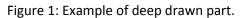
CONVENTIONAL DEEP DRAWING VS INCREMENTAL DEEP DRAWING


A. Chennakesava Reddy

Professor, Department of Mechanical Engineering JNTUH College of Engineering, Hyderabad

1. Conventional Deep Drawing Process:

Deep drawing is a sheet metal forming process in which a sheet metal blank is radially drawn into a forming die by the mechanical action of a punch. It is thus a shape transformation process with material retention. The process is considered "deep" drawing when the depth of the drawn part exceeds its diameter. This is achieved by redrawing the part through a series of dies. The flange region (sheet metal in the die shoulder area) experiences a radial drawing stress and a tangential compressive stress due to the material retention property. These compressive stresses (hoop stresses) result in flange wrinkles (wrinkles of the first order). Wrinkles can be prevented by using a blank holder, the function of which is to facilitate controlled material flow into the die radius.

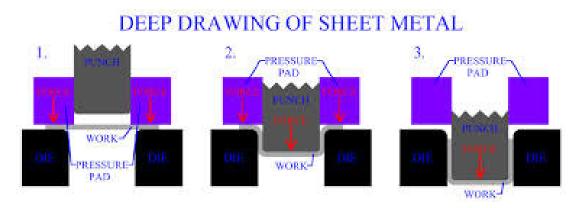


Figure 2: Conventional deep drawing process.

The total drawing load consists of the ideal forming load and an additional component to compensate for friction in the contacting areas of the flange region and bending forces as well as unbending forces at the die radius. The forming load is transferred from the punch radius through the drawn part wall into the deformation region (sheet metal flange). In the drawn part wall, which is in contact with the punch, the hoop strain is zero whereby the plane strain condition is reached. In reality, mostly the strain condition is only approximately plane. Due to tensile forces acting in the part wall, wall thinning is prominent and

results in an uneven part wall thickness, such that the part wall thickness is lowest at the point where the part wall loses contact with the punch, i.e., at the punch radius.

The thinnest part thickness determines the maximum stress that can be transferred to the deformation zone. Due to material volume constancy, the flange thickens and results in blank holder contact at the outer boundary rather than on the entire surface. The maximum stress that can be safely transferred from the punch to the blank sets a limit on the maximum blank size (initial blank diameter in the case of rotationally symmetrical blanks). An indicator of material formability is the limiting drawing ratio (LDR), defined as the ratio of the maximum blank diameter that can be safely drawn into a cup without flange to the punch diameter. Determination of the LDR for complex components is difficult and hence the part is inspected for critical areas for which an approximation is possible. During severe deep drawing the material work hardens and it may be necessary to anneal the parts in controlled atmosphere ovens to restore the original elasticity of the material.

Commercial applications of this metal shaping process often involve complex geometries with straight sides and radii. In such a case, the term stamping is used in order to distinguish between the deep drawing (radial tension-tangential compression) and stretch-and-bend (along the straight sides) components. Deep drawing is always accompanied by other forming techniques within the press. These other forming methods include:

Beading: Material is displaced to create a larger, or smaller, diameter ring of material beyond the original body diameter of a part, often used to create O-ring seats.

Bottom Piercing: A round or shaped portion of metal is cut from the drawn part.

Bulging: In the bulging process a portion of the part's diameter is forced to protrude from the surrounding geometry.

Coining: Material is displaced to form specific shapes in the part. Typically coining should not exceed a depth of 30% of the material thickness.

Curling: Metal is rolled under a curling die to create a rolled edge.

Extruding: After a pilot hole is pierced, a larger diameter punch is pushed through, causing the metal to expand and grow in length.

Ironing / Wall Thinning: Ironing is a process to reduce the wall thickness of parts. Typically ironing should not exceed a depth of 30% of the material thickness.

Necking: A portion of the part is reduced in diameter to less than the major diameter.

Notching: A notch is cut into the open end of the part. This notch can be round, square, or shaped.

Rib Forming: Rib forming involves creating an inward or outward protruding rib during the drawing process.

Side Piercing: Holes are pierced in the side wall of the drawn part. The holes may be round or shaped according to specifications.

Stamping / Marking: This process is typically used to put identification on a part, such as a part number or supplier identification.

Threading: Using a wheel and arbor, threads are formed into a part. In this way threaded parts can be produced within the stamping press.

Trimming: In the Trimming process, excess metal that is necessary to draw the part is cut away from the finished part.

Often components are partially deep draw in order to create a series of diameters throughout the component (as in the image of the deep draw line). It common use to consider this process as a cost saving alternative to turned parts which require much more raw material.

