%2Fwww.cs.columbia.edu%2F~sedwards%2Fclasses%2F2015%2F1102-fall%2Flinuxvm.pdf&usg=AOvVaw3xZPuF5xVgk-AQnBRsTtHz>
3. <https://www.cloudsimtutorials.online/cloudsim/>
4. <https://edwardsamuel.wordpress.com/2014/10/25/tutorial-creating-openstack-instance-in-trystack/>
5. <https://www.edureka.co/blog/install-hadoop-single-node-hadoop-cluster>

ADVANCED COMPUTER NETWORKS LAB (Professional Elective - III Lab)**V Year B.Tech.(IDP) I Semester**

L	T	P	C
0	0	4	2

Prerequisites: Data communication, Basic networking principles, Computer Networks**Course Objectives:**

1. Understand and analyze the existing protocols
2. Understand the use of network packet capturing tools

Course Outcomes: Ability of acquiring the practical exposure to existing protocols**List of Experiments:**

1. Implement the IP fragmentation and reassembly algorithm.
2. Implement the IP forwarding algorithm.
3. Implement the simplest sliding window protocol of TCP.
4. Connect two systems using a switch and configure private IP addresses to the systems and ping them from each other. Using Wireshark, capture packets and analyze all the header information in the packets captured.
5. Install Telnet on one of the systems connected by a switch and telnet to it from the other system. Using Wireshark, capture the packets and analyze the TCP 3-way Handshake for connection establishment and tear down.
6. Start packet capture in wireshark application and then open your web browser and type in an URL of the website of your choice. How long did it take from when the HTTP GET message was sent until the HTTP OK reply was received for the web page you visited in your web browser.

EDGE ANALYTICS LAB (Professional Elective - III Lab)**V Year B.Tech.(IDP) I Semester**

L	T	P	C
0	0	4	2

Course Objectives:

1. Understand the concept of edge computing
2. Understand the Edge computing Architecture
3. Implement the edge computing in IOT
4. Understand the concept of multi-access edge computing
5. Implement edge computing in MEC

Course Outcomes:

1. Identify the benefits of edge computing
2. Develop the microservices in iofog
3. Develop user defined services in the edge
4. Create use cases in IOT with edge computing
5. Develop services in MEC
6. Implement use cases in MEC

List of Experiments:

1. Set up the Arduino IDE for ESP8266-12 module and program it to blink a LED light.
2. Installation tools to create and manage ECN's
3. Deploy micro services and writing your own microservices
4. Setup the Communication Parameters
5. Implement any two Communications protocols
6. Deploy modules to a Windows IoT Edge device
7. Create an IoT hub.
8. Register an IoT Edge device to your IoT hub.
9. Install and start the IoT Edge for Linux on Windows runtime on your device.
10. Remotely deploy a module to an IoT Edge device and send telemetry.
11. Python based basic programs using Raspberry Pi.
12. Deploy a module Manage your Azure IoT Edge device from the cloud to deploy a module that sends telemetry data to IoT Hub.
13. Publishing Data using HTTP.
14. Sensor Interfacing and Logging using MQTT.
15. File IO Example - # Example code to demonstrate writing and reading data to/from files
16. write code to turn on one of the LEDs on the board (Breadboard)

Additional Exercises on IOT Edge Analytics Applications

17. Temperature Logger
18. Home Automation

TEXT BOOKS:

1. Hands-On Edge Analytics with Azure IoT: Design and develop IoT applications with edge analytical solutions including Azure IoT Edge by Colin Dow
2. MicroPython for the Internet of Things A Beginner's Guide to Programming with Python on Microcontroller, Charles Bell, A Press.

R22 IDP (B.Tech + M.Tech) CSE Syllabus**REFERENCE BOOKS:**

1. Learn Edge Analytics - Fundamentals of Edge Analytics: Automated analytics at source using Microsoft Azure by Ashish Mahajan

2. Peter Waher, "Mastering Internet of Things: Design and create your own IoT applications using Raspberry Pi 3", First Edition, Packt Publishing, 2018
3. John C. Shovic, "Raspberry Pi IoT Projects: Prototyping Experiments for Makers", Packt Publishing, 2016
4. Python for Microcontrollers: Getting Started with MicroPython Paperback – 16 December 2016, by Donald Norris, McGraw-Hill Education TAB
5. Programming with MicroPython: Embedded Programming with Microcontrollers and Python, by Nicholas H. Tollervey, O'Reilly
6. R. Buyya, S.N. Srirama (2019), Fog and Edge Computing: Principles and Paradigms, WileyBlackwell, 2019.