1.1 Other types of presses:

Die-Set Transfer Press: Part is transferred via transfer fingers as the part progresses through the forming process. Tooling components attached to die plates enable the die to be installed in the press as one unit. Deep drawing has been classified into conventional and unconventional deep drawing. The main aim of any unconventional deep drawing process is to extend the formability limits of the process. Some of the unconventional processes include hydromechanical deep drawing, Hydroform process, Aquadraw process, Guerin process, Marform process and the hydraulic deep drawing process to name a few.

The Marform process, for example, operates using the principle of rubber pad forming techniques. Deeprecessed parts with either vertical or sloped walls can be formed. In this type of forming, the die rig employs a rubber pad as one tool half and a solid tool half, similar to the die in a conventional die set, to form a component into its final shape. Dies are made of cast light alloys and the rubber pad is 1.5-2 times thicker than the component to be formed. For Marforming, single-action presses are equipped with die cushions and blank holders. The blank is held against the rubber pad by a blank holder, through which a punch is acting as in conventional deep drawing. It is a double-acting apparatus: at first the ram slides down, then the blank holder moves: this feature allows it to perform deep drawings (30-40% transverse dimension) with no wrinkles.

2. Incremental Deep Drawing:

Incremental deep drawing or Incremental sheet forming (or ISF, also known as Single Point Forming) is a sheet metal forming technique where a sheet is formed into the final workpiece by a series of small incremental deformations. However, studies have shown that it can be applied to polymer and composite sheets too. Generally, the sheet is formed by a round tipped tool, typically 5 to 20mm in diameter. The tool, which can be attached to a CNC machine, a robot arm or similar, indents into the sheet by about 1 mm and follows a contour for the desired part. It then indents further and draws the next contour for the part into the sheet and continues to do this until the full part is formed. ISF can be divided into variants depending on the number of contact points between tool, sheet and die (in case there is any). The term Single Point Incremental Forming (SPIF) is used when the opposite side of the sheet is supported by a faceplate and Two Point Incremental Forming (TPIF) when a full or partial die supports the sheet.

he ISF process is generally implemented by clamping a sheet in the XY plane, which is free to move along the Z axis. The tool moves in the XY plane and is coordinated with movements in the Z axis to create the desired part. It is often convenient to retrofit a CNC milling machine to accommodate the process. Spherical, flat-bottomed, and parabolic tool profiles can be used to achieve differing surface finishes and forming limits.

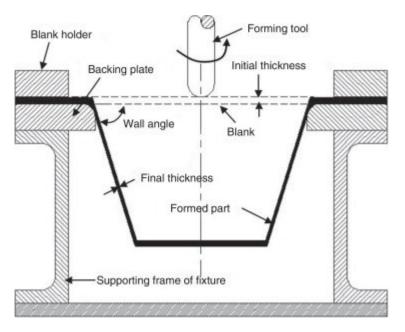


Figure 3: Incremental sheet forming process.

REFERENCES

- P. Kamesh, A. Chennakesava Reddy, Micromechanical Plastic Behavior of AA5454 Alloy used for Fabrication of Pyramidal Cups, International Journal of Science and Research, Vol.7, No.6, pp.1225-1230, 2018.
- M. Jaswanth Krishna, A. Chennakesava Reddy, Evaluation of Process Parameters of Conical Cups in Incremental Deep Drawing Process, International Journal of Science and Research, Vol.7, No.6, pp.1345-1350, 2018.
- Teniya Choppala, A. Chennakesava Reddy, Elastoplastic Behavior of AA2124 Alloy used to make Hemispherical Cups, International Journal of Science and Research, Vol No.7, No.6, pp.1295-1300, 2018.
- 4. A. Chennakesava Reddy, Formability Analysis of 6063 Al Alloy for Deep Drawn Cylindrical Cups with Constant and Progressive Blank Holding Force, SSRG International Journal of Mechanical Engineering, Vol.4, No.5, pp.26-32, 2017.
- C. Chagalamarri, G. Devendar, A. Chennakesava Reddy, Assessment of Strain and Stress Based Formability Diagrams of Inconel 600 Hemispherical Cups Drawn by Single Point Incremental Forming Process Using Abaqus, International Journal of Advanced Technology in Engineering and Science, Vol.5, No.5, pp.710-719, 2017.
- B. Sumanth Kumar, G. Devendar, A. Chennakesava Reddy, Formability Analysis of Parabolic Cups Drawn from Ni 201 Using single Point Incremental Forming Process, International Journal of Engineering Sciences & Research Technology, Vol.6, No.5, pp.619-628, 2017.

- A. Chennakesava Reddy, Numerical and Experimental Investigation of Single Point Incremental Forming Process for Phosphorus Bronze Hemispherical Cups, International Journal of Scientific & Engineering Research, Vol.8, No.1, pp.957-963, 2017.
- A. Chennakesava Reddy, Evaluation of Single Point Incremental Forming Process for Parabolic AA6082 Cups, International Journal of Scientific & Engineering Research, Vol.8, No.1, pp.964-970, 2017.
- 9. A. Chennakesava Reddy, Experimental and Numerical Studies on Formability of Stainless Steel 304 in Incremental Sheet Metal Forming of Elliptical Cups, International Journal of Scientific & Engineering Research, Vol.8, No.1, pp.971-976, 2017.
- A. Chennakesava Reddy, Pilot Studies on Single Point Incremental Forming Process for Hyperbolic Brass Cups, International Journal of Scientific & Engineering Research, Vol.8, No.1, pp.977-982, 2017.
- 11. A. Chennakesava Reddy, Formability of 5083 Al Alloy Hemi-Spherical Shells Using Hot Deep Drawing Process, International Journal of Mechanics and Solids, Vol.9, No.3, pp.257-266, 2017.
- 12. A. Chennakesava Reddy, Evaluation of Formability Limit Diagrams of Arsenic Brass (70/30) Using Finite Element Analysis, International Journal of Mechanical Engineering and Information Technology, Vol No.5, No.6, pp.1651-1656, 2017.
- 13. A. Chennakesava Reddy, Impact of High Temperature and Beta-Phase on Formability of Cylindrical Cups from Cu-28%Zn and Cu-37%Zn Alloys, International Journal of Material Sciences and Technology, Vol.7, No.1, pp.17-26, 2017.
- 14. A. Chennakesava Reddy, Effect of Recrystallization Temperature on Formability of Hot Deep Drawn Cylindrical Cups from 6082 Al Alloy, Indian Journal of Engineering, Vol.14, No.36, pp.157-166, Discovery Publication, 2017.
- Chennakesava R Alavala, Effect of Temperature, Strain Rate and Coefficient of Friction on Deep Drawing Process of 6061 Aluminum Alloy, International Journal of Mechanical Engineering, Vol.5, No.6, pp.11-23, 2016.
- Chennakesava R Alavala, Development of High Temperature and High Strain Rate Super Plastic Deep Drawing Process for 5656 Al Alloy Cylindrical Cups, International Journal of Mechanical And Production Engineering, Vol.4, No.10, pp.187, 2016.
- K. Sai Santosh Kumar, A. Chennakesava Reddy, Die Less Single Point Incremental Forming Process of AA6082 Sheet Metal to Draw Parabolic Cups Using Abaqus, International Journal of Advanced Technology in Engineering and Science, Vol.4, No.11, pp.127-134, 2016
- T. Manohar Reddy, A. Chennakesava Reddy, Numerical Investigations on the Single Point Incremental Forming of 60-40 Brass to Fabricate Hyperbolic Cups, International Journal of Advance Research in Science and Engineering, Vol.5, No.11, pp.161-170, 2016
- 19. B. Navya Sri, A. Chennakesava Reddy, Formability of Elliptical SS304 Cups in Single Point Incremental Forming Process by Finite Element Method, International Journal of Research in Engineering & Technology, Vol.4, No.11, pp.9-16, 2016.

- G. Soujanya, A. Chennakesava Reddy, Analysis of Single Point Incremental Forming Process to Fabricate Phosphorous Bronze Hemispherical Cups, International Journal of Innovative Science, Engineering & Technology, Vol.3, No.11, pp.139-144, 2016.
- 21. V. Srija, A. Chennakesava Reddy, Single Point Incremental Forming of AA1050-H18 Alloy Frustum of Cone Cups, International Journal of Science and Research, Vol.5, Issue No.6, pp.1138-1143, 2016.
- 22. T. Santhosh Kumar, A. Chennakesava Reddy, Finite Element Analysis of Formability of Pyramid-al Cups Fabricated from AA1100-H18 Alloy, International Journal of Science and Research, Vol.5, No.6, pp.1172-1177, 2016.
- 23. A. Raviteja, A. Chennakesava Reddy, Finite Element Analysis of Single Point Incremental Deep Drawing Process for Truncated Pyramidal Cups from AA 1070 Alloy, International Journal of Innovative Science, Engineering & Technology, Vol.3, No.6, pp.263-268, 2016.
- V. Srija, A. Chennakesava Reddy, Numerical Simulation of Truncated Pyramidal Cups of AA1050-H18 Alloy Fabricated by Single Point Incremental Forming, International Journal of Engineering Sciences & Research Technology, Vol.5, No.6, pp.741-749, 2016.
- 25. T. Santhosh Kumar, A. Chennakesava Reddy, Single Point Incremental Forming and Significance of Its Process Parameters on Formability of Conical Cups Fabricated from AA1100-H18 Alloy, International Journal of Engineering Inventions, Vol.5, No.6, pp.10-18, 2016.
- 26. A. Raviteja, A. Chennakesava Reddy, Implication of Process Parameters of Single Point Incremental Forming for Conical Frustum Cups From AA1070 Using FEA, International Journal of Research in Engineering and Technology, Vol.5, No.6, pp.125-129, 2016.
- Santhosh Kumar, V. Srija, A. Ravi Teja, A. Chennakesava Reddy, Influence of Process Parameters of Single Point incremental Deep Drawing Process for Truncated Pyramidal Cups from 304 Stainless Steel using FEA, International Journal of Scientific & Engineering Research, Vol No.7, No.6, pp.100-105, 2016.
- 28. G. Devendar, A. Chennakesava Reddy, Study on Deep Drawing Process Parameters A Review, International Journal of Scientific & Engineering Research, Vol.7, No.6, pp.149-155, 2016.
- 29. Chennakesava R Alavala, Fem Analysis of Single Point Incremental Forming Process and Validation with Grid-Based Experimental Deformation Analysis, International Journal of Mechanical Engineering, Vol.5, No.5, pp.1-6, 2016.
- Chennakesava R Alavala, Validation of Single Point Incremental Forming Process for Deep Drawn Pyramidal Cups Using Experimental Grid-Based Deformation, International Journal of Engineering Sciences & Research Technology, Vol.5, No.8, pp.481-488, 2016.
- 31. Chennakesava R Alavala, High temperature and high strain rate superplastic deep drawing process for AA2618 alloy cylindrical cups, International Journal of Scientific Engineering and Applied Science, Vol.2, No.2, pp.35-41, 2016.

- 32. Chennakesava R Alavala, Practicability of High Temperature and High Strain Rate Superplastic Deep Drawing Process for AA3003 Alloy Cylindrical Cups, International Journal of Engineering Inventions, Vol No.5, No.3, pp.16-23, 2016.
- 33. Chennakesava R Alavala, High temperature and high strain rate superplastic deep drawing process for AA5049 alloy cylindrical cups, International Journal of Engineering Sciences & Research Technology, Vol.5, No.2, pp.261-268, 2016.
- 34. Chennakesava R Alavala, Suitability of High Temperature and High Strain Rate Superplastic Deep Drawing Process for AA5052 Alloy, International Journal of Engineering and Advanced Research Technology, Vol.2, No.3, pp.11-14, 2016.
- 35. G. Devendar, A. Chennakesava Reddy, Formability Limit Diagrams of Cold Deep Drawing Process for Nickel 201 Cylindrical Cups, International Journal of Science and Research, Vol.5, No.8, pp.1591-1598, 2016.
- 36. A. Chennakesava Reddy, Formability of superplastic deep drawing process with moving blank holder for AA1050-H18 conical cups, International Journal of Research in Engineering and Technology, Vol.4, Issue No.8, pp.124-132, 2015.
- 37. A. Chennakesava Reddy, Performance of Warm Deep Drawing Process for AA1050 Cylindrical Cups with and Without Blank Holding Force, International Journal of Scientific Research, Vol.4, No.10, pp.358-365, 2015.
- A. Chennakesava Reddy, Formability of High Temperature and High Strain Rate Superplastic Deep Drawing Process for AA2219 Cylindrical Cups, International Journal of Advanced Research, Vol.3, No.10, pp.1016-1024, 2015.
- 39. A. Chennakesava Reddy, Simulation analysis of four-pass shape roll forming of I-sections, International Journal of Mechanical and Production Engineering Research and Development, Vol.5, No.1, pp.35-44, 2015.
- 40. Kothapalli Chandini, A. Chennakesava Reddy, Parametric Importance of Warm Deep Drawing Process for 1070A Aluminium Alloy: Validation through FEA, International Journal of Scientific & Engineering Research, Vol.6, No.4, pp.399-407, 2015.
- 41. Balla Yamuna, A. Chennakesava Reddy, Parametric Merit of Warm Deep Drawing Process for 1080A Aluminium Alloy: Validation through FEA, International Journal of Scientific & Engineering Research, Vol.6, No.4, pp.416-424, 2015.
- 42. Thirunagari Srinivas, A. Chennakesava Reddy, Parametric Optimization of Warm Deep Drawing Process of 1100 Aluminum Alloy: Validation through FEA, International Journal of Scientific & Engineering Research, Vol No.6, No.4, pp.425-433, 2015.
- 43. A. Chennakesava Reddy, Homogenization and Parametric Consequence of Warm Deep Drawing Process for 1050A Aluminum Alloy: Validation through FEA, International Journal of Science and Research, Vol.4, No.4, pp.2034-2042, 2015.

- 44. A. Chennakesava Reddy, Parametric Optimization of Warm Deep Drawing Process of 2014T6 Aluminum Alloy Using FEA, International Journal of Scientific & Engineering Research, Vol.6, No.5, pp.1016-1024, 2015.
- 45. A. Chennakesava Reddy, Parametric Significance of Warm Drawing Process for 2024T4 Aluminum Alloy through FEA, International Journal of Science and Research, Vol.4, No.5, pp.2345-2351, 2015.
- 46. A. Chennakesava Reddy, Finite Element Analysis of Warm Deep Drawing Process for 2017T4 Aluminum Alloy: Parametric Significance Using Taguchi Technique, International Journal of Advanced Research, Vol.3, No.5, pp.1247-1255, 2015.
- 47. Balla yamuna, A. Chennakesava Reddy, Finite Element Analysis of Warm Deep Drawing Process for Conical Cup of AA1080 Aluminum Alloy, International Journal of Advanced Research, Vol.3, No.6, pp.1309-1317, 2015.
- 48. Kothapalli Chandini, A. Chennakesava Reddy, Finite Element Analysis of Warm Deep Drawing Process for Pyramidal Cup of AA1070 Aluminum Alloy, International Journal of Advanced Research, Vol.3, No.6, pp.1325-1334, 2015.
- 49. Thirunagari Srinivas, A. Chennakesava Reddy, Finite Element Analysis of Warm Deep Drawing Process for Rectangular Cup of AA1100 Aluminum Alloy, International Journal of Advanced Research, Vol.3, No.6, pp.1383-1391, 2015.
- 50. A. Chennakesava Reddy, Formability of Warm Deep Drawing Process for AA1050-H18 Pyramidal Cups, International Journal of Science and Research, Vol.4, No.7, pp.2111-2119, 2015.
- A. Chennakesava Reddy, Formability of Warm Deep Drawing Process for AA1050-H18 Rectangular Cups, International Journal of Mechanical and Production Engineering Research and Development, Vol.5, No.4, pp.85-97, 2015.
- M. Vidya Sagar, A. Chennakesava Reddy, Finite volume analysis of two-stage forging process for aluminium 7075 alloy, International Conference on Advanced Materials and Manufacturing Technologies, JNTUH Hyderabad, 9789382163466, pp.228-238, Paramount Publishing House, 2014.
- 53. A. Chennakesava Reddy, T. Kishen Kumar Reddy, M. Vidya Sagar, Experimental characterization of warm deep drawing process for EDD steel, International Journal of Multidisciplinary Research & Advances in Engineering, Vo.4, No.3, pp.53-62, 2012.
- 54. J.J.V. Jeyasingh, G. Kothandaraman, P. P. Sinha, B. Nageswara Rao, A. Chennakesava Reddy, Spherical dome formation by transformation of superplasticity of titanium alloys and titanium matrix composites, International Journal of Materials Science & Engineering, No.478, pp.397-401, 2008.
- 55. J. V. Jeysingh, B. Nageswara Rao, A. Chennakesava Reddy, Investigation on failures of hydroforming deep drawing processes, Materials Science Research Journal, Vol.2, No.3&4, pp.145-168, 2008.

- 56. J. V. Jeysingh, B. Nageswara Rao, A. Chennakesava Reddy, Development of a ductile fracture criterion in cold forming, Materials Science Research Journal, Vol.2, No.3&4, 2008.
- 57. J. V. Jeysingh, B. Nageswara Rao, A. Chennakesava Reddy, Gas pressure forming of spherical domes from Pb-Sn eutectic alloy superplastic sheet material, Materials Science Research Journal, Vol.2, No.3&4, pp.241-258, 2008.
- 58. A. Chennakesava Reddy, Finite element analysis of reverse superplastic blow forming of Ti-Al-4V alloy for optimized control of thickness variation using ABAQUS, Journal of Manufacturing Engineering, Vol.1, No.1, pp.6-9, 2006.
- 59. A. Chennakesava Reddy, Residual stress measurement of reverse flow formed components by Xray diffractometer, Engineering Advances, Vol.11, No.9, pp.54-55, 1999.A. Chennakesava Reddy, Fluidity and microstructural features of Al-alloy weld beads, Engineering Advances, Vol.15, No.3, pp.28-32, 2003.